1
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
2
|
Screening the Pathogen Box to Discover and Characterize New Cruzain and TbrCatL Inhibitors. Pathogens 2023; 12:pathogens12020251. [PMID: 36839523 PMCID: PMC9967275 DOI: 10.3390/pathogens12020251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.
Collapse
|
3
|
Li L, Hu J, Fu Y, Shi X, Du H, Xu J, Chen N. Direct Regioselective C-H Cyanation of Purines. Molecules 2023; 28:molecules28030914. [PMID: 36770582 PMCID: PMC9920237 DOI: 10.3390/molecules28030914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
A direct regioselective C-H cyanation of purines was developed through a sequential triflic anhydride activation, nucleophilic cyanation with TMSCN, followed by a process of base-mediated elimination of triflous acid (CF3SO2H). In most cases, the direct C-H cyanation occurred on the electron-rich imidazole motif of purines, affording 8-cyanated purine derivatives in moderate to excellent yields. Various functional groups, including allyl, alkynyl, ketone, ester, nitro et al. were tolerated and acted as a C8 directing group. The electron-donating 6-diethylamino, as C2-directing group substituent, can switch the regioselectivity of purine from 8- to 2-position, enabling the synthesis of 8- and 2-cyano 6-dialkylaminopurines from corresponding 6-chloropurine in different reaction order. Further functional manipulations of the cyano group allow the conversions of 8-cyanopurines to corresponding purine amides, imidates, imidothioates, imidamides, oxazolines, and isothiazoles.
Collapse
|
4
|
Update on relevant trypanosome peptidases: Validated targets and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140577. [PMID: 33271348 DOI: 10.1016/j.bbapap.2020.140577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".
Collapse
|
5
|
Benzimidazole inhibitors of the major cysteine protease of Trypanosoma brucei. Future Med Chem 2020; 11:1537-1551. [PMID: 31469332 DOI: 10.4155/fmc-2018-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Limitations in available therapies for trypanosomiases indicate the need for improved medicines. Cysteine proteases cruzain and rhodesain are validated targets for treatment of Chagas disease and human African trypanosomiasis. Previous studies reported a benzimidazole series as potent cruzain inhibitors. Results & methodology: Considering the high similarity between these proteases, we evaluated 40 benzimidazoles against rhodesain. We describe their structure-activity relationships (SAR), revealing trends similar to those observed for cruzain and features that lead to enzyme selectivity. This series comprises noncovalent competitive inhibitors (best Ki = 0.21 μM against rhodesain) and micromolar activity against Trypanosoma brucei brucei. A cheminformatics analysis confirms scaffold novelty, and the inhibitors described have favorable predicted physicochemical properties. Conclusion: Our results support this series as a starting point for new human African trypanosomiasis medicines.
Collapse
|
6
|
Pereira GAN, da Silva EB, Braga SFP, Leite PG, Martins LC, Vieira RP, Soh WT, Villela FS, Costa FMR, Ray D, de Andrade SF, Brandstetter H, Oliveira RB, Caffrey CR, Machado FS, Ferreira RS. Discovery and characterization of trypanocidal cysteine protease inhibitors from the 'malaria box'. Eur J Med Chem 2019; 179:765-778. [PMID: 31284086 DOI: 10.1016/j.ejmech.2019.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/04/2023]
Abstract
Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 μM. Among those, 15 commercially available compounds were selected for confirmatory assays, given their potency, time-dependent inhibition profile and reported activity against parasites. Additional assays led to the confirmation of four novel classes of cruzain and rhodesain inhibitors, with potency in the low-to mid-micromolar range against enzymes and T. cruzi. Assays against mammalian cathepsins S and B revealed inhibitor selectivity for parasitic proteases. For the two competitive inhibitors identified (compounds 7 and 12), their binding mode was predicted by docking, providing a basis for structure-based optimization efforts. Compound 12 also acted directly against the trypomastigote and the intracellular amastigote forms of T. cruzi at 3 μM. Therefore, through a combination of experimental and computational approaches, we report promising hits for optimization in the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Glaécia A N Pereira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Elany B da Silva
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Saulo F P Braga
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Paulo Gaio Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Luan C Martins
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael P Vieira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Wai Tuck Soh
- Structural Biology Group By Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Filipe S Villela
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francielly M R Costa
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Debalina Ray
- University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Saulo F de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Hans Brandstetter
- Structural Biology Group By Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Renata B Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabiana S Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela S Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
7
|
Gupta P, Singh L, Singh K. The hybrid antimalarial approach. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. High Throughput and Computational Repurposing for Neglected Diseases. Pharm Res 2018; 36:27. [PMID: 30560386 PMCID: PMC6792295 DOI: 10.1007/s11095-018-2558-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Purpose Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. Methods We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. Results Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. Conclusions In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches. Electronic supplementary material The online version of this article (10.1007/s11095-018-2558-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Melinda Soeung
