1
|
Vaccarin C, Veit G, Hegedus T, Torres O, Chilin A, Lukacs GL, Marzaro G. Synthesis and Biological Evaluation of Pyrazole-Pyrimidones as a New Class of Correctors of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2024; 67:13891-13908. [PMID: 39137389 DOI: 10.1021/acs.jmedchem.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cystic fibrosis (CF) is caused by the functional expression defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Despite the recent success in CFTR modulator development, the available correctors only partially restore the F508del-CFTR channel function, and several rare CF mutations show resistance to available drugs. We previously identified compound 4172 that synergistically rescued the F508del-CFTR folding defect in combination with the existing corrector drugs VX-809 and VX-661. Here, novel CFTR correctors were designed by applying a classical medicinal chemistry approach on the 4172 scaffold. Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted to propose a plausible binding site and design more potent and effective analogs. We identified three optimized compounds, which, in combination with VX-809 and the investigational corrector 3151, increased the plasma membrane density and function of F508del-CFTR and other rare CFTR mutants resistant to the currently approved therapies.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tamas Hegedus
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN Biophysical Virology Research Group, Hungarian Research Network, Budapest 1052, Hungary
| | - Odalys Torres
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Wang L, Wang CL, Li ZH, Lian PF, Kang JC, Zhou J, Hao Y, Liu RX, Bai HY, Zhang SY. Cooperative Cu/azodiformate system-catalyzed allylic C-H amination of unactivated internal alkenes directed by aminoquinoline. Nat Commun 2024; 15:1483. [PMID: 38374064 PMCID: PMC10876528 DOI: 10.1038/s41467-024-45875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Aliphatic allylic amines are common in natural products and pharmaceuticals. The oxidative intermolecular amination of C(sp3)-H bonds represents one of the most straightforward strategies to construct these motifs. However, the utilization of widely internal alkenes with amines in this transformation remains a synthetic challenge due to the inefficient coordination of metals to internal alkenes and excessive coordination with aliphatic and aromatic amines, resulting in decreasing the reactivity of the catalyst. Here, we present a regioselective Cu-catalyzed oxidative allylic C(sp3)-H amination of internal olefins with azodiformates to these problems. A removable bidentate directing group is used to control the regiochemistry and stabilize the π-allyl-metal intermediate. Noteworthy is the dual role of azodiformates as both a nitrogen source and an electrophilic oxidant for the allylic C-H activation. This protocol features simple conditions, remarkable scope and functional group tolerance as evidenced by >40 examples and exhibits high regioselectivity and excellent E/Z selectivity.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Cheng-Long Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
3
|
Koyiparambath VP, Prayaga Rajappan K, Rangarajan TM, Al-Sehemi AG, Pannipara M, Bhaskar V, Nair AS, Sudevan ST, Kumar S, Mathew B. Deciphering the detailed structure-activity relationship of coumarins as Monoamine oxidase enzyme inhibitors-An updated review. Chem Biol Drug Des 2021; 98:655-673. [PMID: 34233082 DOI: 10.1111/cbdd.13919] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
In the last few years, Monoamine oxidase (MAO) have emerged as a target for the treatment of many neurodegenerative diseases including anxiety, depression, Alzheimer's, and Parkinson's diseases. The MAO inhibitors especially selective and reversible inhibitors of either of the isoenzymes (MAO-A & MAO-B) have been given more attention as both the form have different therapeutic properties and hence can be used for different neurological disorders. The lack of selective and reversible inhibitors available for both the enzymes and severity of the neuronal disorder in society have opened a new door to the researchers to carry out large and dedicated researches in this field. Among the several classes of the molecule as the inhibitors, coumarins hold a rank as a potent scaffold with its ease of synthesis, high therapeutic potential, and reversibility in inhibiting MAOs. The current review is an update of the research in the field that covers the works during the last six years (2014-2020) with a major focus on the SAR of the coumarin derivatives including synthetic, natural, and hybrids of coumarins with FDA-approved drugs.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Krishnendu Prayaga Rajappan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Mehboobali Pannipara
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
4
|
Liu X, Song H, Zhai X, Tung CH, Wang W. Cobalt-catalyzed regioselective hydrohydrazination of epoxides. Org Biomol Chem 2020; 18:1572-1576. [PMID: 32039418 DOI: 10.1039/d0ob00037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using an air-stable cobalt catalyst [Cp*Co(1,2-Ph2PC6H4S)(NCMe)]BF4 (1, Cp* = Me5C5-), we have achieved catalytic regioselective hydrohydrazination of epoxides to 1,1-hydrazinoalcohols in an atom-economical manner. The catalysis involves a cobalt-hydrazine intermediate, in which the NH2 group of the hydrazine binds to the metal center, inhibiting its nucleophilic reactivity and allowing the NH group to participate in the regioselective hydrohydrazination.
