1
|
Culp ML, Mahmoud S, Liu D, Haworth IS. An Artificial Intelligence-Supported Medicinal Chemistry Project: An Example for Incorporating Artificial Intelligence Within the Pharmacy Curriculum. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2024; 88:100696. [PMID: 38574998 DOI: 10.1016/j.ajpe.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE This study aims to integrate and use AI to teach core concepts in a medicinal chemistry course and to increase the familiarity of pharmacy students with AI in pharmacy practice and drug development. Artificial intelligence (AI) is a multidisciplinary science that aims to build software tools that mimic human intelligence. AI is revolutionizing pharmaceutical research and patient care. Hence, it is important to include AI in pharmacy education to prepare a competent workforce of pharmacists with skills in this area. METHODS AI principles were introduced in a required medicinal chemistry course for first-year pharmacy students. An AI software, KNIME, was used to examine structure-activity relationships for 5 drugs. Students completed a data sheet that required comprehension of molecular structures and drug-protein interactions. These data were then used to make predictions for molecules with novel substituents using AI. The familiarity of students with AI was surveyed before and after this activity. RESULTS There was an increase in the number of students indicating familiarity with use of AI in pharmacy (before vs after: 25.3% vs 74.5%). The introduction of AI stimulated interest in the course content (> 60% of students indicated increased interest in medicinal chemistry) without compromising the learning outcomes. Almost 70% of students agreed that more AI should be taught in the PharmD curriculum. CONCLUSION This is a successful and transferable example of integrating AI in pharmacy education without changing the main learning objectives of a course. This approach is likely to stimulate student interest in AI applications in pharmacy.
Collapse
Affiliation(s)
- Megan L Culp
- University of Southern California, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology & Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Sara Mahmoud
- University of the Pacific Thomas J. Long School of Pharmacy, Department of Pharmacy Practice, Stockton, CA, USA.
| | - Daniel Liu
- University of Southern California, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology & Pharmaceutical Sciences, Los Angeles, CA, USA
| | - Ian S Haworth
- University of Southern California, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology & Pharmaceutical Sciences, Los Angeles, CA, USA
| |
Collapse
|
2
|
Lee KH, Won SJ, Oyinloye P, Shi L. Unlocking the Potential of High-Quality Dopamine Transporter Pharmacological Data: Advancing Robust Machine Learning-Based QSAR Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583803. [PMID: 38558976 PMCID: PMC10979915 DOI: 10.1101/2024.03.06.583803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dopamine transporter (DAT) plays a critical role in the central nervous system and has been implicated in numerous psychiatric disorders. The ligand-based approaches are instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to discern the general features of DAT ligands and uncover the chemical space for potential novel DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from databases like ChEMBL, provides a foundation for constructing robust QSAR models. The compilation and meticulous filtering of these data, establishing high-quality training datasets with specific divisions of pharmacological assays and data types, along with the application of QSAR modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through a systematic comparison of DAT QSAR models using training datasets from various ChEMBL releases, we underscore the positive impact of enhanced data set quality and increased data set size on the predictive power of DAT QSAR models.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sung Joon Won
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Precious Oyinloye
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Guillén-Mancina E, García-Lozano MDR, Burgos-Morón E, Mazzotta S, Martínez-Aguado P, Calderón-Montaño JM, Vega-Pérez JM, López-Lázaro M, Iglesias-Guerra F, Vega-Holm M. Repurposing Study of 4-Acyl-1-phenylaminocarbonyl-2-substituted-piperazine Derivatives as Potential Anticancer Agents-In Vitro Evaluation against Breast Cancer Cells. Int J Mol Sci 2023; 24:17041. [PMID: 38069364 PMCID: PMC10706865 DOI: 10.3390/ijms242317041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.
Collapse
Affiliation(s)
- Emilio Guillén-Mancina
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (E.G.-M.); (E.B.-M.); (J.M.C.-M.); (M.L.-L.)
| | - María del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (M.d.R.G.-L.); (S.M.); (P.M.-A.); (J.M.V.-P.)
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (E.G.-M.); (E.B.-M.); (J.M.C.-M.); (M.L.-L.)
| | - Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (M.d.R.G.-L.); (S.M.); (P.M.-A.); (J.M.V.-P.)
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Pablo Martínez-Aguado
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (M.d.R.G.-L.); (S.M.); (P.M.-A.); (J.M.V.-P.)
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
- Infectious Diseases and Microbiology Clinical Unit, University Hospital Virgen Macarena, 41009 Seville, Spain
- Departament of Medicine, School of Medicine, University of Seville, 41012 Seville, Spain
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (E.G.-M.); (E.B.-M.); (J.M.C.-M.); (M.L.-L.)
