1
|
Rádis-Baptista G, Konno K. Spider and Wasp Acylpolyamines: Venom Components and Versatile Pharmacological Leads, Probes, and Insecticidal Agents. Toxins (Basel) 2024; 16:234. [PMID: 38922129 PMCID: PMC11209471 DOI: 10.3390/toxins16060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Soda Y, Tatsumi K, Forner M, Sato S, Shibuya K, Matagawa T, Simizu S, Chida N, Okamura T, Sato T. Stereodivergent synthesis of 2-oxo-oligopyrrolidines by an iterative coupling strategy. Org Biomol Chem 2024; 22:3230-3236. [PMID: 38564238 DOI: 10.1039/d4ob00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Natural linear polyamines play diverse roles in physiological processes by interacting with receptors at the cellular level. Herein, we describe the stereodivergent synthesis of oligopyrrolidines, which are conformationally constrained polyamines. We synthesized dimeric and trimeric 2-oxo-oligopyrrolidines using an iterative coupling strategy. The key to our success is an iridium-catalyzed trans/cis-selective nucleophilic addition and subsequent threo/erythro-stereoselective reduction. The synthesized pyrrolidines show varying cytotoxicities against a human cancer cell line depending on the number of rings and their stereochemistry.
Collapse
Affiliation(s)
- Yasuki Soda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Kumpei Tatsumi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Matteo Forner
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, PD, Italy
| | - Shunsei Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Kana Shibuya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Tomoe Matagawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
3
|
Kmieciak A, Krzemiński MP, Hodii A, Gorczyca D, Jastrzębska A. New Water-Soluble (Iminomethyl)benzenesulfonates Derived from Biogenic Amines for Potential Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:520. [PMID: 38276459 PMCID: PMC10817586 DOI: 10.3390/ma17020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
In this paper, a highly efficient and straightforward method for synthesizing novel Schiff bases was developed by reacting selected biogenic amines with sodium 2-formylbenzene sulfonate and sodium 3-formylbenzene sulfonate. 1H and 13C NMR, IR spectroscopy, and high-resolution mass spectrometry were used to characterize the new compounds. The main advantages of the proposed procedure include simple reagents and reactions carried out in water or methanol and at room temperature, which reduces time and energy. Moreover, it was shown that the obtained water-soluble Schiff bases are stable in aqueous solution for at least seven days. Additionally, the antioxidant and antimicrobial activity of synthesized Schiff bases were tested.
Collapse
Affiliation(s)
- Anna Kmieciak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| | - Marek P. Krzemiński
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| | - Anastasiia Hodii
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| | - Damian Gorczyca
- Faculty of Medicine, Lazarski University, 43 Świeradowska Str., 02-662 Warsaw, Poland;
- LymeLab Pharma, Kochanowskiego 49A Str., 01-864 Warsaw, Poland
| | - Aneta Jastrzębska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| |
Collapse
|
4
|
Drakontaeidi A, Pontiki E. Multi-Target-Directed Cinnamic Acid Hybrids Targeting Alzheimer's Disease. Int J Mol Sci 2024; 25:582. [PMID: 38203753 PMCID: PMC10778916 DOI: 10.3390/ijms25010582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Progressive cognitive decline in Alzheimer's disease (AD) is a growing challenge. Present therapies are based on acetylcholinesterase inhibition providing only temporary relief. Promising alternatives include butyrylcholinesterase (BuChE) inhibitors, multi-target ligands (MTDLs) that address the multi-factorial nature of AD, and compounds that target oxidative stress and inflammation. Cinnamate derivatives, known for their neuroprotective properties, show potential when combined with established AD agents, demonstrating improved efficacy. They are being positioned as potential AD therapeutic leads due to their ability to inhibit Aβ accumulation and provide neuroprotection. This article highlights the remarkable potential of cinnamic acid as a basic structure that is easily adaptable and combinable to different active groups in the struggle against Alzheimer's disease. Compounds with a methoxy substitution at the para-position of cinnamic acid display increased efficacy, whereas electron-withdrawing groups are generally more effective. The effect of the molecular volume is worthy of further investigation.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Inclán M, Torres Hernández N, Martínez Serra A, Torrijos Jabón G, Blasco S, Andreu C, del Olmo ML, Jávega B, O’Connor JE, García-España E. Antimicrobial Properties of New Polyamines Conjugated with Oxygen-Containing Aromatic Functional Groups. Molecules 2023; 28:7678. [PMID: 38005400 PMCID: PMC10675077 DOI: 10.3390/molecules28227678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotic resistance is now a first-order health problem, which makes the development of new families of antimicrobials imperative. These compounds should ideally be inexpensive, readily available, highly active, and non-toxic. Here, we present the results of our investigation regarding the antimicrobial activity of a series of natural and synthetic polyamines with different architectures (linear, tripodal, and macrocyclic) and their derivatives with the oxygen-containing aromatic functional groups 1,3-benzodioxol, ortho/para phenol, or 2,3-dihydrobenzofuran. The new compounds were prepared through an inexpensive process, and their activity was tested against selected strains of yeast, as well as Gram-positive and Gram-negative bacteria. In all cases, the conjugated derivatives showed antimicrobial activity higher than the unsubstituted polyamines. Several factors, such as the overall charge at physiological pH, lipophilicity, and the topology of the polyamine scaffold were relevant to their activity. The nature of the lipophilic moiety was also a determinant of human cell toxicity. The lead compounds were found to be bactericidal and fungistatic, and they were synergic with the commercial antifungals fluconazole, cycloheximide, and amphotericin B against the yeast strains tested.
Collapse
Affiliation(s)
- Mario Inclán
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
- Escuela Superior de Ingeniería, Ciencia y Tecnología, International University of Valencia—VIU, 46002 Valencia, Spain
| | - Neus Torres Hernández
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Alejandro Martínez Serra
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Gonzalo Torrijos Jabón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Valencia, 46100 Valencia, Spain; (G.T.J.); (M.l.d.O.)
| | - Salvador Blasco
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, University of Valencia, 46100 Valencia, Spain
| | - Marcel lí del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Valencia, 46100 Valencia, Spain; (G.T.J.); (M.l.d.O.)
