1
|
Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024; 19:e202300447. [PMID: 37926686 DOI: 10.1002/cmdc.202300447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Anirudh G Raj
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Pandurangan Nanjan
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry CNR, via Paolo Gaifami 18, 95126, Catania, Italy
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
2
|
Li X, Chen XY, Fan BY, Yu Q, Lei J, Xu ZG, Chen ZZ. Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity. Molecules 2023; 28:7602. [PMID: 38005323 PMCID: PMC10673291 DOI: 10.3390/molecules28227602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
An efficient and direct approach to pyrroles was successfully developed by employing 3-formylchromones as decarboxylative coupling partners, and facilitated by microwave irradiation. The protocol utilizes easily accessible feedstocks, a catalytic amount of DBU without any metals, resulting in high efficiency and regioselectivity. Notably, all synthesized products were evaluated against five different cancer cell lines and compound 3l selectively inhibited the proliferation of HCT116 cells with an IC50 value of 10.65 μM.
Collapse
Affiliation(s)
- Xue Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, China
| | - Xing-Yu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Bing-Ying Fan
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Qun Yu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400067, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.L.); (X.-Y.C.); (B.-Y.F.); (Q.Y.)
| |
Collapse
|
3
|
Mousavi S, Naeimi H, Ghasemi AH, Kermanizadeh S. Nickel ferrite nanoparticles doped on hollow carbon microspheres as a novel reusable catalyst for synthesis of N-substituted pyrrole derivatives. Sci Rep 2023; 13:10840. [PMID: 37407810 DOI: 10.1038/s41598-023-37817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Pyrroles are widely spread worldwide because of their critical applications, especially pharmacology. An expedition method for one-pot synthesis of N-substituted pyrrole derivatives has been presented by a reaction between 2,5-dimethoxytetrahydrofuran and various primary aromatic amines in the presence of NiFe2O4 anchored to modified carbon hollow microspheres (NiFe2O4@MCHMs) as a recoverable reactive catalyst. The Classon-Kass method has been used to synthesize the pyrroles in excellent yields and short reaction times in the same direction with green chemistry rules. This reaction was carried out by employing NiFe2O4@MCHMs as a catalyst to make a simple procedure with short activation energy in water as an accessible, non-toxic, and biodegradable solvent. This catalyst provides a promising pathway to synthesize N-substituted pyrroles several times in a row through the recyclability without remarkable loss of its catalytic activity. The NiFe2O4@MCHMs nanocatalyst was characterized by applying FT-IR, XRD, FE-SEM, TEM, EDS, BET, TGA, VSM, and elemental mapping techniques. Also, the synthesized N-substituted pyrrole derivatives were identified using melting point, FT-IR, and 1H NMR analyses.
Collapse
Affiliation(s)
- Setareh Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran.
| | - Amir Hossein Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran
| | - Shadan Kermanizadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Islamic Republic of Iran
| |
Collapse
|
4
|
Irie T, Sawa M. CDC7 kinase inhibitors: a survey of recent patent literature (2017-2022). Expert Opin Ther Pat 2023; 33:493-501. [PMID: 37735909 DOI: 10.1080/13543776.2023.2262138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION CDC7 is a serine/threonine kinase which plays an important role in DNA replication. Inhibition of CDC7 in cancer cells causes lethal S phase or M phase progression, whereas inhibition of CDC7 in normal cells does not cause cell death and only leads to cell cycle arrest at the DNA replication checkpoint. Therefore, CDC7 has been recognized as a potential target for novel therapeutic interventions in cancers. AREAS COVERED Patent literature claiming novel small molecule compounds inhibiting CDC7 disclosed from 2017 to 2022. EXPERT OPINION Despite the indisputable positive impact of CDC7 as a drug target, there have been reported only a handful of chemical scaffolds as CDC7 inhibitors. Several CDC7 inhibitors have been progressed into clinical trials for cancer treatments, but they did not result in satisfactory efficacies in those trials. One possible reason for the failure might be due to the dose-limiting toxicities, and some of the observed toxicities were thought to be not related to CDC7 inhibition, suggesting it should be important to identify novel chemical scaffolds to eliminate unwanted toxicities. Another important factor is the patient stratification that would enable greater response, and the identification of such predictive biomarkers should be the key to success for the development of CDC7 inhibitors.