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (M.d.R.G.-L.); (S.M.); (P.M.-A.); (J.M.V.-P.)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (E.G.-M.); (E.B.-M.); (J.M.C.-M.); (M.L.-L.)
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (M.d.R.G.-L.); (S.M.); (P.M.-A.); (J.M.V.-P.)
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (M.d.R.G.-L.); (S.M.); (P.M.-A.); (J.M.V.-P.)
| |
Collapse
|
4
|
Aggarwal S, Mortensen OV. Discovery and Development of Monoamine Transporter Ligands. ADVANCES IN NEUROBIOLOGY 2023; 30:101-129. [PMID: 36928847 PMCID: PMC10074400 DOI: 10.1007/978-3-031-21054-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Monoamine transporters (MATs) are targets of a wide range of compounds that have been developed as therapeutic treatments for various neuropsychiatric and neurodegenerative disorders such as depression, ADHD, neuropathic pain, anxiety disorders, stimulant use disorders, epilepsy, and Parkinson's disease. The MAT family is comprised of three main members - the dopamine transporter (DAT), the norepinephrine transporter (NET), and the serotonin transporter (SERT). These transporters are through reuptake responsible for the clearance of their respective monoamine substrates from the extracellular space. The determination of X-ray crystal structures of MATs and their homologues bound with various substrates and ligands has resulted in a surge of structure-function-based studies of MATs to understand the molecular basis of transport function and the mechanism of various ligands that ultimately result in their behavioral effects. This review focusses on recent examples of ligand-based structure-activity relationship studies trying to overcome some of the challenges associated with previously developed MAT inhibitors. These studies have led to the discovery of unique and novel structurally diverse MAT ligands including allosteric modulators. These novel molecular scaffolds serve as leads for designing more effective therapeutic interventions by modulating the activities of MATs and ultimately their associated neurotransmission and behavioral effects.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Huang W, Wang H, Liu B, Shen R, Zhu S. Synthesis of 1,1,4,5-Tetrasubstituted Phthalans via Pd-Catalyzed Three-Component Reactions of Haloarenes, Alkynes, and Protic Nucleophiles. Org Lett 2022; 24:8651-8656. [DOI: 10.1021/acs.orglett.2c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenliang Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Hong Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, People’s Republic of China
| | - Shugao Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| |
Collapse
|
6
|
Ortore G, Orlandini E, Betti L, Giannaccini G, Mazzoni MR, Camodeca C, Nencetti S. Focus on Human Monoamine Transporter Selectivity. New Human DAT and NET Models, Experimental Validation, and SERT Affinity Exploration. ACS Chem Neurosci 2020; 11:3214-3232. [PMID: 32991141 PMCID: PMC8015229 DOI: 10.1021/acschemneuro.0c00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
![]()
The most commonly used antidepressant
drugs are the serotonin transporter
inhibitors. Their effects depend strongly on the selectivity for a
single monoamine transporter compared to other amine transporters
or receptors, and the selectivity is roughly influenced by the spatial
protein structure. Here, we provide a computational study on three
human monoamine transporters, i.e., DAT, NET, and SERT. Starting from
the construction of hDAT and hNET models, whose three-dimensional
structure is unknown, and the prediction of the binding pose for 19
known inhibitors, 3D-QSAR models of three human transporters were
built. The training set variability, which was high in structure and
activity profile, was validated using a set of in-house compounds.
Results concern more than one aspect. First of all, hDAT and hNET
three-dimensional structures were built, validated, and compared to
the hSERT one; second, the computational study highlighted the differences
in binding site arrangement statistically correlated to inhibitor
selectivity; third, the profiling of new inhibitors pointed out a
conservation of the inhibitory activity trend between rabbit and human
SERT with a difference of about 1 order of magnitude; fourth, binding
and functional studies confirmed 4-(benzyloxy)-4-phenylpiperidine 20a–d and 21a–d as potent SERT
inhibitors. In particular, one of the compounds (compound 20b) revealed a higher affinity for SERT than paroxetine in human platelets.
Collapse
Affiliation(s)
- Gabriella Ortore
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center “E. Piaggio”, University of Pisa, Pisa 56122, Italy
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53-55, 56100 Pisa, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Rosa Mazzoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
7
|
Cheng B, Morstein J, Ladefoged LK, Maesen JB, Schiøtt B, Sinning S, Trauner D. A Photoswitchable Inhibitor of the Human Serotonin Transporter. ACS Chem Neurosci 2020; 11:1231-1237. [PMID: 32275382 DOI: 10.1021/acschemneuro.9b00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human serotonin transporter (hSERT) terminates serotonergic signaling through reuptake of neurotransmitter into presynaptic neurons and is a target for many antidepressant drugs. We describe here the development of a photoswitchable hSERT inhibitor, termed azo-escitalopram, that can be reversibly switched between trans and cis configurations using light of different wavelengths. The dark-adapted trans isomer was found to be significantly less active than the cis isomer, formed upon irradiation.