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Enrique García-España
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| |
Collapse
|
6
|
Li SA, Cadelis MM, Deed RC, Douafer H, Bourguet-Kondracki ML, Michel Brunel J, Copp BR. Valorisation of the diterpene podocarpic acid - Antibiotic and antibiotic enhancing activities of polyamine conjugates. Bioorg Med Chem 2022; 64:116762. [PMID: 35477062 DOI: 10.1016/j.bmc.2022.116762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
As part of our search for new antimicrobials and antibiotic adjuvants, a series of podocarpic acid-polyamine conjugates have been synthesized. The library of compounds made use of the phenolic and carboxylic acid moieties of the diterpene allowing attachment of polyamines (PA) of different lengths to afford a structurally-diverse set of analogues. Evaluation of the conjugates for intrinsic antimicrobial properties identified two derivatives of interest: a PA3-4-3 (spermine) amide-bonded variant 7a that was a non-cytotoxic, non-hemolytic potent growth inhibitor of Gram-positive Staphylococcus aureus (MRSA) and 9d, a PA3-8-3 carbamate derivative that was a non-toxic selective antifungal towards Cryptococcus neoformans. Of the compound set, only one example exhibited activity towards Gram-negative bacteria. However, in the presence of sub-therapeutic amounts of either doxycycline (4.5 µM) or erythromycin (2.7 μM) several analogues were observed to exhibit weak to modest antibiotic adjuvant properties against Pseudomonas aeruginosa and/or Escherichia coli. The observation of strong cytotoxicity and/or hemolytic properties for subsets of the library, in particular those analogues bearing methyl ester or n-pentylamide functionality, highlighted the fine balance of structural requirements and lipophilicity for antimicrobial activity as opposed to mammalian cell toxicity.
Collapse
Affiliation(s)
- Steven A Li
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Hana Douafer
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Uliassi E, de Oliveira AS, de Camargo Nascente L, Romeiro LAS, Bolognesi ML. Cashew Nut Shell Liquid (CNSL) as a Source of Drugs for Alzheimer's Disease. Molecules 2021; 26:5441. [PMID: 34576912 PMCID: PMC8466601 DOI: 10.3390/molecules26185441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| |
Collapse
|
8
|
Bacci A, Runfola M, Sestito S, Rapposelli S. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10030367. [PMID: 33671015 PMCID: PMC7997428 DOI: 10.3390/antiox10030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The complex network of malfunctioning pathways occurring in the pathogenesis of neurodegenerative diseases (NDDs) represents a huge hurdle in the development of new effective drugs to be used in therapy. In this context, redox reactions act as crucial regulators in the maintenance of neuronal microenvironment homeostasis. Particularly, their imbalance results in the severe compromising of organism’s natural defense systems and subsequently, in the instauration of deleterious OS, that plays a fundamental role in the insurgence and progress of NDDs. Despite the huge efforts in drug discovery programs, the identification process of new therapeutic agents able to counteract the relentless progress of neurodegenerative processes has produced low or no effective therapies. Consequently, a paradigm-shift in the drug discovery approach for these diseases is gradually occurring, paving the way for innovative therapeutical approaches, such as polypharmacology. The aim of this review is to provide an overview of the main pharmacological features of most promising nature-based scaffolds for a possible application in drug discovery, especially for NDDs, highlighting their multifaceted effects against OS and neuronal disorders.
Collapse
Affiliation(s)
- Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
- Correspondence:
| |
Collapse
|
9
|
Kumar V, Kumar B, Ranjan Dwivedi A, Mehta D, Kumar N, Bajaj B, Arora T, Prashar V, Parkash J, Kumar V. Design, Synthesis and Evaluation of
O
‐Pentyne Substituted Diphenylpyrimidines as Monoamine Oxidase and Acetylcholinesterase Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202002425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
| | - Devashish Mehta
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
| | - Beenu Bajaj
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
| | - Tania Arora
- Department of Zoology School of Basic and Applied Sciences, Central University of Punjab, Bathinda Punjab India- 151001
| | - Vikash Prashar
- Department of Zoology School of Basic and Applied Sciences, Central University of Punjab, Bathinda Punjab India- 151001
| | - Jyoti Parkash
- Department of Zoology School of Basic and Applied Sciences, Central University of Punjab, Bathinda Punjab India- 151001
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products Central University of Punjab Bathinda, Punjab India- 151001
- Laboratory of Organic and Medicinal Chemistry Department of Chemistry, Central University of Punjab Bathinda, Punjab India- 151001
| |
Collapse
|
10
|
Pepe DA, Toumpa D, André-Barrès C, Menendez C, Mouray E, Baltas M, Grellier P, Papaioannou D, Athanassopoulos CM. Synthesis of Novel G Factor or Chloroquine-Artemisinin Hybrids and Conjugates with Potent Antiplasmodial Activity. ACS Med Chem Lett 2020; 11:921-927. [PMID: 32435406 DOI: 10.1021/acsmedchemlett.9b00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022] Open
Abstract
A series of novel hybrids of artemisinin (ART) with either a phytormone endoperoxide G factor analogue (GMeP) or chloroquine (CQ) and conjugates of the same compounds with the polyamines (PAs), spermidine (Spd), and homospermidine (Hsd) were synthesized and their antiplasmodial activity was evaluated using the CQ-resistant P. falciparum FcB1/Colombia strain. The ART-GMeP hybrid 5 and compounds 9 and 10 which are conjugates of Spd and Hsd with two molecules of ART and one molecule of GMeP, were the most potent with IC50 values of 2.6, 8.4, and 10.6 nM, respectively. The same compounds also presented the highest selectivity indexes against the primary human fibroblast cell line AB943 ranging from 16 372 for the hybrid 5 to 983 for the conjugate 10 of Hsd.