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA
| | | | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Jair Lage de Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
9
|
Rocha DA, Silva EB, Fortes IS, Lopes MS, Ferreira RS, Andrade SF. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur J Med Chem 2018; 157:1426-1459. [DOI: 10.1016/j.ejmech.2018.08.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
|
10
|
Salas-Sarduy E, Landaburu LU, Karpiak J, Madauss KP, Cazzulo JJ, Agüero F, Alvarez VE. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep 2017; 7:12073. [PMID: 28935948 PMCID: PMC5608908 DOI: 10.1038/s41598-017-12170-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
American Trypanosomiasis or Chagas disease is a prevalent, neglected and serious debilitating illness caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The current chemotherapy is limited only to nifurtimox and benznidazole, two drugs that have poor efficacy in the chronic phase and are rather toxic. In this scenario, more efficacious and safer drugs, preferentially acting through a different mechanism of action and directed against novel targets, are particularly welcome. Cruzipain, the main papain-like cysteine peptidase of T. cruzi, is an important virulence factor and a chemotherapeutic target with excellent pre-clinical validation evidence. Here, we present the identification of new Cruzipain inhibitory scaffolds within the GlaxoSmithKline HAT (Human African Trypanosomiasis) and Chagas chemical boxes, two collections grouping 404 non-cytotoxic compounds with high antiparasitic potency, drug-likeness, structural diversity and scientific novelty. We have adapted a continuous enzymatic assay to a medium-throughput format and carried out a primary screening of both collections, followed by construction and analysis of dose-response curves of the most promising hits. Using the identified compounds as a starting point a substructure directed search against CHEMBL Database revealed plausible common scaffolds while docking experiments predicted binding poses and specific interactions between Cruzipain and the novel inhibitors.
Collapse
Affiliation(s)
- Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina
| | - Lionel Urán Landaburu
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina
| | - Joel Karpiak
- GlaxoSmithKline R&D, Molecular Design US, Pennsylvania, Upper Providence PA, USA
| | - Kevin P Madauss
- GlaxoSmithKline R&D, Trust in Science, Pennsylvania, Upper Providence PA, USA
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina.
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Ferreira LG, Andricopulo AD. Targeting cysteine proteases in trypanosomatid disease drug discovery. Pharmacol Ther 2017; 180:49-61. [PMID: 28579388 DOI: 10.1016/j.pharmthera.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts.
Collapse
Affiliation(s)
- Leonardo G Ferreira
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil.
| |
Collapse
|
12
|
Sola I, Artigas A, Taylor MC, Pérez-Areales FJ, Viayna E, Clos MV, Pérez B, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis and biological evaluation of N-cyanoalkyl-, N-aminoalkyl-, and N-guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents. Bioorg Med Chem 2016; 24:5162-5171. [PMID: 27591008 PMCID: PMC5080452 DOI: 10.1016/j.bmc.2016.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
Current drugs against human African trypanosomiasis (HAT) suffer from several serious drawbacks. The search for novel, effective, brain permeable, safe, and inexpensive antitrypanosomal compounds is therefore an urgent need. We have recently reported that the 4-aminoquinoline derivative huprine Y, developed in our group as an anticholinesterasic agent, exhibits a submicromolar potency against Trypanosoma brucei and that its homo- and hetero-dimerization can result in to up to three-fold increased potency and selectivity. As an alternative strategy towards more potent smaller molecule anti-HAT agents, we have explored the introduction of ω-cyanoalkyl, ω-aminoalkyl, or ω-guanidinoalkyl chains at the primary amino group of huprine or the simplified 4-aminoquinoline analogue tacrine. Here, we describe the evaluation of a small in-house library and a second generation of newly synthesized derivatives, which has led to the identification of 13 side chain modified 4-aminoquinoline derivatives with submicromolar potencies against T. brucei. Among these compounds, the guanidinononyltacrine analogue 15e exhibits a 5-fold increased antitrypanosomal potency, 10-fold increased selectivity, and 100-fold decreased anticholinesterasic activity relative to the parent huprine Y. Its biological profile, lower molecular weight relative to dimeric compounds, reduced lipophilicity, and ease of synthesis, make it an interesting anti-HAT lead, amenable to further optimization to eliminate its remaining anticholinesterasic activity.
Collapse
Affiliation(s)
- Irene Sola
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Albert Artigas
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - F Javier Pérez-Areales
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Elisabet Viayna
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - M Victòria Clos
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Colin W Wright
- Bradford School of Pharmacy, University of Bradford, West Yorkshire BD7 1 DP, United Kingdom
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
13
|
Singh K, Kaur T. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00084c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The versatility in the design strategies of pyrimidine scaffold offer considerable opportunity for developing antimalarials capable of hitting different biological targets.