Collapse
Affiliation(s)
- Takayuki Irie
- Drug Discovery and Development, Carna Biosciences, Inc, Kobe, Japan
| | - Masaaki Sawa
- Drug Discovery and Development, Carna Biosciences, Inc, Kobe, Japan
| |
Collapse
|
5
|
Kline T, Xu C, Kreitzer FR, Hurst DP, Eldeeb KM, Wager-Miller J, Olivas K, Hepburn SA, Huffman JW, Mackie K, Howlett AC, Reggio P, Stella N. Design, synthesis, and evaluation of substituted alkylindoles that activate G protein-coupled receptors distinct from the cannabinoid CB 1 and CB 2 receptors. Eur J Med Chem 2023; 249:115123. [PMID: 36708677 PMCID: PMC10917149 DOI: 10.1016/j.ejmech.2023.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
The alkylindole (AI), WIN55212-2, modulates the activity of several proteins, including cannabinoid receptors 1 and 2 (CB1R, CB2R), and at least additional G protein-coupled receptor (GPCR) that remains uncharacterized with respect to its molecular identity and pharmacological profile. Evidence suggests that such AI-sensitive GPCRs are expressed by the human kidney cell line HEK293. We synthesized fourteen novel AI analogues and evaluated their activities at AI-sensitive GPCRs using [35S]GTPγS and [3H]WIN55212-2 binding in HEK293 cell membranes, and performed in silico pharmacophore modeling to identify characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R. Compounds 10 and 12 stimulated [35S]GTPγS binding (EC50s = 3.5 and 1.1 nM, respectively), and this response was pertussis toxin-sensitive, indicating that AI-sensitive GPCRs couple to Gi/o proteins. Five AI analogues reliably distinguished two binding sites that correspond to the high and low affinity state of AI-sensitive GPCRs coupled or not to G proteins. In silico pharmacophore modeling suggest 3 characteristics that favor binding to AI-sensitive GPCRs versus CB1R/CB2R: 1) an s-cis orientation of the two aromatic rings in AI analogues, 2) a narrow dihedral angle between the carbonyl group and the indole ring plane [i.e., O-C(carbonyl)-C3-C2] and 3) the presence of a carbonyl oxygen. The substituted alkylindoles reported here represent novel chemical tools to study AI-sensitive GPCRs.
Collapse
Affiliation(s)
- Toni Kline
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Cong Xu
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Dow P Hurst
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, 27412, USA
| | - Khalil M Eldeeb
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, IN, 47405, USA
| | - Kathleen Olivas
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Seon A Hepburn
- Howard L. Hunter Laboratory, Clemson University, Clemson, SC, 29634, USA
| | - John W Huffman
- Howard L. Hunter Laboratory, Clemson University, Clemson, SC, 29634, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, IN, 47405, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27157, USA
| | - Patricia Reggio
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, 27412, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA; Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
7
|
Hu J, Ji X, Su F, Zhao Q, Zhang G, Zhao M, Lai M. Synthesis, odor characteristics and biological evaluation of N-substituted pyrrolyl chalcones. Org Biomol Chem 2022; 20:8747-8755. [DOI: 10.1039/d2ob01561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Base-mediated transition-metal free α-functionalization of N-substituted acetylpyrroles with commercial alcohols to generate various pyrrolyl chalcones is reported, and several prominent bioactive and flavor molecules were obtained.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Ganlin Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
8
|
Irie T, Asami T, Sawa A, Uno Y, Taniyama C, Funakoshi Y, Masai H, Sawa M. Discovery of AS-0141, a Potent and Selective Inhibitor of CDC7 Kinase for the Treatment of Solid Cancers. J Med Chem 2021; 64:14153-14164. [PMID: 34607435 DOI: 10.1021/acs.jmedchem.1c01319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CDC7, a serine-threonine kinase, plays conserved and important roles in regulation of DNA replication and has been recognized as a potential anticancer target. We report here the optimization of a series of furanone analogues starting from compound 1 with a focus on ADME properties suitable for clinical development. By replacing the 2-chlorobenzene moiety in 1 with various aliphatic groups, we identified compound 24 as a potent CDC7 inhibitor with excellent kinase selectivity and favorable oral bioavailability in multiple species. Oral administration of 24 demonstrated robust in vivo antitumor efficacy in a colorectal cancer xenograft model. Compound 24 (AS-0141) is currently in phase I clinical trials for the treatment of solid cancers.