Collapse
Affiliation(s)
- Xiangyu Liu
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Heng Song
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Xiaofang Zhai
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
5
|
Jafari B, Jalil S, Zaib S, Safarov S, Khalikova M, Khalikov D, Ospanov M, Yelibayeva N, Zhumagalieva S, Abilov ZA, Turmukhanova MZ, Kalugin SN, Salman GA, Ehlers P, Hameed A, Iqbal J, Langer P. Synthesis of 2‐Alkynyl‐ and2‐Amino‐12
H
‐benzothiazolo[2,3‐
b
]quinazolin‐12‐ones and Their Inhibitory Potential against Monoamine Oxidase A and B. ChemistrySelect 2019. [DOI: 10.1002/slct.201903300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Behzad Jafari
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Saquib Jalil
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Sayfidin Safarov
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Institute of ChemistryTajikistan Academy of Sciences ul. Aini 299 Dushanbe 734063 Tajikistan
| | - Muattar Khalikova
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Institute of ChemistryTajikistan Academy of Sciences ul. Aini 299 Dushanbe 734063 Tajikistan
| | - Djurabay Khalikov
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Institute of ChemistryTajikistan Academy of Sciences ul. Aini 299 Dushanbe 734063 Tajikistan
| | - Meirambek Ospanov
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | - Nazym Yelibayeva
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | - Shynar Zhumagalieva
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | | | | | - Sergey N. Kalugin
- Al-Farabi Kazakh National University Al-Farabi ave. 71 050040 Almaty Kazakhstan
| | - Ghazwan Ali Salman
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Department of ChemistryCollege of Science, University Al-Mustansiriyah Palestine St, Mustansiriya, Baghdad Iraq
| | - Peter Ehlers
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Abdul Hameed
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug ResearchCOMSATS University Islamabad, Abbottabad Campus Abbottabad- 22060 Pakistan
| | - Peter Langer
- Institut für ChemieUniversität Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
6
|
Mergemeier K, Galster F, Lehr M. HPLC-UV assay for the evaluation of inhibitors of plasma amine oxidase using crude bovine plasma. J Enzyme Inhib Med Chem 2019; 34:144-149. [PMID: 30427224 PMCID: PMC6237158 DOI: 10.1080/14756366.2018.1524890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 11/21/2022] Open
Abstract
Recently, we have described a method for evaluation of plasma amine oxidase (PAO) inhibitors, which monitors the formation of 6-(5-phenyl-2H-tetrazol-2-yl)hexanal from the corresponding amine substrate by HPLC with UV-detection using purified bovine PAO. We now investigated, whether crude bovine plasma can be used as enzyme source in this assay instead of the purified enzyme. With the aid of specific inhibitors, it was ensured that there was no detectable activity of other important amine oxidases in the plasma, namely monoamine oxidase (MAO) A and B and diamine oxidase (DAO). For a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkan-1-amine substrates similar conversion rates were measured for both the purified PAO and crude plasma. The inhibition values determined for the PAO inhibitor 2-(4-phenylphenyl)acetohydrazide (16) under different conditions also corresponded. Additionally, inhibition data of the known PAO inhibitor 2-amino-N-(3-phenylbenzyl)acetamide (17) and a newly synthesised meta-substituted derivative of 16 were determined, which together reflect the two-step inhibition mechanism of these covalent inhibitors.
Collapse
Affiliation(s)
- Kira Mergemeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Florian Galster
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Jokinen EM, Postila PA, Ahinko M, Niinivehmas S, Pentikäinen OT. Fragment- and negative image-based screening of phosphodiesterase 10A inhibitors. Chem Biol Drug Des 2019; 94:1799-1812. [PMID: 31260165 DOI: 10.1111/cbdd.13584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
A novel virtual screening methodology called fragment- and negative image-based (F-NiB) screening is introduced and tested experimentally using phosphodiesterase 10A (PDE10A) as a case study. Potent PDE10A-specific small-molecule inhibitors are actively sought after for their antipsychotic and neuroprotective effects. The F-NiB combines features from both fragment-based drug discovery and negative image-based (NIB) screening methodologies to facilitate rational drug discovery. The selected structural parts of protein-bound ligand(s) are seamlessly combined with the negative image of the target's ligand-binding cavity. This cavity- and fragment-based hybrid model, namely its shape and electrostatics, is used directly in the rigid docking of ab initio generated ligand 3D conformers. In total, 14 compounds were acquired using the F-NiB methodology, 3D quantitative structure-activity relationship modeling, and pharmacophore modeling. Three of the small molecules inhibited PDE10A at ~27 to ~67 μM range in a radiometric assay. In a larger context, the study shows that the F-NiB provides a flexible way to incorporate small-molecule fragments into the drug discovery.