Collapse
Affiliation(s)
- Kamaljit Singh
- Department of Chemistry
- Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Tavleen Kaur
- Department of Nephrology
- Guru Nanak Dev Hospital
- Amritsar
- India
| |
Collapse
|
14
|
Tung NH, Suzuki M, Uto T, Morinaga O, Kwofie KD, Ammah N, Koram KA, Aboagye F, Edoh D, Yamashita T, Yamaguchi Y, Setsu T, Yamaoka S, Ohta N, Shoyama Y. Anti-Trypanosomal Activity of Diarylheptanoids Isolated from the Bark ofAlnus japonica. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1245-60. [DOI: 10.1142/s0192415x14500785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The crude extract of Alnus japonica bark exhibited a strong effect on the growth of Trypanosoma brucei. Subsequent chromatographic separation resulted in the isolation of two novel diarylheptanoids, known as alnuside C (2) and alnuside D (3), and three known compounds, 1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptan-3(R)-O-β-D-glucopyranoside (1), oregonin (4) and hirsutanone (5). The structures of the isolates were elucidated based on the use of extensive spectroscopic and chemical methods. Among the isolated diarylheptanoids, oregonin (4) (a major component of plant bark) and hirsutanone (5) exhibited potent in vitro inhibitory activity against T. brucei growth in the bloodstream with IC50values of 1.14 and 1.78 μM, respectively. We confirmed that oregonin (4) and hirsutanone (5) were not toxic to human normal skin fibroblast cells (NB1RGB) and colon cancer cells (HCT-15) at a concentration of 50 μM; however, lower levels of toxicity were observed for leukemia cells. To determine the structure activity relationships of the isolated components, we performed Conformation Search and found that the 3-oxo function of the heptane chain in the diarylheptanoid molecule is required for their trypanocidal activity.
Collapse
Affiliation(s)
- Nguyen Huu Tung
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Mitsuko Suzuki
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takuhiro Uto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Osamu Morinaga
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Kofi D. Kwofie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Naa Ammah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Kwadwo A. Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Frederic Aboagye
- Center for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | - Dominic Edoh
- Center for Scientific Research into Plant Medicine, Mampong-Akuapem 73, Ghana
| | - Taizo Yamashita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Yasuchika Yamaguchi
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Takao Setsu
- University Forest, Kyushu University, Kasuya, Fukuoka 811-2415, Japan
| | - Shoji Yamaoka
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nobuo Ohta
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
15
|
Chemoinformatic analysis as a tool for prioritization of trypanocidal marine derived lead compounds. Mar Drugs 2014; 12:1169-84. [PMID: 24599097 PMCID: PMC3967203 DOI: 10.3390/md12031169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022] Open
Abstract
Marine trypanocidal natural products are, most often, reported with trypanocidal activity and selectivity against human cell lines. The triaging of hits requires a consideration of chemical tractability for drug development. We utilized a combined Lipinski's rule-of-five, chemical clustering and ChemGPS-NP principle analysis to analyze a set of 40 antitrypanosomal natural products for their drug like properties and chemical space. The analyses identified 16 chemical clusters with 11 well positioned within drug-like chemical space. This study demonstrated that our combined analysis can be used as an important strategy for prioritization of active marine natural products for further investigation.
Collapse
|
16
|
Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R, Das S, Madhura DB, Rathi C, Trivedi A, Villellas C, Lee RB, Rakesh, Waidyarachchi SL, Sun D, McNeil MR, Ainsa JA, Boshoff HI, Gonzalez-Juarrero M, Meibohm B, Böttger EC, Lenaerts AJ. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 2014; 20:152-158. [PMID: 24464186 PMCID: PMC3972818 DOI: 10.1038/nm.3458] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross resistance with existing tuberculosis therapeutics, activity against multidrug-resistant (MDR) and extensively drug-resistant tuberculosis and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage-induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target-based tuberculosis drug discovery.