Collapse
Affiliation(s)
- Takayuki Irie
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tokiko Asami
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Ayako Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuko Uno
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Chika Taniyama
- Ginkgo Biomedical Research Institute, Research and Development Department, SBI Biotech Co., Ltd., Izumi Garden Tower 15F, 1-6- Roppongi, Minato-ku, Tokyo 106-6015, Japan
| | - Yoko Funakoshi
- Ginkgo Biomedical Research Institute, Research and Development Department, SBI Biotech Co., Ltd., Izumi Garden Tower 15F, 1-6- Roppongi, Minato-ku, Tokyo 106-6015, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
9
|
Wang Y, Zhang C, Li S, Liu L. Iron‐Catalyzed Synthesis of Pyrrole Derivatives and Related Five‐Membered Azacycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yeming Wang
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Chaoqun Zhang
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Shizhe Li
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| |
Collapse
|
10
|
Petrova OV, Budaev AB, Sagitova EF, Ushakov IA, Sobenina LN, Ivanov AV, Trofimov BA. Pyrrole-Aminopyrimidine Ensembles: Cycloaddition of Guanidine to Acylethynylpyrroles. Molecules 2021; 26:molecules26061692. [PMID: 33803018 PMCID: PMC8002744 DOI: 10.3390/molecules26061692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
An efficient method for the synthesis of pharmaceutically prospective pyrrole-aminopyrimidine ensembles (in up to 91% yield) by the cyclocondensation of easily available acylethynylpyrroles with guanidine nitrate has been developed. The reaction proceeds under heating (110-115 °C, 4 h) in the KOH/DMSO system. In the case of 2-benzoylethynylpyrrole, the unexpected addition of the formed pyrrole-aminopyrimidine as N- (NH moiety of the pyrrole ring) and C- (CH of aminopyrimidine) nucleophiles to the triple bond is observed.
Collapse
|
11
|
Hexafluoroisopropanol as solvent and promotor in the Paal-Knorr synthesis of N-substituted diaryl pyrroles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Ma Q, Zhang J, Zhang M, Lan H, Yang Q, Li C, Zeng L. MicroRNA-29b targeting of cell division cycle 7-related protein kinase (CDC7) regulated vascular smooth muscle cell (VSMC) proliferation and migration. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1496. [PMID: 33313241 PMCID: PMC7729318 DOI: 10.21037/atm-20-6856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Proliferation and migration of vascular smooth muscle cells (VSMCs) are vital processes in vascular remodeling and pathology. This study aimed to explore the expression of miR-29b and cell division cycle 7-related protein kinase (CDC7) in patients with cerebral aneurysm (CA) and their effects on the proliferation and mobility of human umbilical artery smooth muscle cells (HUASMCs). Methods RNA levels of miR-29b and CDC7 were evaluated in the CA tissues and adjacent normal cerebral arteries from 18 patients undergoing surgery for CA rupture. The targeting of CDC7 by miR-29b was verified with luciferase reporter assay. Both CDC7 and miR-29b overexpression and silencing vectors were introduced to validate their effects on the proliferation and mobility of HUASMCs. Results The mRNA level of miR-29b was down-regulated (P<0.05), while the mRNA level of CDC7 was markedly elevated in CA patients (P<0.05). A Luciferase reporter assay showed CDC7 is a target gene of miR-29b, and miR-29b mimic down-regulated the mRNA and protein levels of CDC7 (P<0.05). Furthermore, miR-29b mimic inhibited, while miR-29b inhibitor or CDC7 over-expression promoted the proliferation and mobility of HUASMCs (P<0.05). Conclusions miR-29-3p inhibits cell proliferation and mobility via directly targeting CDC7, which could be a potential therapeutic target for vascular dysfunction related diseases, including atherosclerosis and CA.
Collapse
Affiliation(s)
- Qunhua Ma
- RICU&MICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhang
- Emergency Observation Ward, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Lan
- Department of Cardiovascular Medicine, Southwest Medical University, Luzhou, China
| | - Qian Yang
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Chengping Li
- Emergency Observation Ward, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zeng
- Department of Nursing, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
|
14
|
Targeting nuclear protein TDP-43 by cell division cycle kinase 7 inhibitors: A new therapeutic approach for amyotrophic lateral sclerosis. Eur J Med Chem 2020; 210:112968. [PMID: 33139113 DOI: 10.1016/j.ejmech.2020.112968] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no known cure. Aggregates of the nuclear protein TDP-43 have been recognized as a hallmark of proteinopathy in both familial and sporadic cases of ALS. Post-translational modifications of this protein, include hyperphosphorylation, cause disruption of TDP-43 homeostasis and as a consequence, promotion of its neurotoxicity. Among the kinases involved in these changes, cell division cycle kinase 7 (CDC7) plays an important role by directly phosphorylating TDP-43. In the present manuscript the discovery, synthesis, and optimization of a new family of selective and ATP-competitive CDC7 inhibitors based on 6-mercaptopurine scaffold are described. Moreover, we demonstrate the ability of these inhibitors to reduce TDP-43 phosphorylation in both cell cultures and transgenic animal models such as C. elegans and Prp-hTDP43 (A315T) mice. Altogether, the compounds described here may be useful as versatile tools to explore the role of CDC7 in TDP-43 phosphorylation and also as new drug candidates for the future development of ALS therapies.