Collapse
Affiliation(s)
- Dionissia A. Pepe
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Dimitra Toumpa
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Christiane André-Barrès
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Christophe Menendez
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Elisabeth Mouray
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Michel Baltas
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Philippe Grellier
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Dionissios Papaioannou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | | |
Collapse
|
11
|
da Silva Lima CH, de Araujo Vanelis Soares JC, de Sousa Ribeiro JL, Muri EMF, de Albuquerque S, Dias LRS. Anti-Trypanosoma cruzi Activity and Molecular Docking Studies of 1Hpyrazolo[ 3, 4-b]pyridine Derivatives. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190305141733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Untargeted studies led to the development of some pyrazolopyridine
derivatives for the antiparasitic profile, particularly the derivatives containing the structural
carbohydrazide subunit. In this work, we proceeded in the biological screening of 27 N’- (substitutedphenylmethylene)-
4-carbohydrazide-3-methyl-1-phenyl-1H-pyrazolo[3, 4-b]pyridine derivatives against
T. cruzi as well as the cytotoxic evaluation. To obtain more information about the trypanocidal
activity of this class of compounds, we carried out molecular docking simulations to get an insight
into putative targets in T. cruzi.
Methods:
The assays were evaluated against both trypomastigote and amastigote forms of T. cruzi
and cytotoxicity assays on LLCMK2 cells. The predominant conformational compounds were
analyzed and molecular docking simulations performed.
Results:
The results from trypanocidal activity screening of this series showed that just the
compounds with phenyl group at C-6 position exhibited activity and the N’-4-hydroxyphenylmethylene
derivative presented the best profile against both trypomastigote and amastigote
forms of T. cruzi. Docking simulation results showed that this compound has a binding affinity with
both CYP51 and cruzain targets of T. cruzi.
Conclusion:
Our results indicate that the hydroxyl substituent at the N’-substituted-phenylmethylene
moiety and the phenyl ring at C-6 of 1H-pyrazolo[3,4-b]pyridine system are relevant for the
trypanocidal activity of this class of compounds. Also, docking simulations showed that activity
presented can be related to more than one target of the parasite.
Collapse
Affiliation(s)
- Camilo Henrique da Silva Lima
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| | | | - Joana Lucius de Sousa Ribeiro
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| | - Estela Maris Freitas Muri
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| | - Sérgio de Albuquerque
- Universidade de Sao Paulo, Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Av. do Cafe s/n, Ribeirao Preto, SP, 14040-903, Brazil
| | - Luiza Rosaria Sousa Dias
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Kabir A, Jash C, Payghan PV, Ghoshal N, Kumar GS. Polyamines and its analogue modulates amyloid fibrillation in lysozyme: A comparative investigation. Biochim Biophys Acta Gen Subj 2020; 1864:129557. [PMID: 32045632 DOI: 10.1016/j.bbagen.2020.129557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/03/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Polyamines can induce protein aggregation that can be related to the physiology of the cellular function. Polyamines have been implicated in protein aggregation which may lead to neuropathic and non neuropathic amyloidosis. SCOPE OF REVIEW Change in the level of polyamine concentration has been associated with ageing and neurodegeneration such as Parkinson's disease, Alzheimer's disease. Lysozyme aggregation in the presence of polyamines leads to non neuropathic amyloidosis. Polyamine analogues can suppress or inhibit protein aggregation suggesting their efficacy against amyloidogenic protein aggregates. MAJOR CONCLUSIONS In this study we report the comparative interactions of lysozyme with the polyamine analogue, 1-naphthyl acetyl spermine in comparison with the biogenic polyamines through spectroscopy, calorimetry, imaging and docking techniques. The findings revealed that the affinity of binding varied as spermidine > 1-naphthyl acetyl spermine > spermine. The biogenic polyamines accelerated the rate of fibrillation significantly, whereas the analogue inhibited the rate of fibrillation to a considerable extent. The polyamines bind near the catalytic diad residues viz. Glu35 and Asp52, and in close proximity of Trp62 residue. However, the analogue showed dual nature of interaction where its alkyl amine region bind in same way as the biogenic polyamines bind to the catalytic site, while the naphthyl group makes hydrophobic contacts with Trp62 and Trp63, thereby suggesting its direct influence on fibrillation. GENERAL SIGNIFICANCE This study, thus, potentiates, the development of a polyamine analogue that can perform as an effective inhibitor targeted towards aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Ayesha Kabir
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Chandrima Jash
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
13
|
Kalantzi S, Athanassopoulos CM, Ruonala R, Helariutta Y, Papaioannou D. General Approach for the Liquid-Phase Fragment Synthesis of Orthogonally Protected Naturally Occurring Polyamines and Applications Thereof. J Org Chem 2019; 84:15118-15130. [PMID: 31657206 DOI: 10.1021/acs.joc.9b02066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Orthogonally protected polyamines (PAs) have been synthesized using α,ω-diamines and ω-aminoalcohols as N-Cx-N and N-Cy synthons, respectively, and the Mitsunobu reaction as the key reaction for the assembly of the PA skeleta. The Trt, Dde, and Phth groups have been employed for protecting the primary amino functions and the Ns group for activating the primary amino functions toward alkylation and secondary amino function protection. The approach has been readily extended to accommodate the total synthesis of the spider toxins Agel 416 and HO-416b, incorporating the 3-4-3-3 and the 3-3-3-4 PA skeleton, respectively.