Collapse
Affiliation(s)
- Bichu Cheng
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Lucy Kate Ladefoged
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jannick Bang Maesen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steffen Sinning
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
8
|
Jiang L, Jin WF, Yu LD, Yuan MW, Li HL, Jiang DB, Yuan ML. Regioselective synthesis of benzonitriles via amino-catalyzed [3+3] benzannulation reaction. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820915163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A straightforward synthesis of benzonitriles is achieved via amino-catalyzed [3+3] benzannulation of α,β-unsaturated aldehydes and 4-arylsulfonyl-2-butenenitriles. Using pyrrolidine as an organocatalyst via iminium activation, a series of substituted benzonitriles were obtained in good to high yields in a regioselective manner. This reaction can proceed smoothly under mild reaction conditions and without the aid of any metals, additional oxidants, or strong bases, thus making this an efficient and environmentally friendly method to access benzonitriles.
Collapse
Affiliation(s)
- Lin Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Wen-Fei Jin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Liu-Dong Yu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Ming-Wei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Hong-Li Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Deng-Bang Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Ming-Long Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| |
Collapse
|
9
|
Tanuma M, Kasai A, Bando K, Kotoku N, Harada K, Minoshima M, Higashino K, Kimishima A, Arai M, Ago Y, Seiriki K, Kikuchi K, Kawata S, Fujita K, Hashimoto H. Direct visualization of an antidepressant analog using surface-enhanced Raman scattering in the brain. JCI Insight 2020; 5:133348. [PMID: 32125287 DOI: 10.1172/jci.insight.133348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Detailed spatial information of low-molecular weight compound distribution, especially in the brain, is crucial to understanding their mechanism of actions. Imaging techniques that can directly visualize drugs in the brain at a high resolution will complement existing tools for drug distribution analysis. Here, we performed surface-enhanced Raman scattering (SERS) imaging using a bioorthogonal alkyne tag to visualize drugs directly in situ at a high resolution. Focusing on the selective serotonin reuptake inhibitor S-citalopram (S-Cit), which possesses a nitrile group, we substituted an alkynyl group into its structure and synthesized alkynylated S-Cit (Alk-S-Cit). The brain transitivity and the serotonin reuptake inhibition of Alk-S-Cit were not significantly different as compared with S-Cit. Alk-S-Cit was visualized in the coronal mouse brain section using SERS imaging with silver nanoparticles. Furthermore, SERS imaging combined with fluorescence microscopy allowed Alk-S-Cit to be visualized in the adjacent neuronal membranes, as well as in the brain vessel and parenchyma. Therefore, our multimodal imaging technique is an effective method for detecting low-molecular weight compounds in their original tissue environment and can potentially offer additional information regarding the precise spatial distribution of such drugs.
Collapse
Affiliation(s)
- Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
| | - Kazuki Bando
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.,Serendip Research, Osaka, Osaka, Japan
| | - Naoyuki Kotoku
- Chemical Biology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuo Harada
- Department of Legal Medicine, Graduate School of Medicine.,Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences
| | | | - Kosuke Higashino
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
| | - Atsushi Kimishima
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences
| | - Masayoshi Arai
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and.,Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and.,Institute for Transdisciplinary Graduate Degree Programs
| | - Kazuya Kikuchi
- Laboratory of Chemical Biology, Graduate School of Engineering.,Immunology Frontier Research Center, and
| | - Satoshi Kawata
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.,Serendip Research, Osaka, Osaka, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Suita, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Institute for Datability Science and.,Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Substrate and inhibitor binding to the serotonin transporter: Insights from computational, crystallographic, and functional studies. Neuropharmacology 2019; 161:107548. [PMID: 30807752 DOI: 10.1016/j.neuropharm.2019.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
The serotonin transporter (SERT) belongs to the monoamine transporter family, which also includes the dopamine and norepinephrine transporters. SERT is essential for regulating serotonergic signaling by the reuptake of serotonin from the synaptic cleft back into the presynaptic neuron. Dysregulation of SERT has been implicated in several major psychiatric disorders such as major depressive disorder (MDD). MDD was among the top five leading causes of years lived with disease in 2016 and is characterized as a major global burden. Several drugs have been developed to target SERT for use in the treatment of MDD, and their respective binding modes and locations within SERT have been studied. The elucidation of the first structure of a bacterial SERT homologue in 2005 has accelerated crystallographic, computational, and functional studies to further elucidate drug binding and method of action in SERT. Herein, we aim to highlight and compare these studies with an emphasis on what the different experimental methods conclude on substrate and inhibitor binding modes, and the potential caveats of using the different types of studies are discussed. We focus this review on the binding of cognate substrate and drugs belonging to the different families of antidepressants, including tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and multimodal drugs, as well as illicit drugs such as cocaine, amphetamines, and ibogaine. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
11
|
Min MY, Song RJ, Ouyang XH, Li JH. Copper-catalyzed intermolecular oxidative trifluoromethyl-arylation of styrenes with NaSO2CF3 and indoles involving C–H functionalization. Chem Commun (Camb) 2019; 55:3646-3649. [DOI: 10.1039/c9cc00469f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new copper-catalyzed three-component oxidative 1,2-trifluoromethylarylation of styrenes with NaSO2CF3 and indoles involving aryl C–H bond functionalization is described.