Collapse
Affiliation(s)
| | - Pekka A Postila
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mira Ahinko
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | | | - Olli T Pentikäinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland.,Aurlide Ltd., Lieto, Finland
| |
Collapse
|
8
|
Mergemeier K, Lehr M. HPLC-UV assays for evaluation of inhibitors of mono and diamine oxidases using novel phenyltetrazolylalkanamine substrates. Anal Biochem 2018; 549:29-38. [PMID: 29550344 DOI: 10.1016/j.ab.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Recently, we have described an HPLC-UV assay for the evaluation of inhibitors of plasma amine oxidase (PAO) using 6-(5-phenyl-2H-tetrazol-2-yl)hexan-1-amine (4) as a new type of substrate. Now we studied, whether this compound or homologues of it can also function as substrate for related amine oxidases, namely diamine oxidase (DAO), monoamine oxidase A (MAO A) and monoamine oxidase B (MAO B). Among these substances, 4 was converted by DAO with the highest rate. The best substrate for MAO A and B was 4-(5-phenyl-2H-tetrazol-2-yl)butan-1-amine (2). To validate the new assays, the inhibition values of known enzyme inhibitors were determined and the data were compared with those obtained with the substrate benzylamine, which is often used in amine oxidase assays. For the DAO inhibitor 2-(4-phenylphenyl)acetohydrazide an about 10fold lower IC50-value against DAO was obtained when benzylamine was applied instead of 4, indicating that 4 binds to the enzyme with higher affinity than benzylamine. The IC50-values of clorgiline and selegiline against MAO A and B, respectively, also decreased (two- and 30fold) replacing 2 by benzylamine. The discrepancies largely disappeared, when the enzymes were pre-incubated with the inhibitors for 15 min. This can be explained with the covalent inhibition mechanism of the inhibitors.
Collapse
Affiliation(s)
- Kira Mergemeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany.
| |
Collapse
|
9
|
Rauhamäki S, Postila PA, Niinivehmas S, Kortet S, Schildt E, Pasanen M, Manivannan E, Ahinko M, Koskimies P, Nyberg N, Huuskonen P, Multamäki E, Pasanen M, Juvonen RO, Raunio H, Huuskonen J, Pentikäinen OT. Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors. Front Chem 2018; 6:41. [PMID: 29552556 PMCID: PMC5840146 DOI: 10.3389/fchem.2018.00041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM−1 μM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.
Collapse
Affiliation(s)
- Sanna Rauhamäki
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka A Postila
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Niinivehmas
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami Kortet
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Chemistry & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Emmi Schildt
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Chemistry & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mira Pasanen
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elangovan Manivannan
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,School of Pharmacy, Devi Ahilya University, Madhya Pradesh, India
| | - Mira Ahinko
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Niina Nyberg
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Pasi Huuskonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elina Multamäki
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Juhani Huuskonen
- Department of Chemistry & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Olli T Pentikäinen
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,MedChem.fi, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
10
|
HPLC-UV method for evaluation of inhibitors of plasma amine oxidase using derivatization of an aliphatic aldehyde product with TRIS. Anal Bioanal Chem 2016; 408:4799-807. [DOI: 10.1007/s00216-016-9572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/29/2022]
|
11
|
Hofmann D, de Salas C, Heinrich MR. Oxidative Nitration of Styrenes for the Recycling of Low-Concentrated Nitrogen Dioxide in Air. CHEMSUSCHEM 2015; 8:3167-3175. [PMID: 26284827 DOI: 10.1002/cssc.201500188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/27/2015] [Indexed: 06/04/2023]
Abstract
The oxidative nitration of styrenes in ethyl acetate represents a metal-free, environmentally friendly, and sustainable technique to recover even low concentrations of NO2 in air. Favorable features are that the product mixture comprising nitroalcohols, nitroketones, and nitro nitrates simplifies at lower concentrations of NO2 . Experiments in a miniplant-type 10 L wet scrubber demonstrated that the recycling technique is well applicable on larger scales at which initial NO2 concentrations of >10 000 ppm were reliably reduced to less than 40 ppm.