Collapse
Affiliation(s)
- Stefania Kalantzi
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry , University of Patras , GR-26504 Patras , Greece
| | | | - Raili Ruonala
- Sainsbury Laboratory , University of Cambridge , Bateman Street , Cambridge CB2 1LR , U.K.,Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences , Viikki Plant Science Centre, University of Helsinki , FI-00014 Helsinki , Finland
| | - Yrjo Helariutta
- Sainsbury Laboratory , University of Cambridge , Bateman Street , Cambridge CB2 1LR , U.K.,Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences , Viikki Plant Science Centre, University of Helsinki , FI-00014 Helsinki , Finland
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry , University of Patras , GR-26504 Patras , Greece
| |
Collapse
|
14
|
Di Paolo ML, Cervelli M, Mariottini P, Leonetti A, Polticelli F, Rosini M, Milelli A, Basagni F, Venerando R, Agostinelli E, Minarini A. Exploring the activity of polyamine analogues on polyamine and spermine oxidase: methoctramine, a potent and selective inhibitor of polyamine oxidase. J Enzyme Inhib Med Chem 2019; 34:740-752. [PMID: 30829081 PMCID: PMC6407594 DOI: 10.1080/14756366.2019.1584620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023] Open
Abstract
Fourteen polyamine analogues, asymmetric or symmetric substituted spermine (1-9) or methoctramine (10-14) analogues, were evaluated as potential inhibitors or substrates of two enzymes of the polyamine catabolic pathway, spermine oxidase (SMOX) and acetylpolyamine oxidase (PAOX). Compound 2 turned out to be the best substrate for PAOX, having the highest affinity and catalytic efficiency with respect to its physiological substrates. Methoctramine (10), a well-known muscarinic M2 receptor antagonist, emerged as the most potent competitive PAOX inhibitor known so far (Ki = 10 nM), endowed with very good selectivity compared with SMOX (Ki=1.2 μM vs SMOX). The efficacy of methoctramine in inhibiting PAOX activity was confirmed in the HT22 cell line. Methoctramine is a very promising tool in the design of drugs targeting the polyamine catabolism pathway, both to understand the physio-pathological role of PAOX vs SMOX and for pharmacological applications, being the polyamine pathway involved in various pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Fabio Polticelli
- Department of Sciences, University of Roma Tre, Roma, Italy
- Roma Tre Section, National Institute of Nuclear Physics, Roma, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Rina Venerando
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enzo Agostinelli
- Department of Biochemical Science "A. Rossi Fanelli", University of Rome "La Sapienza", Rome, Italy
- International Polyamines Foundation – ONLUS –Via del Forte Tiburtino 98, Rome, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Pagoni A, Marinelli L, Di Stefano A, Ciulla M, Turkez H, Mardinoglu A, Vassiliou S, Cacciatore I. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation. Eur J Med Chem 2019; 186:111880. [PMID: 31753513 DOI: 10.1016/j.ejmech.2019.111880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/27/2022]
Abstract
To date, drugs that hit a single target are inadequate for the treatment of neurodegenerative diseases, such as Alzheimer's or Parkinson's diseases. The development of multitarget ligands, able to interact with the different pathways involved in the progession of these disorders, represents a great challenge for medicinal chemists. In this context, we report here the synthesis and biological evaluation of phenol-lipoyl hybrids (SV1-13), obtained via a linking strategy, to take advantage of the synergistic effect due to the antioxidant portions and anti-amyloid properties of the single constituents present in the hybrid molecule. Biological results showed that SV5 and SV10 possessed the best protective activity against Aβ1-42 induced neurotoxicity in differentiated SH-SY5Y cells. SV9 and SV10 showed remarkable antioxidant properties due to their ability to counteract the damage caused by H2O2 in SHSY-5Y-treated cells. Hovewer, SV5, showing moderate antioxidant and good neuroprotective activities, resulted the best candidate for further experiments since it also resulted stable both simulated and plasma fluids.
Collapse
Affiliation(s)
- Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lisa Marinelli
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti Scalo, CH, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti Scalo, CH, Italy
| | - Michele Ciulla
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti Scalo, CH, Italy
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, SE-17121, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ivana Cacciatore
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti Scalo, CH, Italy.
| |
Collapse
|
16
|
Raza MA, Fatima K, Saqib Z, Maurin JK, Budzianowski A. Designing of diamino based esterases inhibitors; synthesis, characterization, density functional theory and molecular modeling. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Di Paolo ML, Cozza G, Milelli A, Zonta F, Sarno S, Minniti E, Ursini F, Rosini M, Minarini A. Benextramine and derivatives as novel human monoamine oxidases inhibitors: an integrated approach. FEBS J 2019; 286:4995-5015. [PMID: 31291696 DOI: 10.1111/febs.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/02/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
The two human monoamine oxidase isoforms (namely MAO A and MAO B) are enzymes involved in the catabolism of monoamines, including neurotransmitters, and for this reason are well-known and attractive pharmacological targets in neuropsychiatric and neurodegenerative diseases, for which novel pharmacological approaches are necessary. Benextramine is a tetraamine disulfide mainly known as irreversible α-adrenergic antagonist, but able to hit additional targets involved in neurodegeneration. As the molecular structures of monoamine oxidases contain nine cysteine residues, the aim of this study was to evaluate benextramine and eleven structurally related polyamine disulfides as potential MAO inhibitors. Most of the compounds were found to induce irreversible inactivation of MAOs with inactivation potency depending on both the polyamine structure and the enzyme isoform. The more effective compounds generally showed preference for MAO B. Structure-activity relationships studies revealed the key role played by the disulfide core of these molecules in the inactivation mechanism. Docking experiments pointed to Cys323, in MAO A, and Cys172, in MAO B, as target of this type of inhibitors thus suggesting that their covalent binding inside the MAO active site sterically impedes the entrance of substrate towards the FAD cofactor. The effectiveness of benextramine in inactivating MAOs was demonstrated in SH-SY5Y neuroblastoma cell line. These results demonstrated for the first time that benextramine and its derivatives can inactivate human MAOs exploiting a mechanism different from that of the classical MAO inhibitors and could be a starting point for the development of pharmacological tools in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Italy.,Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", Roma, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Francesca Zonta
- Department of Biomedical Sciences, University of Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Italy
| | - Elirosa Minniti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| |
Collapse
|
18
|
Zhang Y, Yu B, Gao B, Zhang T, Huang H. Triple-Bond Insertion Triggers Highly Regioselective 1,4-Aminomethylamination of 1,3-Enynes with Aminals Enabled by Pd-Catalyzed C–N Bond Activation. Org Lett 2019; 21:535-539. [DOI: 10.1021/acs.orglett.8b03847] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanchen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Binjian Gao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Tianze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
19
|
Li J, Tian R, Ge C, Chen Y, liu X, Wang Y, Yang Y, Luo W, Dai F, Wang S, Chen S, Xie S, Wang C. Discovery of the Polyamine Conjugate with Benzo[cd]indol-2(1H)-one as a Lysosome-Targeted Antimetastatic Agent. J Med Chem 2018; 61:6814-6829. [DOI: 10.1021/acs.jmedchem.8b00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Pearce AN, Kaiser M, Copp BR. Synthesis and antimalarial evaluation of artesunate-polyamine and trioxolane-polyamine conjugates. Eur J Med Chem 2017; 140:595-603. [DOI: 10.1016/j.ejmech.2017.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022]
|
21
|
Zhou LY, Zhu Y, Jiang YR, Zhao XJ, Guo D. Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer's disease. Bioorg Med Chem Lett 2017; 27:4180-4184. [PMID: 28751142 DOI: 10.1016/j.bmcl.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022]
Abstract
With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer's disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67-169.80nM (donepezil IC50 50.12nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50μM (sildenafil IC50 12.59μM), and some of these compounds showed low cell toxicity to A549 cells in vitro.