Collapse
Affiliation(s)
- Man-Yi Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
12
|
Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. Recent Advances in Phthalan and Coumaran Chemistry. ChemistryOpen 2018; 7:914-929. [PMID: 30498677 PMCID: PMC6250979 DOI: 10.1002/open.201800184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/12/2022] Open
Abstract
Oxygen-containing heterocycles are common in biologically active compounds. In particular, phthalan and coumaran cores are found in pharmaceuticals, organic electronics, and other useful medical and technological applications. Recent research has expanded the methods available for their synthesis. This Minireview presents recent advances in the chemistry of phthalans and coumarans, with the goal of overcoming synthetic challenges and facilitating the applications of phthalans and coumarans.
Collapse
Affiliation(s)
- Efimov Ilya
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Larisa Kulikova
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Erik V. Van der Eycken
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)Department of ChemistryKU Leuven Celestijnenlaan 200F3001LeuvenBelgium
| | - Leonid Voskressensky
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| |
Collapse
|
13
|
Yarravarapu N, Geffert L, Surratt CK, Cascio M, Lapinsky DJ. Clickable photoaffinity ligands for the human serotonin transporter based on the selective serotonin reuptake inhibitor (S)-citalopram. Bioorg Med Chem Lett 2018; 28:3431-3435. [PMID: 30266542 DOI: 10.1016/j.bmcl.2018.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022]
Abstract
To date, the development of photoaffinity ligands targeting the human serotonin transporter (hSERT), a key protein involved in disease states such as depression and anxiety, have been radioisotope-based (i.e., 3H or 125I). This letter instead highlights three derivatives of the selective serotonin reuptake inhibitor (SSRI) (S)-citalopram that were rationally designed and synthesized to contain a photoreactive benzophenone or an aryl azide for protein target capture via photoaffinity labeling and a terminal alkyne or an aliphatic azide for click chemistry-based proteomics. Specifically, clickable benzophenone-based (S)-citalopram photoprobe 6 (hSERT Ki = 0.16 nM) displayed 11-fold higher binding affinity at hSERT when compared to (S)-citalopram (hSERT Ki = 1.77 nM), and was subsequently shown to successfully undergo tandem photoaffinity labeling-biorthogonal conjugation using purified hSERT. Given clickable photoprobes can be used for various applications depending on which reporter is attached by click chemistry subsequent to photoaffinity labeling, photoprobe 6 is expected to find value in structure-function studies and other research applications involving hSERT (e.g., imaging).
Collapse
Affiliation(s)
- Nageswari Yarravarapu
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Laura Geffert
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Christopher K Surratt
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Michael Cascio
- Bayer School of Natural and Environmental Sciences, Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - David J Lapinsky
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
14
|
Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DWC. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 2017; 358:1182-1187. [PMID: 29123019 PMCID: PMC5907472 DOI: 10.1126/science.aap9674] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
Deuterium- and tritium-labeled pharmaceutical compounds are pivotal diagnostic tools in drug discovery research, providing vital information about the biological fate of drugs and drug metabolites. Herein we demonstrate that a photoredox-mediated hydrogen atom transfer protocol can efficiently and selectively install deuterium (D) and tritium (T) at α-amino sp3 carbon-hydrogen bonds in a single step, using isotopically labeled water (D2O or T2O) as the source of hydrogen isotope. In this context, we also report a convenient synthesis of T2O from T2, providing access to high-specific-activity T2O. This protocol has been successfully applied to the high incorporation of deuterium and tritium in 18 drug molecules, which meet the requirements for use in ligand-binding assays and absorption, distribution, metabolism, and excretion studies.