Collapse
Affiliation(s)
- Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Michael S Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Pavan K Vaddady
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhong Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jianjun Qi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dora B Madhura
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chetan Rathi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ashit Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Cristina Villellas
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, and CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Samanthi L Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dianqing Sun
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael R McNeil
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Jose A Ainsa
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, and CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Lavrado J, Mackey Z, Hansell E, McKerrow JH, Paulo A, Moreira R. Antitrypanosomal and cysteine protease inhibitory activities of alkyldiamine cryptolepine derivatives. Bioorg Med Chem Lett 2012; 22:6256-60. [DOI: 10.1016/j.bmcl.2012.07.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022]
|
18
|
Chianese G, Fattorusso E, Scala F, Teta R, Calcinai B, Bavestrello G, Dien HA, Kaiser M, Tasdemir D, Taglialatela-Scafati O. Manadoperoxides, a new class of potent antitrypanosomal agents of marine origin. Org Biomol Chem 2012; 10:7197-207. [PMID: 22859016 DOI: 10.1039/c2ob26124c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical investigation of the marine sponge Plakortis cfr. lita afforded a library of endoperoxyketal polyketides, manadoperoxides B-K (3-5 and 7-13) and peroxyplakoric esters B(3) (6) and C (14). Eight of these metabolites are new compounds and some contain an unprecedented chlorine-bearing THF-type ring in the side chain. The library of endoperoxide derivatives was evaluated for in vitro activity against Trypanosoma brucei rhodesiense and Leishmania donovani. Some compounds, such as manadoperoxide B, exhibited ultrapotent trypanocidal activity (IC(50) = 3 ng mL(-1)) without cytotoxicity. Detailed examination of the antitrypanosomal activity data and comparison with those available in the literature for related dioxane derivatives enabled us to draw a series of structure-activity relationships. Interestingly, it appears that minor structural changes, such as a shift of the methyl group around the dioxane ring, can dramatically affect the antitrypanosomal activity. This information can be valuable to guide the design of optimized antitrypanosomal agents based on the dioxane scaffold.
Collapse
Affiliation(s)
- Giuseppina Chianese
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol 2012; 42:481-8. [DOI: 10.1016/j.ijpara.2012.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/10/2023]
|
20
|
Costa TF, Reis FCD, Lima APC. Substrate inhibition and allosteric regulation by heparan sulfate of Trypanosoma brucei cathepsin L. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:493-501. [DOI: 10.1016/j.bbapap.2011.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
|
21
|
Caffrey CR, Lima AP, Steverding D. Cysteine peptidases of kinetoplastid parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:84-99. [PMID: 21660660 DOI: 10.1007/978-1-4419-8414-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host's immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers Hall, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
22
|
Yongye AB, Byler K, Santos R, Martínez-Mayorga K, Maggiora GM, Medina-Franco JL. Consensus Models of Activity Landscapes with Multiple Chemical, Conformer, and Property Representations. J Chem Inf Model 2011; 51:1259-70. [DOI: 10.1021/ci200081k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Austin B. Yongye
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Kendall Byler
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Karina Martínez-Mayorga
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gerald M. Maggiora
- Department of Pharmacology & Toxicology, University of Arizona College of Pharmacy, 1703 E. Mabel Street, Tucson, Arizona 85721, United States and Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, Arizona 85004, United States
| | - José L. Medina-Franco
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
23
|
Ang KKH, Ratnam J, Gut J, Legac J, Hansell E, Mackey ZB, Skrzypczynska KM, Debnath A, Engel JC, Rosenthal PJ, McKerrow JH, Arkin MR, Renslo AR. Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl Trop Dis 2011; 5:e1023. [PMID: 21572521 PMCID: PMC3086806 DOI: 10.1371/journal.pntd.0001023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/14/2011] [Indexed: 01/21/2023] Open
Abstract
The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼ 2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts.
Collapse
Affiliation(s)
- Kenny K. H. Ang
- The Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Joseline Ratnam
- The Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Jennifer Legac
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth Hansell
- The Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Zachary B. Mackey
- The Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Katarzyna M. Skrzypczynska
- The Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Anjan Debnath
- The Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Juan C. Engel
- The Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- The Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Michelle R. Arkin
- The Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MRA); (ARR)
| | - Adam R. Renslo
- The Small Molecule Discovery Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MRA); (ARR)
| |
Collapse
|
24
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
25
|
Mallari JP, Zhu F, Lemoff A, Kaiser M, Lu M, Brun R, Guy RK. Optimization of purine-nitrile TbcatB inhibitors for use in vivo and evaluation of efficacy in murine models. Bioorg Med Chem 2010; 18:8302-9. [DOI: 10.1016/j.bmc.2010.09.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/24/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022]
|
26
|
Coterón JM, Catterick D, Castro J, Chaparro MJ, Díaz B, Fernández E, Ferrer S, Gamo FJ, Gordo M, Gut J, de las Heras L, Legac J, Marco M, Miguel J, Muñoz V, Porras E, de la Rosa JC, Ruiz JR, Sandoval E, Ventosa P, Rosenthal PJ, Fiandor JM. Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J Med Chem 2010; 53:6129-52. [PMID: 20672841 DOI: 10.1021/jm100556b] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Falcipain-2 and falcipain-3 are papain-family cysteine proteases of the malaria parasite Plasmodium falciparum that are responsible for host hemoglobin hydrolysis to provide amino acids for parasite protein synthesis. Different heteroarylnitrile derivatives were studied as potential falcipain inhibitors and therefore potential antiparasitic lead compounds, with the 5-substituted-2-cyanopyrimidine chemical class emerging as the most potent and promising lead series. Through a sequential lead optimization process considering the different positions present in the initial scaffold, nanomolar and subnanomolar inhibitors at falcipains 2 and 3 were identified, with activity against cultured parasites in the micromolar range. Introduction of protonable amines within lead molecules led to marked improvements of up to 1000 times in activity against cultured parasites without noteworthy alterations in other SAR tendencies. Optimized compounds presented enzymatic activities in the picomolar to low nanomolar range and antiparasitic activities in the low nanomolar range.