Collapse
Affiliation(s)
- Dagmar Hofmann
- Department für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen (Germany), Fax: (+49) 9131-85-22585 http://www.medchem.uni-erlangen.de/heinrichlab/
| | - Cristina de Salas
- Department für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen (Germany), Fax: (+49) 9131-85-22585 http://www.medchem.uni-erlangen.de/heinrichlab/
| | - Markus R Heinrich
- Department für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen (Germany), Fax: (+49) 9131-85-22585 http://www.medchem.uni-erlangen.de/heinrichlab/.
| |
Collapse
|
12
|
Bligt-Lindén E, Pihlavisto M, Szatmári I, Otwinowski Z, Smith DJ, Lázár L, Fülöp F, Salminen TA. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode. J Med Chem 2013; 56:9837-48. [PMID: 24304424 DOI: 10.1021/jm401372d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific, and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity, and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Although they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors, and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors.
Collapse
Affiliation(s)
- Eva Bligt-Lindén
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University , FI-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ylilauri M, Mattila E, Nurminen EM, Käpylä J, Niinivehmas SP, Määttä JA, Pentikäinen U, Ivaska J, Pentikäinen OT. Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1988-97. [PMID: 23856547 DOI: 10.1016/j.bbapap.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.
Collapse
Affiliation(s)
- Mikko Ylilauri
- Department of Biological and Environmental Science & Nanoscience Center, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Inoue T, Morita M, Tojo T, Nagashima A, Moritomo A, Miyake H. Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment. Bioorg Med Chem 2013; 21:3873-81. [PMID: 23664164 DOI: 10.1016/j.bmc.2013.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure-activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50=0.019 μM, rat IC50=0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.
Collapse
Affiliation(s)
- Takayuki Inoue
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Inoue T, Morita M, Tojo T, Nagashima A, Moritomo A, Imai K, Miyake H. Synthesis and SAR study of new thiazole derivatives as vascular adhesion protein-1 (VAP-1) inhibitors for the treatment of diabetic macular edema: part 2. Bioorg Med Chem 2013; 21:2478-94. [PMID: 23540955 DOI: 10.1016/j.bmc.2013.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although our previous compound 1 showed potent VAP-1 inhibitory activity, the activity differed between humans and rats. This issue was overcome by a hybrid design using human VAP-1 specific inhibitor 2, which was found by high-throughput screening (HTS), a docking study of a human VAP-1 homology model, and an analysis of sequence information for humans and rats. As a result, we identified compound 35c, which showed strong VAP-1 inhibitory activity (human IC(50) of 20 nM; rat IC(50) of 72 nM) and significant inhibitory effects in the ex vivo test.
Collapse
Affiliation(s)
- Takayuki Inoue
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Inoue T, Morita M, Tojo T, Yoshihara K, Nagashima A, Moritomo A, Ohkubo M, Miyake H. Synthesis and SAR study of new thiazole derivatives as vascular adhesion protein-1 (VAP-1) inhibitors for the treatment of diabetic macular edema. Bioorg Med Chem 2013; 21:1219-33. [DOI: 10.1016/j.bmc.2012.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/25/2022]
|
17
|
Marzaro G, Guiotto A, Borgatti M, Finotti A, Gambari R, Breveglieri G, Chilin A. Psoralen derivatives as inhibitors of NF-κB/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J Med Chem 2013; 56:1830-42. [PMID: 23414143 DOI: 10.1021/jm3009647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Some new psoralen derivatives were synthesized and evaluated as inhibitors of NF-κB/DNA interaction, with the aim to investigate the structural determinants required to inhibit this interaction. Starting from molecular docking studies, several possible protein binding sites were proposed and several three-dimensional quantitative structure-activity relationship (3D-QSAR) models were built using the docked poses of 29 (the most active psoralen in the series) as templates for alignment of the inhibitors. The selected best model was validated through the prediction of the activity of 17 novel compounds. All the experimental data agreed with the computational experiments, supporting the reliability of the computational approach. The hypothesis about the interaction with NF-κB was also supported by surface plasmon resonance based assays using compound 29. All the collected data allowed the identification of compound 29 as a potential candidate for the development of pharmaceutical strategies against the inflammatory phenotype of cystic fibrosis.