Collapse
Affiliation(s)
- Yong Yao Loh
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Kazunori Nagao
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Andrew J Hoover
- Labeled Compound Synthesis Group, Department of Process R&D, Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, NJ 07065, USA
| | - David Hesk
- Labeled Compound Synthesis Group, Department of Process R&D, Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nelo R Rivera
- Labeled Compound Synthesis Group, Department of Process R&D, Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Steven L Colletti
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Ian W Davies
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
- Labeled Compound Synthesis Group, Department of Process R&D, Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, NJ 07065, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Berry MD, Hart S, Pryor AR, Hunter S, Gardiner D. Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes. Sci Rep 2016; 6:38006. [PMID: 27901065 PMCID: PMC5128819 DOI: 10.1038/srep38006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022] Open
Abstract
p-Tyramine is an archetypal member of the endogenous family of monoamines known as trace amines, and is one of the endogenous agonists for trace amine-associated receptor (TAAR)1. While much work has focused on the function of TAAR1, very little is known about the regulation of the endogenous agonists. We have previously reported that p-tyramine readily crosses lipid bilayers and that its release from synaptosomes is non-exocytotic. Such release, however, showed characteristics of modification by one or more transporters. Here we provide the first characterization of such a transporter. Using frontal cortical and striatal synaptosomes we show that p-tyramine passage across synaptosome membranes is not modified by selective inhibition of either the dopamine, noradrenaline or 5-HT transporters. In contrast, inhibition of uptake-2 transporters significantly slowed p-tyramine re-uptake. Using inhibitors of varying selectivity, we identify Organic Cation Transporter 2 (OCT2; SLC22A2) as mediating high affinity uptake of p-tyramine at physiologically relevant concentrations. Further, we confirm the presence of OCT2 protein in synaptosomes. These results provide the first identification of a high affinity neuronal transporter for p-tyramine, and also confirm the recently described localization of OCT2 in pre-synaptic terminals.
Collapse
Affiliation(s)
- Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Shannon Hart
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Anthony R Pryor
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Samantha Hunter
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
16
|
Sun R, Jiang Y, Tang XY, Shi M. RhII-Catalyzed Cyclization of Ester/Thioester-ContainingN-Sulfonyl-1,2,3-triazoles: Facile Synthesis of Alkylidenephthalans and Alkylidenethiophthalans. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Run Sun
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Meilong Road No. 130 Shanghai 200237 China
| | - Yu Jiang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Meilong Road No. 130 Shanghai 200237 China
| | - Xiang-Ying Tang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; School of Chemistry and Molecular Engineering; East China University of Science and Technology; Meilong Road No. 130 Shanghai 200237 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
17
|
Doherty S, Knight JG, Perry DO, Ward NAB, Bittner DM, McFarlane W, Wills C, Probert MR. Triaryl-Like MONO-, BIS-, and TRISKITPHOS Phosphines: Synthesis, Solution NMR Studies, and a Comparison in Gold-Catalyzed Carbon–Heteroatom Bond Forming 5-exo-dig and 6-endo-dig Cyclizations. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Simon Doherty
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Julian G. Knight
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Daniel O. Perry
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Nicholas A. B. Ward
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Dror M. Bittner
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - William McFarlane
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Corinne Wills
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Michael R. Probert
- NUCAT,
School of Chemistry,
Bedson Building, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| |
Collapse
|
18
|
Kumar V, Yarravarapu N, Lapinsky DJ, Perley D, Felts B, Tomlinson MJ, Vaughan RA, Henry LK, Lever JR, Newman AH. Novel Azido-Iodo Photoaffinity Ligands for the Human Serotonin Transporter Based on the Selective Serotonin Reuptake Inhibitor (S)-Citalopram. J Med Chem 2015; 58:5609-19. [PMID: 26153715 PMCID: PMC4515784 DOI: 10.1021/acs.jmedchem.5b00682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Three photoaffinity ligands (PALs)
for the human serotonin transporter
(hSERT) were synthesized based on the selective serotonin reuptake
inhibitor (SSRI), (S)-citalopram (1).
The classic 4-azido-3-iodo-phenyl group was appended to either the
C-1 or C-5 position of the parent molecule, with variable-length linkers,
to generate ligands 15, 22, and 26. These ligands retained high to moderate affinity binding (Ki = 24–227 nM) for hSERT, as assessed
by [3H]5-HT transport inhibition. When tested against Ser438Thr
hSERT, all three PALs showed dramatic rightward shifts in inhibitory
potency, with Ki values ranging from 3.8
to 9.9 μM, consistent with the role of Ser438 as a key residue
for high-affinity binding of many SSRIs, including (S)-citalopram. Photoactivation studies demonstrated irreversible adduction
to hSERT by all ligands, but the reduced (S)-citalopram
inhibition of labeling by [125I]15 compared
to that by [125I]22 and [125I]26 suggests differences in binding mode(s). These radioligands
will be useful for characterizing the drug–protein binding
interactions for (S)-citalopram at hSERT.