Collapse
Affiliation(s)
- Jose M Coterón
- Department of Drug Discovery Chemistry, GlaxoSmithKline, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen YT, Brinen LS, Kerr ID, Hansell E, Doyle PS, McKerrow JH, Roush WR. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl Trop Dis 2010; 4. [PMID: 20856868 PMCID: PMC2939063 DOI: 10.1371/journal.pntd.0000825] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/18/2010] [Indexed: 01/19/2023] Open
Abstract
Background Cruzain, the major cysteine protease of Trypanosoma cruzi, is an essential enzyme for the parasite life cycle and has been validated as a viable target to treat Chagas' disease. As a proof-of-concept, K11777, a potent inhibitor of cruzain, was found to effectively eliminate T. cruzi infection and is currently a clinical candidate for treatment of Chagas' disease. Methodology/Principal Findings WRR-483, an analog of K11777, was synthesized and evaluated as an inhibitor of cruzain and against T. cruzi proliferation in cell culture. This compound demonstrates good potency against cruzain with sensitivity to pH conditions and high efficacy in the cell culture assay. Furthermore, WRR-483 also eradicates parasite infection in a mouse model of acute Chagas' disease. To determine the atomic-level details of the inhibitor interacting with cruzain, a 1.5 Å crystal structure of the protease in complex with WRR-483 was solved. The structure illustrates that WRR-483 binds covalently to the active site cysteine of the protease in a similar manner as other vinyl sulfone-based inhibitors. Details of the critical interactions within the specificity binding pocket are also reported. Conclusions We demonstrate that WRR-483 is an effective cysteine protease inhibitor with trypanocidal activity in cell culture and animal model with comparable efficacy to K11777. Crystallographic evidence confirms that the mode of action is by targeting the active site of cruzain. Taken together, these results suggest that WRR-483 has potential to be developed as a treatment for Chagas' disease. Current drugs for Chagas' disease, caused by Trypanosoma cruzi infection, are limited in efficacy and are severely toxic. Hence the development of novel chemotherapeutic agents targeting T. cruzi infections is an important undertaking. In recent years, there has been considerable interest in cruzain, the major protease in T. cruzi, as a target to treat Chagas' disease. Herein, we present the synthesis of WRR-483, a small molecule designed as an irreversible cysteine protease inhibitor, and an assessment of its biological activity against cruzain and T. cruzi infection. This compound displays pH-dependent affinity for cruzain and highly effective trypanocidal activity in both cell cuture and a mouse model of acute Chagas' disease. The crystal structure of WRR-483 bound to cruzain elucidates the details of inhibitor binding to the enzyme. Based on these results, this inhibitor is a promising compound for the development of therapeutics for Chagas' disease.
Collapse
Affiliation(s)
- Yen Ting Chen
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Linda S. Brinen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Iain D. Kerr
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth Hansell
- Department of Pathology and the Sandler Center for Basic Research in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Patricia S. Doyle
- Department of Pathology and the Sandler Center for Basic Research in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Department of Pathology and the Sandler Center for Basic Research in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - William R. Roush
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
28
|
Crystal Structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl Trop Dis 2010; 4:e701. [PMID: 20544024 PMCID: PMC2882330 DOI: 10.1371/journal.pntd.0000701] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/08/2010] [Indexed: 12/04/2022] Open
Abstract
Background Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei. Methods and Findings We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002. Conclusions The mature domain of our TbCat•CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat•CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain•K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs. Proteases are ubiquitous in all forms of life and catalyze the enzymatic degradation of proteins. These enzymes regulate and coordinate a vast number of cellular processes and are therefore essential to many organisms. While serine proteases dominate in mammals, parasitic organisms commonly rely on cysteine proteases of the Clan CA family throughout their lifecycle. Clan CA cysteine proteases are therefore regarded as promising targets for the selective design of drugs to treat parasitic diseases, such as Human African Trypanosomiasis caused by Trypanosoma brucei. The genomes of kinetoplastids such as Trypanosoma spp. and Leishmania spp. encode two Clan CA C1 family cysteine proteases and in T. brucei these are represented by rhodesain and TbCatB. We have determined three-dimensional structures of these two enzymes as part of our ongoing efforts to synthesize more effective anti-trypanosomal drugs.