Collapse
Affiliation(s)
- Li-Yun Zhou
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao Zhu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yu-Ren Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiong-Jie Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dong Guo
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
22
|
Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer's disease. Eur J Med Chem 2017; 125:784-792. [DOI: 10.1016/j.ejmech.2016.09.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/04/2023]
|
23
|
Vu CB, Bridges RJ, Pena-Rasgado C, Lacerda AE, Bordwell C, Sewell A, Nichols AJ, Chandran S, Lonkar P, Picarella D, Ting A, Wensley A, Yeager M, Liu F. Fatty Acid Cysteamine Conjugates as Novel and Potent Autophagy Activators That Enhance the Correction of Misfolded F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2016; 60:458-473. [PMID: 27976892 DOI: 10.1021/acs.jmedchem.6b01539] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A depressed autophagy has previously been reported in cystic fibrosis patients with the common F508del-CFTR mutation. This report describes the synthesis and preliminary biological characterization of a novel series of autophagy activators involving fatty acid cysteamine conjugates. These molecular entities were synthesized by first covalently linking cysteamine to docosahexaenoic acid. The resulting conjugate 1 synergistically activated autophagy in primary homozygous F508del-CFTR human bronchial epithelial (hBE) cells at submicromolar concentrations. When conjugate 1 was used in combination with the corrector lumacaftor and the potentiator ivacaftor, it showed an additive effect, as measured by the increase in the chloride current in a functional assay. In order to obtain a more stable form for oral dosing, the sulfhydryl group in conjugate 1 was converted into a functionalized disulfide moiety. The resulting conjugate 5 is orally bioavailable in the mouse, rat, and dog and allows a sustained delivery of the biologically active conjugate 1.
Collapse
Affiliation(s)
- Chi B Vu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Robert J Bridges
- Chicago Medical School, Rosalind Franklin University of Medicine and Science , 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Cecilia Pena-Rasgado
- Chicago Medical School, Rosalind Franklin University of Medicine and Science , 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Antonio E Lacerda
- Charles River Laboratories , 14656 Neo Parkway, Cleveland, Ohio 44128, United States
| | - Curtis Bordwell
- Charles River Laboratories , 14656 Neo Parkway, Cleveland, Ohio 44128, United States
| | - Abby Sewell
- Charles River Laboratories , 14656 Neo Parkway, Cleveland, Ohio 44128, United States
| | - Andrew J Nichols
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Sachin Chandran
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Pallavi Lonkar
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Dominic Picarella
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Amal Ting
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Allison Wensley
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Maisy Yeager
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| | - Feng Liu
- Catabasis Pharmaceuticals , One Kendall Square, Suite B14202, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17071035. [PMID: 27376271 PMCID: PMC4964411 DOI: 10.3390/ijms17071035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4-9) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aβ(25-35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD.
Collapse
|
25
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
26
|
Jourdan JP, Since M, El Kihel L, Lecoutey C, Corvaisier S, Legay R, Sopkova-de Oliveira Santos J, Cresteil T, Malzert-Fréon A, Rochais C, Dallemagne P. Novel benzylidenephenylpyrrolizinones with pleiotropic activities potentially useful in Alzheimer's disease treatment. Eur J Med Chem 2016; 114:365-79. [PMID: 27046230 DOI: 10.1016/j.ejmech.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
This work describes the synthesis and the biological evaluation of novel benzylidenephenylpyrrolizinones as potential antioxidant, metal chelating or amyloid β (βA) aggregation inhibitors. Some derivatives exhibited interesting results in regard to several of the performed evaluations and appear as valuable Multi-Target Directed Ligands with potential therapeutic interest in Alzheimer's disease. Among them, compound 29 particularly appears as a valuable radical and NO scavenger, a Cu(II) and Fe(II) chelating agent and exhibits moderate βA aggregation inhibition properties. These activities, associated to a good predictive bioavailability and a lack of cytotoxicity, design it as a promising hit for further in vivo investigation.