Collapse
Affiliation(s)
- Vivek Kumar
- †Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Nageswari Yarravarapu
- ‡Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - David J Lapinsky
- ‡Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Danielle Perley
- §Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - Bruce Felts
- §Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - Michael J Tomlinson
- §Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - Roxanne A Vaughan
- §Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - L Keith Henry
- §Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - John R Lever
- ∥Department of Radiology, University of Missouri, One Hospital Drive, Columbia, Missouri 65212, United States.,⊥Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, Missouri 65201, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
19
|
Mehr-un-Nisa, Munawar MA, Lee YS, Rankin D, Munir J, Lai J, Khan MA, Hruby VJ. Design, synthesis, and biological evaluation of a series of bifunctional ligands of opioids/SSRIs. Bioorg Med Chem 2015; 23:1251-9. [PMID: 25703306 DOI: 10.1016/j.bmc.2015.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 11/25/2022]
Abstract
A series of opioid and serotonin re-uptake inhibitors (SSRIs) bifunctional ligands have been designed, synthesized, and tested for their activities and efficacies at μ-, δ- and κ opioid receptors and SSRIs receptors. Most of the compounds showed high affinities for μ- and δ-opioid receptors and lower affinities for SSRIs and κ opioid receptors. A docking study on the μ-opioid receptor binding pocket has been carried out for ligands 3-11. The ligands 7 and 11 have displayed the highest binding profiles for the μ-opioid receptor binding site with ΔGbind (-12.14kcal/mol) and Ki value (1.0nM), and ΔGbind (-12.41kcal/mol) and Ki value (0.4nM), respectively. Ligand 3 was shown to have the potential of dual acting serotonin/norepinephrine re-uptake inhibitor (SNRI) antidepressant activity in addition to opioid activities, and thus could be used for the design of multifunctional ligands in the area of a novel approach for the treatment of pain and depression.
Collapse
Affiliation(s)
- Mehr-un-Nisa
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Munawar A Munawar
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Yeon Sun Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Jawaria Munir
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan; Institute of Molecular Sciences & Bioinformatics, Lahore 54000, Pakistan
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Misbahul A Khan
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
20
|
Shishkina IN, Demyanovich VM, Potekhin KA, Gurbanov AV, Zefirov NS. Synthesis and configuration of (1S,3R)- and (1R,3R)-1-(3,4-dimethoxyphenyl)-1,3-dimethyl-1,3-dihydroisobenzofurans. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Xu L, Jiang H, Hao J, Zhao G. One-pot synthesis of trifluoromethylated phthalans via intramolecular cyclization from 2-alkynylbenzaldehydes. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.04.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Karmakar R, Pahari P, Mal D. Phthalides and Phthalans: Synthetic Methodologies and Their Applications in the Total Synthesis. Chem Rev 2014; 114:6213-84. [DOI: 10.1021/cr400524q] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Raju Karmakar
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Pallab Pahari
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
- Synthetic
Organic Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dipakranjan Mal
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
23
|
Li Y, Xu MH. Simple sulfur–olefins as new promising chiral ligands for asymmetric catalysis. Chem Commun (Camb) 2014; 50:3771-82. [DOI: 10.1039/c3cc49431d] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent progress on exploring sulfur-containing hybrid olefins as new elegant ligands for enantioselective catalytic processes is surveyed.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, China
| | - Ming-Hua Xu
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, China
| |
Collapse
|
24
|
Hu B, Cai J, Chen J, Cao M, Wang P, Zong X, Zhang R, Ji M. An Efficient Synthesis of Erismodegib. JOURNAL OF CHEMICAL RESEARCH 2014. [DOI: 10.3184/174751914x13860924330499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A highly efficient synthesis of Erismodegib (LDE225) is described. The chlorine of 2-chloro-5-nitropyridine was displaced by 2,6-dimethylmorpholine and the nitro group reduced to give 3-amino-6-(2’,6'-dimethylmorpholino)pyridine. The Suzuki coupling of methyl 3-bromo-2-methylbenzoate with 4-trifluoromethoxy phenylboronic acid gave methyl-4'-(trifluormethoxy) biphenyl-3-carboxylate. These two fragments were coupled through amide bond formation to give Erismodegib. This synthesis procedure which proceeded in high yield did not require special conditions and is suitable for industrial production.