Collapse
|
29
|
Boxer MB, Quinn AM, Shen M, Jadhav A, Leister W, Simeonov A, Auld DS, Thomas CJ. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. ChemMedChem 2010; 5:730-8. [PMID: 20229566 PMCID: PMC3062473 DOI: 10.1002/cmdc.200900531] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Indexed: 11/11/2022]
Abstract
Herein, we examine the potential of a nitrile-containing propionic acid moiety as an electrophile for covalent attack by the active-site cysteine residue of caspase 1. The syntheses of several cyanopropanate-containing small molecules based on the optimized peptidic scaffold of prodrug VX-765 were accomplished. These compounds were found to be potent inhibitors of caspase 1 (IC(50) values < or =1 nM). Examination of these novel small molecules against a caspase panel demonstrated an impressive degree of selectivity for caspase 1 inhibition over other caspase isozymes. Assessment of hydrolytic stability and selected ADME properties highlighted these agents as potentially useful tools for studying caspase 1 down-regulation in various settings, including in vivo analyses.
Collapse
Affiliation(s)
- Matthew B. Boxer
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Amy M. Quinn
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - William Leister
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Douglas S. Auld
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| |
Collapse
|
30
|
Tu Y, Jeffries C, Ruan H, Nelson C, Smithson D, Shelat AA, Brown KM, Li XC, Hester JP, Smillie T, Khan IA, Walker L, Guy K, Yan B. Automated high-throughput system to fractionate plant natural products for drug discovery. JOURNAL OF NATURAL PRODUCTS 2010; 73:751-4. [PMID: 20232897 PMCID: PMC2866159 DOI: 10.1021/np9007359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA, and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities.
Collapse
Affiliation(s)
- Ying Tu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Cynthia Jeffries
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Hong Ruan
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Cynthia Nelson
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - David Smithson
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Anang A. Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Kristin M. Brown
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Xing-Cong Li
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677
| | - John P. Hester
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Troy Smillie
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Larry Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Kip Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
- To whom correspondence should be addressed. Tel: (901)495-2797. Fax: (901)#595-5715. (B.Y.). Tel: (901)595-5714. Fax: (901)#595-5715. (K.G.)
| | - Bing Yan
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- To whom correspondence should be addressed. Tel: (901)495-2797. Fax: (901)#595-5715. (B.Y.). Tel: (901)595-5714. Fax: (901)#595-5715. (K.G.)
| |
Collapse
|
31
|
Feng Y, Davis RA, Sykes M, Avery VM, Camp D, Quinn RJ. Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. JOURNAL OF NATURAL PRODUCTS 2010; 73:716-719. [PMID: 20235550 DOI: 10.1021/np900535z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bioassay-guided fractionation of the crude extract from the Australian marine sponge Plakortis sp. led to the isolation of two new cyclic polyketide peroxides, 11,12-didehydro-13-oxo-plakortide Q (1) and 10-carboxy-11,12,13,14-tetranor-plakortide Q (2). Antitrypanosomal studies showed that compound 1 had an IC(50) value of 49 nM against Trypanosoma brucei brucei, and compound 2, where a carboxylic acid is present in the side chain, had a 20-fold reduction of activity. 11,12-Didehydro-13-oxo-plakortide Q (1) is the most active peroxide isolated so far against T. b. brucei, and it indicates the potential therapeutic value of this class of compounds.
Collapse
Affiliation(s)
- Yunjiang Feng
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Watts KR, Ratnam J, Ang KH, Tenney K, Compton JE, McKerrow J, Crews P. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorg Med Chem 2010; 18:2566-74. [PMID: 20303767 PMCID: PMC2893881 DOI: 10.1016/j.bmc.2010.02.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022]
Abstract
Human African trypanosomiasis (HAT, commonly known as African sleeping sickness) is categorized as a neglected disease, as it afflicts >50,000 people annually in sub-saharan Africa, and there are few formal programs in the world focused on drug discovery approaches for this disease. In this study, we examined the crude extracts of two fungal strains (Aspergillus fumigatus and Nectria inventa) isolated from deep water sediment which provided >99% growth inhibition at 1microg/mL of Trypanosoma brucei, the causative parasite of HAT. A collection of fifteen natural products was supplemented with six semi-synthetic derivatives and one commercially available compound. Twelve of the compounds, each containing a diketopiperazine core, showed excellent activity against T. brucei (IC(50)=0.002-40microM), with selectivity over mammalian cells as great as 20-fold. The trypanocidal diketopiperazines were also tested against two cysteine protease targets Rhodesain and TbCatB, where five compounds showed inhibition activity at concentrations less than 20microM. A preliminary activity pattern is described and analyzed.