Collapse
|
15
|
Abstract
:
Pyrrole derivatives are nitrogen-containing heterocyclic compounds and widely
distributed in a large number of natural and non-natural compounds. These compounds
possess a broad spectrum of biological activities such as anti-infammatory, antiviral, antitumor,
antifungal, and antibacterial activities. Besides their biological activity, pyrrole derivatives
have also been applied in various areas such as dyes, conducting polymers, organic
semiconductors.
:
Due to such a wide range of applicability, access to this class of compounds has attracted
intensive research interest. Various established synthetic methods such as Paal-Knorr,
Huisgen, and Hantzsch have been modified and improved. In addition, numerous novel
methods for pyrrole synthesis have been discovered. This review will focus on considerable
studies on the synthesis of pyrroles, which date back from 2014.
Collapse
Affiliation(s)
- Duc Dau Xuan
- Department of Chemistry, Natural Science Education Institute, Vinh University, Vinh City, Vietnam
| |
Collapse
|
16
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
17
|
Lamellarin alkaloids: Isolation, synthesis, and biological activity. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 83:1-112. [PMID: 32098648 DOI: 10.1016/bs.alkal.2019.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lamellarins are marine alkaloids containing fused 14-phenyl-6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinoline or non-fused 3,4-diarylpyrrole-2-carboxylate ring systems. To date, more than 50 lamellarins have been isolated from a variety of marine organisms, such as mollusks, tunicates, and sponges. Many of them, especially fused type I lamellarins, exhibit impressive biological activity, such as potent cytotoxicity, topoisomerase I inhibition, protein kinases inhibition, and anti-HIV-1 activity. Due to their useful biological activity and limited availability from natural sources, a number of synthetic methods have been developed. In this chapter, we present an updated and comprehensive review on lamellarin alkaloids summarizing their isolation, synthesis, and biological activity.
Collapse
|
18
|
Kurasawa O, Miyazaki T, Homma M, Oguro Y, Imada T, Uchiyama N, Iwai K, Yamamoto Y, Ohori M, Hara H, Sugimoto H, Iwata K, Skene R, Hoffman I, Ohashi A, Nomura T, Cho N. Discovery of a Novel, Highly Potent, and Selective Thieno[3,2- d]pyrimidinone-Based Cdc7 Inhibitor with a Quinuclidine Moiety (TAK-931) as an Orally Active Investigational Antitumor Agent. J Med Chem 2020; 63:1084-1104. [PMID: 31895562 DOI: 10.1021/acs.jmedchem.9b01427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In our pursuit of developing a novel, potent, and selective cell division cycle 7 (Cdc7) inhibitor, we optimized the previously reported thieno[3,2-d]pyrimidinone analogue I showing time-dependent Cdc7 kinase inhibition and slow dissociation kinetics. These medicinal chemistry efforts led to the identification of compound 3d, which exhibited potent cellular activity, excellent kinase selectivity, and antitumor efficacy in a COLO205 xenograft mouse model. However, the issue of formaldehyde adduct formation emerged during a detailed study of 3d, which was deemed an obstacle to further development. A structure-based approach to circumvent the adduct formation culminated in the discovery of compound 11b (TAK-931) possessing a quinuclidine moiety as a preclinical candidate. In this paper, the design, synthesis, and biological evaluation of this series of compounds will be presented.