Collapse
Affiliation(s)
- Giovanni Marzaro
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Vascular cell lines expressing SSAO/VAP-1: a new experimental tool to study its involvement in vascular diseases. Biol Cell 2012; 103:543-57. [PMID: 21819380 DOI: 10.1042/bc20110049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION PrAO (primary amine oxidase), also known as SSAO (semicarbazide-sensitive amine oxidase)/VAP-1 (vascular adhesion protein-1), is an enzyme (EC 1.4.3.21) that is highly expressed in blood vessels and participates in many cell processes, including glucose handling or inflammatory leucocyte recruitment. High activity levels of this enzyme are associated with diabetes, atherosclerosis, AD (Alzheimer's disease) or stroke, among others, thus meaning that studies concerning SSAO as a therapeutic target are becoming more frequent. However, the study of this enzyme is difficult, owing to its loss of expression in cell cultures. RESULTS We have developed an endothelial cell line that stably expresses the human SSAO/VAP-1 to be used as endothelial cell model for the study of this enzyme. The transfected protein is mainly expressed as a dimer in the membrane of these cells, and we demonstrate its specific localization in the lipid rafts of endothelial cells. The protein shows levels of enzymatic activity and kinetic parameters comparable with those observed in vivo by the same cell type. The transfected SSAO/VAP-1 is also able to mediate the adhesion of leucocytes to the endothelium, a known function of this protein under inflammatory conditions. This distinctive function is not exerted by the SSAO/VAP-1 transfected protein in a smooth muscle cell line that expresses 3-fold higher protein levels. These differences have been widely reported to exist in vivo. Furthermore, using this endothelial cell model, we describe for the first time the involvement of the leucocyte-adhesion activity of SSAO/VAP-1 in the Aβ (amyloid β-peptide)-mediated pro-inflammatory effect. CONCLUSIONS The characterization of this new cell line shows the correct behaviour of the transfected protein and endorses the use of these cellular models for the in-depth study of the currently poorly understood functions of SSAO/VAP-1 and its involvement in the above-mentioned pathologies. This cellular model will be also useful for the evaluation of potential compounds that could modulate its activity for therapeutic purposes.
Collapse
|
19
|
Shen SH, Wertz DL, Klinman JP. Implication for functions of the ectopic adipocyte copper amine oxidase (AOC3) from purified enzyme and cell-based kinetic studies. PLoS One 2012; 7:e29270. [PMID: 22238597 PMCID: PMC3251558 DOI: 10.1371/journal.pone.0029270] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/23/2011] [Indexed: 12/23/2022] Open
Abstract
AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor and corrected k(cat) values as high as 7 s(-1). Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured k(cat)/K(m) values between 10(2) and 10(4) M(-1) s(-1). K(m)(O(2)) approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates k(cat)/K(m) values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell K(m) values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high k(cat)/K(m) have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests possible roles for the adipocyte enzyme in subcutaneous bacterial infiltration and obesity.
Collapse
Affiliation(s)
- Sam H. Shen
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Diana L. Wertz
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology and the California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| |
Collapse
|
20
|
Synthetic polyamines as potential amine oxidase inhibitors: a preliminary study. Amino Acids 2011; 42:913-28. [PMID: 21858471 DOI: 10.1007/s00726-011-1006-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/22/2011] [Indexed: 01/12/2023]
Abstract
In the last few decades, medicinal chemists have carried out extensive research on synthetic polyamines for use as anticancer drugs and multitarget-directed ligands in neurodegenerative diseases. The aim of this study was to evaluate the effect of some synthetic polyamines as inhibitors of two new potential targets, human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) and monoamine oxidases B (MAO B), enzymes involved in various multi-factorial diseases such as Alzheimer's disease. N,N'-Dibenzyl-dodecane-1,12-diamine (Bis-Bza-Diado), a newly synthesised compound, and ELP 12, a muscarinic cholinergic M(2) receptor antagonist, were found to behave as reversible and mixed non-competitive inhibitors of both amine oxidases (dissociation constants of about 100 μM). ELP 12 was found to be more selective for SSAO/VAP-1. Combining kinetic and structural approaches, the binding mode of ELP 12 to SSAO/VAP-1 was investigated. ELP 12 may bind at the entrance of the active site channel by ionic interactions with ASP446 and/or ASP180; one end of the polyamine may be accommodated inside the channel, reaching the TPQ cofactor area. The binding of ELP 12 induces rearrangement of the secondary structure of the enzyme and impedes substrate entry and/or product release and catalysis. These structural data reveal that the entrance and the first part of the SSAO/VAP-1 channel may be considered as a new target area, or a "secondary binding site", for modulators of human SSAO/VAP-1 activity. These results indicate ELP 12 and Bis-Bza-Diado as new "skeletons" for the development of novel SSAO/VAP-1 and MAO B inhibitors.