Collapse
Affiliation(s)
- Bing Hu
- School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Jin Cai
- School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Junqing Chen
- School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Meng Cao
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Peng Wang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xi Zong
- School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Min Ji
- School of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| |
Collapse
|
25
|
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem Rev 2013; 114:2432-506. [DOI: 10.1021/cr4002879] [Citation(s) in RCA: 3202] [Impact Index Per Article: 291.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiang Wang
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - María Sánchez-Roselló
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - José Luis Aceña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
| | - Carlos del Pozo
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
| | - Alexander E. Sorochinsky
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
- Institute
of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine
| | - Santos Fustero
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
26
|
Banala AK, Zhang P, Plenge P, Cyriac G, Kopajtic T, Katz JL, Loland CJ, Newman AH. Design and synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (citalopram) analogues as novel probes for the serotonin transporter S1 and S2 binding sites. J Med Chem 2013; 56:9709-24. [PMID: 24237160 DOI: 10.1021/jm4014136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described, and their relation to antidepressant pharmacology has been debated. Herein, structural modifications to the N, 4, 5, and 4' positions of (±)citalopram (1) are reported. All of the analogues were SERT-selective and demonstrated that steric bulk was tolerated at the SERT S1 site, including two dimeric ligands (15 and 51). In addition, eight analogues were identified with similar potencies to S-1 for decreasing the dissociation of [(3)H]S-1 from the S1 site via allosteric modulation at S2. Both dimeric compounds had similar affinities for the SERT S1 site (Ki = 19.7 and 30.2 nM, respectively), whereas only the N-substituted analogue, 51, was as effective as S-1 in allosterically modulating the binding of [(3)H]S-1 via S2.
Collapse
Affiliation(s)
- Ashwini K Banala
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vedantham R, Vetukuri VNKVPR, Boini A, Khagga M, Bandichhor R. Improved One-Pot Synthesis of Citalopram Diol and Its Conversion to Citalopram. Org Process Res Dev 2013. [DOI: 10.1021/op3002596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ravindra Vedantham
- Research and Development, API,
Integrated Product Development, Innovation Plaza, Dr. Reddy’s Laboratories Ltd., Bachupally, Qutubullapur,
R.R. Dist-500072, A.P., India
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally,
Hyderabad 500085, A.P., India
| | - VNKV Prasada Raju Vetukuri
- Research and Development, API,
Integrated Product Development, Innovation Plaza, Dr. Reddy’s Laboratories Ltd., Bachupally, Qutubullapur,
R.R. Dist-500072, A.P., India
| | - Ambaiah Boini
- Research and Development, API,
Integrated Product Development, Innovation Plaza, Dr. Reddy’s Laboratories Ltd., Bachupally, Qutubullapur,
R.R. Dist-500072, A.P., India
| | - Mukkanti Khagga
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally,
Hyderabad 500085, A.P., India
| | - Rakeshwar Bandichhor
- Research and Development, API,
Integrated Product Development, Innovation Plaza, Dr. Reddy’s Laboratories Ltd., Bachupally, Qutubullapur,
R.R. Dist-500072, A.P., India
| |
Collapse
|
28
|
Kohn BL, Ichiishi N, Jarvo ER. Silver-Catalyzed Allenylation and Enantioselective Propargylation Reactions of Ketones. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Kohn BL, Ichiishi N, Jarvo ER. Silver-Catalyzed Allenylation and Enantioselective Propargylation Reactions of Ketones. Angew Chem Int Ed Engl 2013; 52:4414-7. [DOI: 10.1002/anie.201206971] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/05/2012] [Indexed: 11/07/2022]
|
30
|
Li Y, Zhu DX, Xu MH. A new versatile approach to synthesise enantioenriched 3-hydroxyoxindoles, 1,3-dihydroisobenzofuran and 3-isochromanone derivatives by a rhodium-catalyzed asymmetric arylation–cyclization sequence. Chem Commun (Camb) 2013; 49:11659-61. [DOI: 10.1039/c3cc47927g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Ameen D, Snape TJ. Chiral 1,1-diaryl compounds as important pharmacophores. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00088e] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Zhang P, Jørgensen TN, Loland CJ, Newman AH. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter. Bioorg Med Chem Lett 2012; 23:323-6. [PMID: 23168018 DOI: 10.1016/j.bmcl.2012.10.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [(3)H]5-HT uptake in COS-7 cells (K(i)=225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative to the transporters for dopamine and norepinephrine. Visualization of the SERT with compound 8 was demonstrated by confocal microscopy in HEK293 cells stably expressing EGFP-SERT.