Collapse
Affiliation(s)
- Osamu Kurasawa
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tohru Miyazaki
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Misaki Homma
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yuya Oguro
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Takashi Imada
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Noriko Uchiyama
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Kenichi Iwai
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yukiko Yamamoto
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Momoko Ohori
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hideto Hara
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hiroshi Sugimoto
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Kentaro Iwata
- Pharmaceutical Sciences , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Robert Skene
- Takeda California, Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Isaac Hoffman
- Takeda California, Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Akihiro Ohashi
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Toshiyuki Nomura
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Nobuo Cho
- Pharmaceutical Research Division , Takeda Pharmaceutical Company, Ltd. , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| |
Collapse
|
19
|
Yadav A, Gudimella SK, Samanta S. An Expedient Lewis‐Acid‐Catalyzed Microwave‐Assisted Domino Approach to Coumarin‐Fused Pyrroles and Related Heterocycles under Neat Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anubha Yadav
- Discipline of ChemistryIndian Institute of Technology Indore, Simrol, Indore 453552 Madhya Pradesh India
| | - Santosh K. Gudimella
- Discipline of ChemistryIndian Institute of Technology Indore, Simrol, Indore 453552 Madhya Pradesh India
| | - Sampak Samanta
- Discipline of ChemistryIndian Institute of Technology Indore, Simrol, Indore 453552 Madhya Pradesh India
| |
Collapse
|
20
|
Jadala C, Prasad B, Prasanthi AVG, Shankaraiah N, Kamal A. Transition metal-free one-pot synthesis of substituted pyrroles by employing aza-Wittig reaction. RSC Adv 2019; 9:30659-30665. [PMID: 35529397 PMCID: PMC9072206 DOI: 10.1039/c9ra06778g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022] Open
Abstract
A mild and metal-free one-pot synthetic strategy has been developed for the construction of substituted pyrroles by employing aza-Wittig reaction from a unique and unexplored combination of chromones and phenacyl azides. This method does not compromise the diverse substitutions on both the phenacyl azides and chromones. The merits of this method are wide substrate scope, easy functionalization, short reaction time, operationally simple, and higher yields. Moreover, this method is amenable for the generation of a library of key pyrrole building blocks. A mild and metal-free one-pot synthetic strategy has been developed for the construction of substituted pyrroles by employing aza-Wittig reaction from a unique and unexplored combination of chromones and phenacyl azides.![]()
Collapse
Affiliation(s)
- Chetna Jadala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500 037 India
| | - Budaganaboyina Prasad
- Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - A V G Prasanthi
- Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500 037 India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500 037 India .,Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India .,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India
| |
Collapse
|
21
|
Wang S, Dong G, Sheng C. Structural simplification: an efficient strategy in lead optimization. Acta Pharm Sin B 2019; 9:880-901. [PMID: 31649841 PMCID: PMC6804494 DOI: 10.1016/j.apsb.2019.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/04/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
The trend toward designing large hydrophobic molecules for lead optimization is often associated with poor drug-likeness and high attrition rates in drug discovery and development. Structural simplification is a powerful strategy for improving the efficiency and success rate of drug design by avoiding "molecular obesity". The structural simplification of large or complex lead compounds by truncating unnecessary groups can not only improve their synthetic accessibility but also improve their pharmacokinetic profiles, reduce side effects and so on. This review will summarize the application of structural simplification in lead optimization. Numerous case studies, particularly those involving successful examples leading to marketed drugs or drug-like candidates, will be introduced and analyzed to illustrate the design strategies and guidelines for structural simplification.
Collapse
Key Words
- 11β-HSD, 11β-hydroxysteroid dehydrogenase
- 3D, three-dimensional
- ADMET, absorption, distribution, metabolism, excretion and toxicity
- AM2, adrenomedullin-2 receptor
- BIOS, biology-oriented synthesis
- CCK, cholecystokinin receptor
- CGRP, calcitonin gene-related peptide
- Drug design
- Drug discovery
- GlyT1, glycine transport 1
- HBV, hepatitis B virus
- HDAC, histone deacetylase
- HLM, human liver microsome
- JAKs, Janus tyrosine kinases
- LE, ligand efficiency
- Lead optimization
- LeuRS, leucyl-tRNA synthetase
- MCRs, multicomponent reactions
- MDR-TB, multidrug-resistant tuberculosis
- MW, molecular weight
- NP, natural product
- NPM, nucleophosmin
- PD, pharmacodynamic
- PK, pharmacokinetic
- PKC, protein kinase C
- Pharmacophore-based simplification
- Reducing chiral centers
- Reducing rings number
- SAHA, vorinostat
- SAR, structure‒activity relationship
- SCONP, structural classification of natural product
- Structural simplification
- Structure-based simplification
- TSA, trichostatin A
- TbLeuRS, T. brucei LeuRS
- ThrRS, threonyl-tRNA synthetase
- VANGL1, van-Gogh-like receptor protein 1
- aa-AMP, aminoacyl-AMP
- aa-AMS, aminoacylsulfa-moyladenosine
- aaRSs, aminoacyl-tRNA synthetases
- hA3 AR, human A3 adenosine receptor
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Moghadam ES, Saravani F, Ostad S, Tavajohi S, Hamedani MP, Amini M. Design, Synthesis and Anticancer Evaluation of Novel Series of Indibulin Analogues. Med Chem 2019; 15:231-239. [DOI: 10.2174/1573406414666181015145945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 08/13/2018] [Accepted: 09/30/2018] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is an important cause of human death worldwide. During the last
decades, many anticancer agents with anti-tubulin mechanism have been synthesized or extracted
from nature and some of them also entered clinical use. Indibulin is one of the most potent tubulin
polymerization inhibitors with minimal peripheral neuropathy, which is a big problem by some of
the antimitotic agents such as taxanes and vinka alkaloids. With respect to this giant benefit, herein
we decided to design and synthesize novel indibulin related compounds and investigate their
anticancer activity against HT-29, Caco-2 and T47-D cancerous cell lines as well as NIH-T3T as
normal cell line.