Collapse
Affiliation(s)
- Jean-Pierre Jourdan
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Marc Since
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Laïla El Kihel
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Cédric Lecoutey
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Sophie Corvaisier
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Rémi Legay
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | | | - Thierry Cresteil
- CIBLOT, IPSIT - IFR14, 5 rue Jean Baptiste Clément, 92290 Chatenay-Malabry, France
| | - Aurélie Malzert-Fréon
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| |
Collapse
|
27
|
Verlinden BK, Louw A, Birkholtz LM. Resisting resistance: is there a solution for malaria? Expert Opin Drug Discov 2016; 11:395-406. [PMID: 26926843 DOI: 10.1517/17460441.2016.1154037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Currently, widely used antimalarial drugs have a limited clinical lifespan due to parasite resistance development. With resistance continuously rising, antimalarial drug discovery requires strategies to decrease the time of delivering a new antimalarial drug while simultaneously increasing the drug's therapeutic lifespan. Lessons learnt from various chemotherapeutic resistance studies in the fields of antibiotic and cancer research offer potentially useful strategies that can be applied to antimalarial drug discovery. AREAS COVERED In this review the authors discuss current strategies to circumvent resistance in malaria and alternatives that could be employed. EXPERT OPINION Scientists have been 'beating back' the malaria parasite with novel drugs for the past 49 years but the constant rise in antimalarial drug resistance is forcing the drug discovery community to explore alternative strategies. Avant-garde anti-resistance strategies from alternative fields may assist our endeavors to manage, control and prevent antimalarial drug resistance to progress beyond beating the resistant parasite back, to stopping it dead in its tracks.
Collapse
Affiliation(s)
- Bianca K Verlinden
- a Department of Biochemistry, Centre for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| | - Abraham Louw
- a Department of Biochemistry, Centre for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| | - Lyn-Marié Birkholtz
- a Department of Biochemistry, Centre for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
28
|
Lemes LFN, de Andrade Ramos G, de Oliveira AS, da Silva FMR, de Castro Couto G, da Silva Boni M, Guimarães MJR, Souza INO, Bartolini M, Andrisano V, do Nascimento Nogueira PC, Silveira ER, Brand GD, Soukup O, Korábečný J, Romeiro NC, Castro NG, Bolognesi ML, Romeiro LAS. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease. Eur J Med Chem 2016; 108:687-700. [DOI: 10.1016/j.ejmech.2015.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022]
|
29
|
Zhang Y, Long Z, Guo Z, Wang Z, Zhang X, Ye RD, Liang X, Civelli O. Hydroxycinnamic acid amides from Scopolia tangutica inhibit the activity of M1 muscarinic acetylcholine receptor in vitro. Fitoterapia 2015; 108:9-12. [PMID: 26586621 DOI: 10.1016/j.fitote.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
Scopolia tangutica Maxim (S. tangutica) extracts have been traditionally used as antispasmodic, sedative, and analgesic agents in Tibet and in the Qinghai province of China. Their active compositions are however poorly understood. We have recently isolated five new hydroxycinnamic acid (HCA) amides along with two known HCA amides, one cinnamic acid amide from these extracts. In this study, we evaluate their abilities to inhibit carbacol-induced activity of M1 muscarinic acetylcholine receptor along with the crude extracts. Chinese hamster ovary cells stably expressing the recombinant human M1 receptor (CHO-M1 cells) were employed to evaluate the anticholinergic potentials. Intracellular Ca(2+) changes were monitored using the FLIPR system. Five HCA amides as well as the crude S. tangutica extract displayed dose-dependent inhibitory effects against M1 receptor. These findings demonstrate that HCA amides are part of the M1 receptor-inhibiting principles of S. tangutica. Since blockade of parasympathetic nerve impulse transmission through the inhibition of the M1 receptor lessens smooth muscle spasms, our findings provided a molecular explanation for the traditional use of S. tangutica against spasm.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhen Long
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhimou Guo
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, CA 92697, United States
| | - Xiuli Zhang
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinmiao Liang
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
30
|
Umezawa N, Horai Y, Imamura Y, Kawakubo M, Nakahira M, Kato N, Muramatsu A, Yoshikawa Y, Yoshikawa K, Higuchi T. Structurally Diverse Polyamines: Solid-Phase Synthesis and Interaction with DNA. Chembiochem 2015; 16:1811-9. [DOI: 10.1002/cbic.201500121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 12/17/2022]
|
31
|
Rochais C, Lecoutey C, Gaven F, Giannoni P, Hamidouche K, Hedou D, Dubost E, Genest D, Yahiaoui S, Freret T, Bouet V, Dauphin F, Sopkova de Oliveira Santos J, Ballandonne C, Corvaisier S, Malzert-Fréon A, Legay R, Boulouard M, Claeysen S, Dallemagne P. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer's disease: the design of donecopride. J Med Chem 2015; 58:3172-87. [PMID: 25793650 DOI: 10.1021/acs.jmedchem.5b00115] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, we describe the synthesis and in vitro evaluation of a novel series of multitarget-directed ligands (MTDL) displaying both nanomolar dual-binding site (DBS) acetylcholinesterase inhibitory effects and partial 5-HT4R agonist activity, among which donecopride was selected for further in vivo evaluations in mice. The latter displayed procognitive and antiamnesic effects and enhanced sAPPα release, accounting for a potential symptomatic and disease-modifying therapeutic benefit in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Christophe Rochais
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Cédric Lecoutey
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Florence Gaven
- ‡CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.,§Inserm, U1191, F-34000 Montpellier, France.,∥Université de Montpellier, UMR-5203, F-34000 Montpellier, France
| | - Patrizia Giannoni
- ‡CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.,§Inserm, U1191, F-34000 Montpellier, France.,∥Université de Montpellier, UMR-5203, F-34000 Montpellier, France
| | - Katia Hamidouche
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Damien Hedou
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Emmanuelle Dubost
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - David Genest
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Samir Yahiaoui
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Thomas Freret
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Valentine Bouet
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - François Dauphin
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | | | - Céline Ballandonne
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Sophie Corvaisier
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.,⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Aurélie Malzert-Fréon
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Remi Legay
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Michel Boulouard
- ⊥UNICAEN, GMPc5 (Groupe Mémoire et Plasticité comportementale), F-14032 Caen, France
| | - Sylvie Claeysen
- ‡CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.,§Inserm, U1191, F-34000 Montpellier, France.,∥Université de Montpellier, UMR-5203, F-34000 Montpellier, France
| | - Patrick Dallemagne
- †UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
32
|
O’Sullivan MC, Durham TB, Valdes HE, Dauer KL, Karney NJ, Forrestel AC, Bacchi CJ, Baker JF. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg Med Chem 2015; 23:996-1010. [DOI: 10.1016/j.bmc.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/04/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
|
33
|
Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites. Bioorg Med Chem 2015; 23:5131-43. [PMID: 25684422 DOI: 10.1016/j.bmc.2015.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
Abstract
A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites.