Collapse
|
21
|
Dunkel P, Balogh B, Meleddu R, Maccioni E, Gyires K, Mátyus P. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1: a patent survey. Expert Opin Ther Pat 2011; 21:1453-71. [PMID: 21675926 DOI: 10.1517/13543776.2011.594040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Vascular adhesion protein-1 (VAP-1)/semicarbazide-sensitive amine oxidase (SSAO) is an adhesion protein involved in leukocyte trafficking and inflammatory processes, with a special amine oxidase activity. Inhibitors have been mainly developed for treating chronic inflammatory disorders. The utility of inhibitors as antiangiogenic agents in ophthalmological and oncological diseases is currently under evaluation. SSAO substrates may mimic several insulin effects, although their utility for the treatment of diabetes is still far from being fully understood. AREAS COVERED This paper reviews the patent literature of SSAO/VAP-1 inhibitors and substrates, for the period of 1990 - 2010. The current stage of SSAO/VAP-1-interacting agents published in patents is described, along with their chemical structures and pharmacological uses. EXPERT OPINION SSAO/VAP-1 is a promising anti-inflammatory target. Another important field for therapeutic application of these inhibitors may be ophthalmology, due to their antiangiogenic effects. SSAO substrates might also be of therapeutic value in the treatment of diabetes; however, more extensive research has to be undertaken to validate this approach.
Collapse
Affiliation(s)
- Petra Dunkel
- Semmelweis University, Department of Organic Chemistry , Hőgyes Endre utca 7, 1092 Budapest , Hungary
| | | | | | | | | | | |
Collapse
|
22
|
Elovaara H, Kidron H, Parkash V, Nymalm Y, Bligt E, Ollikka P, Smith DJ, Pihlavisto M, Salmi M, Jalkanen S, Salminen TA. Identification of two imidazole binding sites and key residues for substrate specificity in human primary amine oxidase AOC3. Biochemistry 2011; 50:5507-20. [PMID: 21585208 DOI: 10.1021/bi200117z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human membrane primary amine oxidase (hAOC3; also known as vascular adhesion protein-1, VAP-1) is expressed upon inflammation in most tissues, where its enzymatic activity plays a crucial role in leukocyte trafficking. We have determined two new structures of a soluble, proteolytically cleaved form of hAOC3 (sAOC3), which was extracted from human plasma. In the 2.6 Å sAOC3 structure, an imidazole molecule is hydrogen bonded to the topaquinone (TPQ) cofactor, which is in an inactive on-copper conformation, while in the 2.95 Å structure, an imidazole molecule is covalently bound to the active off-copper conformation of TPQ. A second imidazole bound by Tyr394 and Thr212 was identified in the substrate channel. We furthermore demonstrated that imidazole has an inhibitory role at high concentrations used in crystallization. A triple mutant (Met211Val/Tyr394Asn/Leu469Gly) of hAOC3 was previously reported to change substrate preferences toward those of hAOC2, another human copper-containing monoamine oxidase. We now mutated these three residues and Thr212 individually to study their distinct role in the substrate specificity of hAOC3. Using enzyme activity assays, the effect of the four single mutations was tested with four different substrates (methylamine, benzylamine, 2-phenylethylamine, and p-tyramine), and their binding modes were predicted by docking studies. As a result, Met211 and Leu469 were shown to be key residues for substrate specificity. The native structures of sAOC3 and the mutational data presented in this study will aid the design of hAOC3 specific inhibitors.
Collapse
Affiliation(s)
- Heli Elovaara
- Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nurminen EM, Pihlavisto M, Lázár L, Pentikäinen U, Fülöp F, Pentikäinen OT. Novel Hydrazine Molecules as Tools To Understand the Flexibility of Vascular Adhesion Protein-1 Ligand-Binding Site: Toward More Selective Inhibitors. J Med Chem 2011; 54:2143-54. [DOI: 10.1021/jm200059p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Elisa M. Nurminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Marjo Pihlavisto
- BioTie Therapies Corporation, Tykistökatu 6, FI-20520 Turku, Finland
| | - László Lázár
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Eotvos 6, Szeged, Hungary
| | - Ulla Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Eotvos 6, Szeged, Hungary
| | - Olli T. Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|