Objective:
The aim of this study was to synthesize new anti-cancer agents and evaluates their cytotoxic
activity on diverse cancerous and normal cell lines.
Method:
Target compounds were synthesized in multistep reaction and cytotoxic activity was
investigated by MTT cell viability assay.
Results:
Herein, nine novel target compounds were synthesized in moderate to good yield. Some
of the compounds exerted good cytotoxic activity against cancerous cell lines. Annexin V/PI staining
showed that compound 4g could induce apoptosis and necrosis in HT-29 cell line.
Conclusion:
It is valuable to do further investigation on compound 4g which showed the highest
activity against HT-29 and Caco-2 (IC50 values are 6.9 and 7 &µM respectively). Also, synthesis of
new derivatives of current synthesized compounds is suggested.
Collapse
Affiliation(s)
- Ebrahim S. Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development, Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Saravani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development, Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyednasser Ostad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shohreh Tavajohi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Morteza P. Hamedani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development, Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development, Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
23
|
Shirley HJ, Koyioni M, Muncan F, Donohoe TJ. Synthesis of lamellarin alkaloids using orthoester-masked α-keto acids. Chem Sci 2019; 10:4334-4338. [PMID: 31057760 PMCID: PMC6471603 DOI: 10.1039/c8sc05678a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Enolate arylation of a protected pyruvate is used as a key step in the short and efficient syntheses of the lamellarins.
Pyruvic acid and other α-keto acids are frequently encountered as intermediates in metabolic pathways, yet their application in total synthesis has met with limited success. In this work, we present a bioinspired strategy that utilizes highly functionalized OBO (oxabicyclo[2.2.2]octyl) orthoester masked α-ketoacids as key intermediates for the construction of both type I and II lamellarin alkaloids. Lamellarin D was synthesized, via a key 1,4-dicarbonyl, in 7 steps and 22% yield from pyruvic acid. Key steps in the synthesis involve one-pot double enolate functionalisation of 1 followed by double annulation to form the target pyrrole/N-vinyl pyrrole core and late-stage direct C–H arylation. Lastly, a novel OBO-masked β-cyano ketone, synthesized from 1, proved to be a valuable intermediate for construction of the type II lamellarin core via HBr-mediated cyclisation. In this way, lamellarin Q was synthesized in 7 steps and 20% yield from pyruvic acid.