Collapse
Affiliation(s)
- Peng Zhang
- Molecular Targets and Medications Discovery Branch, Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
33
|
Feng Z, Hou T, Li Y. Selectivity and activation of dopamine D3R from molecular dynamics. J Mol Model 2012; 18:5051-63. [DOI: 10.1007/s00894-012-1509-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
34
|
Zong H, Huang H, Liu J, Bian G, Song L. Added-metal-free catalytic nucleophilic addition of Grignard reagents to ketones. J Org Chem 2012; 77:4645-52. [PMID: 22524204 DOI: 10.1021/jo3004277] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of the investigation of the combinational effect of quaternary ammonium salts and organic bases, an added-metal-free catalytic system for nucleophilic addition reactions of a variety of Grignard reagents to diverse ketones in THF solvent has been developed to produce tertiary alcohols in good to excellent yields. By using tetrabutylammonium chloride (NBu(4)Cl) as a catalyst and diglyme (DGDE) as an additive, this system strongly enhances the efficiency of addition at the expense of enolization and reduction. NBu(4)Cl should help to shift the Schlenk equilibrium of Grignard reagents to the side of dimeric Grignard reagents to favor the additions of Grignard reagents to ketones via a favored six-membered transition state to form the desired tertiary alcohols, and DGDE should increase the nucleophilic reactivities of Grignard reagents by coordination. This catalytic system has been applied in the efficient synthesis of Citalopram, an effective U.S. FDA-approved antidepressant, and a recyclable version of this catalytic synthesis has also been devised.
Collapse
Affiliation(s)
- Hua Zong
- The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | |
Collapse
|
35
|
Zhu TS, Jin SS, Xu MH. Rhodium-Catalyzed, Highly Enantioselective 1,2-Addition of Aryl Boronic Acids to α-Ketoesters and α-Diketones Using Simple, Chiral Sulfur-Olefin Ligands. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106972] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Zhu TS, Jin SS, Xu MH. Rhodium-Catalyzed, Highly Enantioselective 1,2-Addition of Aryl Boronic Acids to α-Ketoesters and α-Diketones Using Simple, Chiral Sulfur-Olefin Ligands. Angew Chem Int Ed Engl 2011; 51:780-3. [DOI: 10.1002/anie.201106972] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Indexed: 11/11/2022]
|
37
|
Lu D, Zhou Y, Li Y, Yan S, Gong Y. Copper(II)-Catalyzed Asymmetric Henry Reaction of o-Alkynylbenzaldehydes Followed by Gold(I)-Mediated Cycloisomerization: An Enantioselective Route to Chiral 1H-Isochromenes and 1,3-Dihydroisobenzofurans. J Org Chem 2011; 76:8869-78. [DOI: 10.1021/jo201596p] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037
Luoyu Road, Wuhan 430074, China
| | - Yirong Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037
Luoyu Road, Wuhan 430074, China
| | - Yajun Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037
Luoyu Road, Wuhan 430074, China
| | - Shaobai Yan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037
Luoyu Road, Wuhan 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037
Luoyu Road, Wuhan 430074, China
| |
Collapse
|
38
|
Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc Natl Acad Sci U S A 2011; 108:12137-42. [PMID: 21730142 DOI: 10.1073/pnas.1103060108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibitors of the serotonin transporter (SERT) and norepinephrine transporter (NET) are widely used in the treatment of major depressive disorder. Although SERT/NET selectivity is a key determinant for the therapeutic properties of these drugs, the molecular determinants defining SERT/NET selectivity are poorly understood. In this study, the structural basis for selectivity of the SERT selective inhibitor citalopram and the structurally closely related NET selective inhibitor talopram is delineated. A systematic structure-activity relationship study allowed identification of the substituents that control activity and selectivity toward SERT and NET and revealed a common pattern showing that SERT and NET have opposite preference for the stereochemical configuration of these inhibitors. Mutational analysis of nonconserved SERT/NET residues within the central substrate binding site was performed to determine the molecular basis for inhibitor selectivity. Changing only five residues in NET to the complementary residues in SERT transferred a SERT-like affinity profile for R- and S-citalopram into NET, showing that the selectivity of these compounds is determined by amino acid differences in the central binding site of the transporters. In contrast, the activity of R- and S-talopram was largely unaffected by any mutations within the central substrate binding site of SERT and NET and in the outer vestibule of NET, suggesting that citalopram and talopram bind to distinct sites on SERT and NET. Together, these findings provide important insight into the molecular basis for SERT/NET selectivity of antidepressants, which can be used to guide rational development of unique transporter inhibitors with fine-tuned transporter selectivity.
Collapse
|