Collapse
|
34
|
Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem 2014; 6:485-7. [DOI: 10.4155/fmc.14.25] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
Bonaiuto E, Milelli A, Cozza G, Tumiatti V, Marchetti C, Agostinelli E, Fimognari C, Hrelia P, Minarini A, Di Paolo ML. Novel polyamine analogues: From substrates towards potential inhibitors of monoamine oxidases. Eur J Med Chem 2013; 70:88-101. [DOI: 10.1016/j.ejmech.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
|
36
|
Minarini A, Milelli A, Tumiatti V, Rosini M, Lenzi M, Ferruzzi L, Turrini E, Hrelia P, Sestili P, Calcabrini C, Fimognari C. Exploiting RNA as a new biomolecular target for synthetic polyamines. Gene 2013; 524:232-40. [DOI: 10.1016/j.gene.2013.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 01/07/2023]
|
37
|
Minarini A, Zini M, Milelli A, Tumiatti V, Marchetti C, Nicolini B, Falconi M, Farruggia G, Cappadone C, Stefanelli C. Synthetic polyamines activating autophagy: effects on cancer cell death. Eur J Med Chem 2013; 67:359-66. [PMID: 23887056 DOI: 10.1016/j.ejmech.2013.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
The ability of symmetrically substituted long chain polymethylene tetramines, methoctramine (1) and its analogs 2-4 to kill cancer cells was studied. We found that an elevated cytotoxicity was correlated with a 12 methylene chain length separating the inner amine functions (6-12-6 carbon backbone), together with the introduction of diphenylethyl moieties on the terminal nitrogen atoms (compound 4) of a tetramine backbone. Compound 4 triggered dissipation of mitochondrial transmembrane potential and increased intracellular peroxide levels, leading to a caspase-independent HeLa cell death associated with a rapid activation of autophagy. The antioxidant N-acetylcysteine inhibited cell death and activation of autophagy, indicating a link between oxidative stress and autophagy. Autophagy was rapidly triggered even by tetramines 2 and 3, indicating that is related to their polyamine structure. Autophagy did not protect HeLa cells against cytotoxicity elicited by compound 4. The present study shows that, by modifications of the methoctramine structure, it is possible to design polyamine derivatives highly cytotoxic against tumor cells and that the appropriate design of molecules bearing polyamine-like structures leads to powerful inducers of autophagy.
Collapse
Affiliation(s)
- Anna Minarini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
In vitro and in vivo evaluation of polymethylene tetraamine derivatives as NMDA receptor channel blockers. Bioorg Med Chem Lett 2013; 23:3901-4. [DOI: 10.1016/j.bmcl.2013.04.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022]
|
39
|
Lizzi F, Veronesi G, Belluti F, Bergamini C, López-Sánchez A, Kaiser M, Brun R, Krauth-Siegel RL, Hall DG, Rivas L, Bolognesi ML. Conjugation of Quinones with Natural Polyamines: Toward an Expanded Antitrypanosomatid Profile. J Med Chem 2012; 55:10490-500. [DOI: 10.1021/jm301112z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Federica Lizzi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Giacomo Veronesi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| | - Almudena López-Sánchez
- Physico-Chemical
Biology, Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - R. Luise Krauth-Siegel
- Biochemistry Center (BZH), Heidelberg University, Im, Neuenheimer Feld 328, 69120
Heidelberg, Germany
| | - Dennis G. Hall
- Department
of Chemistry, University of Alberta, Edmonton,
Alberta, T6G 2G2,
Canada
| | - Luis Rivas
- Physico-Chemical
Biology, Centro
de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnologies, University of Bologna, Via Belmeloro 6, 40126 Bologna,
Italy
| |
Collapse
|
40
|
Ajmani S, Kulkarni SA. Application of GQSAR for Scaffold Hopping and Lead Optimization in Multitarget Inhibitors. Mol Inform 2012; 31:473-90. [DOI: 10.1002/minf.201100160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/27/2012] [Indexed: 11/09/2022]
|
41
|
Affiliation(s)
- Alexander Dömling
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
42
|
Bajda M, Kuder KJ, Łażewska D, Kieć-Kononowicz K, Więckowska A, Ignasik M, Guzior N, Jończyk J, Malawska B. Dual-Acting Diether Derivatives of Piperidine and Homopiperidine with Histamine H3 Receptor Antagonistic and Anticholinesterase Activity. Arch Pharm (Weinheim) 2012; 345:591-7. [DOI: 10.1002/ardp.201200018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 12/28/2022]
|
43
|
Bolognesi ML, Melchiorre C, Van der Schyf CJ, Youdim M. Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design. DESIGNING MULTI-TARGET DRUGS 2012. [DOI: 10.1039/9781849734912-00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The incidence of neurological disorders in the developed world is rising in concert with an increase in human life expectancy, due in large part to better nutrition and health care. Even as drug discovery efforts are refocused on these disorders, there has been a dearth in the introduction of new disease-modifying therapies to prevent or delay their onset, or reverse their progression. Mounting evidence points to complex and heterogeneous etiopathologies that underlie these diseases. Therefore, it is unlikely that disorders in this class will be mitigated by any single drug that acts exclusively on a single pathway or target. The rational design of novel drug entities with the ability to simultaneously address multiple drug targets of a complex pathophysiology has recently emerged as a new paradigm in drug discovery. Similarly to the concept of multi-target agents within the psychopharmacology field, ligand design has gained an increasing prominence within the medicinal chemistry community. In this chapter we discuss several examples of select chemical scaffolds (polyamines, alkylxanthines, and propargyl carbamates) wherein these concepts were applied to develop novel drug candidates for Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Moussa Youdim
- Technion Israel Institute of Technology Haifa Israel
| |
Collapse
|
44
|
Eleftheriou P, Geronikaki A, Hadjipavlou-Litina D, Vicini P, Filz O, Filimonov D, Poroikov V, Chaudhaery SS, Roy KK, Saxena AK. Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur J Med Chem 2011; 47:111-24. [PMID: 22119153 DOI: 10.1016/j.ejmech.2011.10.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 11/16/2022]