Collapse
Affiliation(s)
- Harry J Shirley
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Maria Koyioni
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Filip Muncan
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Timothy J Donohoe
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
24
|
Almasi F, Mohammadipanah F, Adhami HR, Hamedi J. Introduction of marine-derivedStreptomycessp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol 2018; 125:1370-1382. [DOI: 10.1111/jam.14043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
- F. Almasi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| | - F. Mohammadipanah
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
| | - H.-R. Adhami
- Department of Pharmacognosy; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - J. Hamedi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| |
Collapse
|
25
|
Liu P, Yang Y, Ju Y, Tang Y, Sang Z, Chen L, Yang T, An Q, Zhang T, Luo Y. Design, synthesis and biological evaluation of novel pyrrole derivatives as potential ClpP1P2 inhibitor against Mycobacterium tuberculosis. Bioorg Chem 2018; 80:422-432. [PMID: 30005200 DOI: 10.1016/j.bioorg.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 02/05/2023]
Abstract
In an effort to discover novel inhibitors of M. tuberculosis Caseinolytic proteases (ClpP1P2), a combination strategy of virtual high-throughput screening and in vitro assay was employed and a new pyrrole compound, 1-(2-chloro-6-fluorobenzyl)-2, 5-dimethyl-4-((phenethylamino)methyl)-1H-pyrrole-3-carboxylate was found to display inhibitory effects against H37Ra with an MIC value of 77 µM. In order for discovery of more potent anti-tubercular agents that inhibit ClpP1P2 peptidase in M. tuberculosis, a series of pyrrole derivatives were designed and synthesized based on this hit compound. The synthesized compounds were evaluated forin vitrostudies against ClpP1P2 peptidase and anti-tubercular activities were also evaluated. The most promising compounds 2-(4-bromophenyl)-N-((1-(2-chloro-6-fluorophenyl)-2, 5-dimethyl-1H- pyrrolyl)methyl)ethan-1-aminehydrochloride 7d, ethyl 4-(((4-bromophenethyl) amino) methyl)-2,5-dimethyl-1-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13i, ethyl 1-(4-chlorophenyl)-4-(((2-fluorophenethyl)amino)methyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13n exhibited favorable anti-mycobacterial activity with MIC value at 5 µM against Mtb H37Ra, respectively.
Collapse
Affiliation(s)
- Pingxian Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuan Ju
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yunxiang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zitai Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lijuan Chen
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong 523325, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
26
|
Sotiriou SK, Kamileri I, Lugli N, Evangelou K, Da-Ré C, Huber F, Padayachy L, Tardy S, Nicati NL, Barriot S, Ochs F, Lukas C, Lukas J, Gorgoulis VG, Scapozza L, Halazonetis TD. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Mol Cell 2017; 64:1127-1134. [PMID: 27984746 PMCID: PMC5179496 DOI: 10.1016/j.molcel.2016.10.038] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/08/2016] [Accepted: 10/28/2016] [Indexed: 02/01/2023]
Abstract
Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Mammalian RAD52 is involved in the oncogene-induced DNA replication stress response Mammalian RAD52 functions in the repair of collapsed DNA replication forks Rad52 deficiency prolongs the lifespan of Apcmin/+ mice
Collapse
Affiliation(s)
- Sotirios K Sotiriou
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Irene Kamileri
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Natalia Lugli
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Konstantinos Evangelou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Caterina Da-Ré
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Florian Huber
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Sebastien Tardy
- School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Noemie L Nicati
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Samia Barriot
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
27
|
Discovery of novel furanone derivatives as potent Cdc7 kinase inhibitors. Eur J Med Chem 2017; 130:406-418. [PMID: 28279847 DOI: 10.1016/j.ejmech.2017.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/24/2022]
Abstract
Cdc7 is a serine-threonine kinase and plays a conserved and important role in DNA replication, and it has been recognized as a potential anticancer target. Herein, we report the design, synthesis and structure-activity relationship of novel furanone derivatives as Cdc7 kinase inhibitors. Compound 13 was identified as a strong inhibitor of Cdc7 with an IC50 value of 0.6 nM in the presence of 1 mM ATP and showed excellent kinase selectivity. In addition, it exhibited slow off-rate characteristics, which may offer advantages over known Cdc7 inhibitors in its potential to yield prolonged inhibitory effects in vivo. Compound 13 potently inhibited Cdc7 activity in cancer cells, and effectively induced cell death.
Collapse
|
28
|
Kurasawa O, Oguro Y, Miyazaki T, Homma M, Mori K, Iwai K, Hara H, Skene R, Hoffman I, Ohashi A, Yoshida S, Ishikawa T, Cho N. Identification of a new class of potent Cdc7 inhibitors designed by putative pharmacophore model: Synthesis and biological evaluation of 2,3-dihydrothieno[3,2-d]pyrimidin-4(1H)-ones. Bioorg Med Chem 2017; 25:2133-2147. [PMID: 28284870 DOI: 10.1016/j.bmc.2017.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
Abstract
Cell division cycle 7 (Cdc7) is a serine/threonine kinase that plays important roles in the regulation of DNA replication process. A genetic study indicates that Cdc7 inhibition can induce selective tumor-cell death in a p53-dependent manner, suggesting that Cdc7 is an attractive target for the treatment of cancers. In order to identify a new class of potent Cdc7 inhibitors, we generated a putative pharmacophore model based on in silico docking analysis of a known inhibitor with Cdc7 homology model. The pharmacophore model provided a minimum structural motif of Cdc7 inhibitor, by which preliminary medicinal chemistry efforts identified a dihydrothieno[3,2-d]-pyrimidin-4(1H)-one scaffold having a heteroaromatic hinge-binding moiety. The structure-activity relationship (SAR) studies resulted in the discovery of new, potent, and selective Cdc7 inhibitors 14a, c, e. Furthermore, the high selectivity of 14c, e for Cdc7 over Rho-associated protein kinase 1 (ROCK1) is discussed by utilizing a docking study with Cdc7 and ROCK2 crystal structures.