Collapse
Affiliation(s)
- Katharine R. Watts
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Joseline Ratnam
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Kean-Hooi Ang
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Jennifer E. Compton
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - James McKerrow
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
33
|
Synthesis and structure-activity relationships of antimalarial 4-oxo-3-carboxyl quinolones. Bioorg Med Chem 2010; 18:2756-66. [PMID: 20206533 DOI: 10.1016/j.bmc.2010.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
Abstract
Malaria is endemic in tropical and subtropical regions of Africa, Asia, and the Americas. The increasing prevalence of multi-drug-resistant Plasmodium falciparum drives the ongoing need for the development of new antimalarial drugs. In this light, novel scaffolds to which the parasite has not been exposed are of particular interest. Recently, workers at the Swiss Tropical Institute discovered two novel 4-oxo-3-carboxyl quinolones active against the intra-erythrocytic stages of P. falciparum while carrying out rationally directed low-throughput screening of potential antimalarial agents as part of an effort directed by the World Health Organization. Here we report the design, synthesis, and preliminary pharmacologic characterization of a series of analogues of 4-oxo-3-carboxyl quinolones. These studies indicate that the series has good potential for preclinical development.
Collapse
|
34
|
Mott BT, Ferreira RS, Simeonov A, Jadhav A, Ang KKH, Leister W, Shen M, Silveira JT, Doyle PS, Arkin MR, McKerrow JH, Inglese J, Austin CP, Thomas CJ, Shoichet BK, Maloney DJ. Identification and optimization of inhibitors of Trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB. J Med Chem 2010; 53:52-60. [PMID: 19908842 DOI: 10.1021/jm901069a] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Trypanosoma cruzi and Trypanosoma brucei are parasites that cause Chagas' disease and African sleeping sickness, respectively. Both parasites rely on essential cysteine proteases for survival: cruzain for T. cruzi and TbCatB/rhodesain for T. brucei. A recent quantitative high-throughput screen of cruzain identified triazine nitriles, which are known inhibitors of other cysteine proteases, as reversible inhibitors of the enzyme. Structural modifications detailed herein, including core scaffold modification from triazine to purine, improved the in vitro potency against both cruzain and rhodesain by 350-fold, while also gaining activity against T. brucei parasites. Selected compounds were screened against a panel of human cysteine and serine proteases to determine selectivity, and a cocrystal was obtained of our most potent analogue bound to cruzain.
Collapse
Affiliation(s)
- Bryan T Mott
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, MSC 3370 Bethesda, Maryland 20892-3370, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, Thomas CJ, Maloney DJ, Shoichet BK, Simeonov A. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem 2010; 53:37-51. [PMID: 19908840 DOI: 10.1021/jm901070c] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The perceived and actual burden of false positives in high-throughput screening has received considerable attention; however, few studies exist on the contributions of distinct mechanisms of nonspecific effects like chemical reactivity, assay signal interference, and colloidal aggregation. Here, we analyze the outcome of a screen of 197861 diverse compounds in a concentration-response format against the cysteine protease cruzain, a target expected to be particularly sensitive to reactive compounds, and using an assay format with light detection in the short-wavelength region where significant compound autofluorescence is typically encountered. Approximately 1.9% of all compounds screened were detergent-sensitive inhibitors. The contribution from autofluorescence and compounds bearing reactive functionalities was dramatically lower: of all hits, only 1.8% were autofluorescent and 1.5% contained reactive or undesired functional groups. The distribution of false positives was relatively constant across library sources. The simple step of including detergent in the assay buffer suppressed the nonspecific effect of approximately 93% of the original hits.
Collapse
Affiliation(s)
- Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mallari JP, Shelat AA, Kosinski A, Caffrey CR, Connelly M, Zhu F, McKerrow JH, Guy RK. Structure-guided development of selective TbcatB inhibitors. J Med Chem 2009; 52:6489-93. [PMID: 19769357 DOI: 10.1021/jm900908p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The trypanosomal cathepsin TbcatB is essential for parasite survival and is an attractive therapeutic target. Herein we report the structure-guided development of TbcatB inhibitors with specificity relative to rhodesain and human cathepsins B and L. Inhibitors were tested for enzymatic activity, trypanocidal activity, and general cytotoxicity. These data chemically validate TbcatB as a drug target and demonstrate that it is possible to potently and selectively inhibit TbcatB relative to trypanosomal and human homologues.
Collapse
Affiliation(s)
- Jeremy P Mallari
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94143-2280, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
38
|
Mallari JP, Guiguemde WA, Guy RK. Antimalarial activity of thiosemicarbazones and purine derived nitriles. Bioorg Med Chem Lett 2009; 19:3546-9. [PMID: 19447616 DOI: 10.1016/j.bmcl.2009.04.142] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/19/2022]
Abstract
Malaria is a devastating illness caused by multiple species of the Plasmodium genus. The parasite's falcipain proteases have been extensively studied as potential drug targets. Here we report the testing of two established cysteine protease inhibitor scaffolds against both chloroquine sensitive and chloroquine resistant parasites. A subset of purine derived nitriles killed the parasite with moderate potency, and these inhibitors do not seem to exert their antiproliferative effects as cysteine protease inhibitors. Compound potency was determined to be similar against both parasite strains, indicating a low probability of cross resistance with chloroquine. These compounds represent a novel antimalarial scaffold, and a potential starting point for the development new inhibitors.