Abstract
Balanced modulation of several targets is one of the current strategies for the treatment of multi-factorial diseases. Based on the knowledge of inflammation mechanisms, it was inferred that the balanced inhibition of cyclooxygenase-1/cyclooxygenase-2/lipoxygenase might be a promising approach for treatment of such a multifactorial disease state as inflammation. Detection of fragments responsible for interaction with enzyme's binding site provides the basis for designing new molecules with increased affinity and selectivity. A new chemoinformatics approach was proposed and applied to create a fragment library that was used to design novel inhibitors of cycloxygenase-1/cycloxygenase-2/lipoxygenase enzymes. Potential binding sites were elucidated by docking. Synthesis of novel compounds, and the in vitro/in vivo biological testing confirmed the results of computational studies. The benzothiazolyl moiety was proved to be of great significance for developing more potent inhibitors.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Education Institute of Thessaloniki, Thessaloniki 57400, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Synthetic polyamines as potential amine oxidase inhibitors: a preliminary study. Amino Acids 2011; 42:913-28. [PMID: 21858471 DOI: 10.1007/s00726-011-1006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/22/2011] [Indexed: 01/12/2023]
Abstract
In the last few decades, medicinal chemists have carried out extensive research on synthetic polyamines for use as anticancer drugs and multitarget-directed ligands in neurodegenerative diseases. The aim of this study was to evaluate the effect of some synthetic polyamines as inhibitors of two new potential targets, human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) and monoamine oxidases B (MAO B), enzymes involved in various multi-factorial diseases such as Alzheimer's disease. N,N'-Dibenzyl-dodecane-1,12-diamine (Bis-Bza-Diado), a newly synthesised compound, and ELP 12, a muscarinic cholinergic M(2) receptor antagonist, were found to behave as reversible and mixed non-competitive inhibitors of both amine oxidases (dissociation constants of about 100 μM). ELP 12 was found to be more selective for SSAO/VAP-1. Combining kinetic and structural approaches, the binding mode of ELP 12 to SSAO/VAP-1 was investigated. ELP 12 may bind at the entrance of the active site channel by ionic interactions with ASP446 and/or ASP180; one end of the polyamine may be accommodated inside the channel, reaching the TPQ cofactor area. The binding of ELP 12 induces rearrangement of the secondary structure of the enzyme and impedes substrate entry and/or product release and catalysis. These structural data reveal that the entrance and the first part of the SSAO/VAP-1 channel may be considered as a new target area, or a "secondary binding site", for modulators of human SSAO/VAP-1 activity. These results indicate ELP 12 and Bis-Bza-Diado as new "skeletons" for the development of novel SSAO/VAP-1 and MAO B inhibitors.
Collapse
|
46
|
Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gotor V. Chemoenzymatic Asymmetric Synthesis of Optically Active Pentane-1,5-diamine Fragments by Means of Lipase-Catalyzed Desymmetrization Transformations. J Org Chem 2011; 76:5709-18. [DOI: 10.1021/jo2007972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nicolás Ríos-Lombardía
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33071 Oviedo (Asturias), Spain
| | - Eduardo Busto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33071 Oviedo (Asturias), Spain
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33071 Oviedo (Asturias), Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33071 Oviedo (Asturias), Spain
| |
Collapse
|
47
|
Schaffert D, Badgujar N, Wagner E. Novel Fmoc-Polyamino Acids for Solid-Phase Synthesis of Defined Polyamidoamines. Org Lett 2011; 13:1586-9. [DOI: 10.1021/ol200381z] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Schaffert
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Drug Research, and Center of NanoScience, Ludwig-Maximilians-Universität Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Naresh Badgujar
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Drug Research, and Center of NanoScience, Ludwig-Maximilians-Universität Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Drug Research, and Center of NanoScience, Ludwig-Maximilians-Universität Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
48
|
Bongarzone S, Bolognesi ML. The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin Drug Discov 2011; 6:251-68. [PMID: 22647203 DOI: 10.1517/17460441.2011.550914] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION For nearly 20 years, privileged structures have offered an optimal source of core scaffolds and capping fragments for the design of combinatorial libraries directed at a broad spectrum of targets. From describing structures promiscuous within a given target family, the concept has evolved to include frameworks that can modulate proteins lacking a strict target class relation. AREAS COVERED Based on a literature search from 2000 to 2010, we discuss how two privileged motifs, quinolines and acridines, are particularly recurrent in compounds active against two quite different pathologies, neurodegenerative and protozoan diseases. EXPERT OPINION As privileged structures, quinolines and acridines could improve the productivity of drug discovery projects in the field of neurodegenerative and protozoan diseases. They could be particularly relevant for protozoan diseases because of the importance of cost-effective strategies and less stringent intellectual property concerns. Furthermore, because of their inherent affinity for various targets, privileged structures could offer a viable starting point in the search for novel multi-target ligands. Finally, from a broader perspective, they can serve as effective probes for investigating unknown but interrelated mechanisms of action.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- Statistical and Biological Physics Sector, Scuola Internazionale Superiore di Studi Avanzati - International School for Advanced Studies, (SISSA-ISAS), Italian Institute of Technology, SISSA-ISAS Unit, 34151 Trieste, Italy
| | | |
Collapse
|