Collapse
Affiliation(s)
- Jeremy P Mallari
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, CA 94143-2280, USA
| | | | | |
Collapse
|
39
|
Rubio BK, Tenney K, Ang KH, Abdulla M, Arkin M, McKerrow JH, Crews P. The marine sponge Diacarnus bismarckensis as a source of peroxiterpene inhibitors of Trypanosoma brucei, the causative agent of sleeping sickness. JOURNAL OF NATURAL PRODUCTS 2009; 72:218-222. [PMID: 19159277 PMCID: PMC2880650 DOI: 10.1021/np800711a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human African trypanosomiasis, also known as African sleeping sickness, is a neglected tropical disease with inadequate therapeutic options. We have launched a collaborative new lead discovery venture using our repository of extracts and natural product compounds as input into our growth inhibition primary screen against Trypanosoma brucei. Careful evaluation of the spectral data of the natural products and derivatives allowed for the elucidation of the absolute configuration (using the modified Mosher's method) of two new peroxiterpenes: (+)-muqubilone B (1a) and (-)-ent-muqubilone (3a). Five known compounds were also isolated: (+)-sigmosceptrellin A (4a), (+)-sigmosceptrellin A methyl ester (4b), (-)-sigmosceptrellin B (5), (+)-epi-muqubillin A (6), and (-)-epi-nuapapuin B methyl ester (7). The isolated peroxiterpenes demonstrated activities in the range IC(50) = 0.2-2 mug/mL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Phillip Crews
- To whom correspondence should be addressed. . Tel: (831) 459-2603. Fax: (831) 459-2935
| |
Collapse
|
40
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
McKerrow JH, Rosenthal PJ, Swenerton R, Doyle P. Development of protease inhibitors for protozoan infections. Curr Opin Infect Dis 2008; 21:668-72. [PMID: 18978536 PMCID: PMC2732359 DOI: 10.1097/qco.0b013e328315cca9] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To highlight the promise of parasite proteases as targets for development of new antiparasitic chemotherapy. Proteolytic enzymes play key roles in the life cycle of protozoan parasites or the pathogenesis of diseases they produce. These roles include processing of host or parasite surface proteins for invasion of host cells, digestion of host proteins for nutrition, and inactivation of host immune defense mediators. RECENT FINDINGS Drug development for other markets has shown that proteases are druggable targets, and protease inhibitors are now licensed or in clinical development to treat hypertension, diabetes, thrombosis, osteoporosis, infectious diseases, and cancer. Several protease targets have been validated by genetic or chemical knockout in protozoan parasites. Many other parasite proteases appear promising as targets, but require more work for validation, or to identify viable drug leads. Because homologous proteases function as key enzymes in several parasites, targeting these proteases may allow development of a single compound, or a set of similar compounds, that target multiple diseases including malaria, trypanosomiasis, leishmaniasis, toxoplasmosis, cryptosporidiosis, and amebiasis. SUMMARY Proteases have been validated as targets in a number of parasitic infections. Proteases are druggable targets as evidenced by effective antiprotease drugs for the treatment of many human diseases including hypertension and AIDS. Future drug development targeting parasite proteases will be aided by the strong foundation of biochemical, structural, and computational databases already published or available online.
Collapse
Affiliation(s)
- James H McKerrow
- Department of Pathology, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158-2330, USA.
| | | | | | | |
Collapse
|
42
|
Mallari JP, Shelat A, Kosinski A, Caffrey CR, Connelly M, Zhu F, McKerrow JH, Guy RK. Discovery of trypanocidal thiosemicarbazone inhibitors of rhodesain and TbcatB. Bioorg Med Chem Lett 2008; 18:2883-5. [PMID: 18420405 DOI: 10.1016/j.bmcl.2008.03.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. The cysteine proteases of T. brucei have been shown to be crucial for parasite replication and represent an attractive point for therapeutic intervention. Herein we describe the synthesis of a series of thiosemicarbazones and their activity against the trypanosomal cathepsins TbcatB and rhodesain, as well as human cathepsins L and B. The activity of these compounds was determined against cultured T. brucei, and specificity was assessed with a panel of four mammalian cell lines.
Collapse
Affiliation(s)
- Jeremy P Mallari
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, CA 94143-2280, USA
| | | | | | | | | | | | | | | |
Collapse
|