Collapse
Affiliation(s)
- Osamu Kurasawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yuya Oguro
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tohru Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Misaki Homma
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouji Mori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kenichi Iwai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideto Hara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Robert Skene
- Takeda California, Inc., 10410 Science Center Drive, San Diego 92121, CA, USA
| | - Isaac Hoffman
- Takeda California, Inc., 10410 Science Center Drive, San Diego 92121, CA, USA
| | - Akihiro Ohashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sei Yoshida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoyasu Ishikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuo Cho
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
29
|
Gomes RC, Barcelos RC, Rodrigues MT, Santos H, Coelho F. Intermolecular Stetter Reactions on Morita-Baylis-Hillman Adducts: an Approach to Highly Functionalized 1,4-Dicarbonyl Compounds. ChemistrySelect 2017. [DOI: 10.1002/slct.201602059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ralph C. Gomes
- Laboratory of Synthesis of Natural Products and Drugs; UNICAMP; Institute of Chemistry, PO Box; 6154, 13083-970 Campinas, SP Brazil
| | - Rosimeire C. Barcelos
- Laboratory of Synthesis of Natural Products and Drugs; UNICAMP; Institute of Chemistry, PO Box; 6154, 13083-970 Campinas, SP Brazil
| | - Manoel T. Rodrigues
- Laboratory of Synthesis of Natural Products and Drugs; UNICAMP; Institute of Chemistry, PO Box; 6154, 13083-970 Campinas, SP Brazil
| | - Hugo Santos
- Laboratory of Synthesis of Natural Products and Drugs; UNICAMP; Institute of Chemistry, PO Box; 6154, 13083-970 Campinas, SP Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs; UNICAMP; Institute of Chemistry, PO Box; 6154, 13083-970 Campinas, SP Brazil
| |
Collapse
|
30
|
Chelucci G. Metal-catalyzed dehydrogenative synthesis of pyrroles and indoles from alcohols. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.09.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Achievement of regioselectivity in transition metal-catalyzed direct C–H (hetero)arylation reactions of heteroarenes with one heteroatom through the use of removable protecting/blocking substituents or traceless directing groups. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Sasaki I, Taguchi J, Hiraki S, Ito H, Ishiyama T. Catalyst-controlled regiodivergent C-H borylation of multifunctionalized heteroarenes by using iridium complexes. Chemistry 2015; 21:9236-41. [PMID: 25966001 DOI: 10.1002/chem.201500658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 12/25/2022]
Abstract
The regiodivergent C-H borylation of 2,5-disubstituted heteroarenes with bis(pinacolato)diboron was achieved by using iridium catalysts formed in situ from [Ir(OMe)(cod)]2 /dtbpy (cod=1,5-cyclooctadiene, dtbpy: 4,4'-di-tert-butyl-2,2'-bipyridine) or [Ir(OMe)(cod)]2 /2 AsPh3 . When [Ir(OMe)(cod)]2 /dtbpy was used as the catalyst, borylation at the 4-position proceeded selectively to afford 4-borylated products in high yields (dtbpy system A). The regioselectivity changed when the [Ir(OMe)(cod)]2 /2 AsPh3 catalyst was used; 3-borylated products were obtained in high yields with high regioselectivity (AsPh3 system B). The regioselectivity of borylation was easily controlled by changing the ligands. This reaction was used in the syntheses of two different bioactive compound analogues by using the same starting material.
Collapse
Affiliation(s)
- Ikuo Sasaki
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562
| | - Jumpei Taguchi
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562
| | - Shotaro Hiraki
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562
| | - Hajime Ito
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562.
| | - Tatsuo Ishiyama
- Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 (Japan), Fax: (+81) 117066562.
| |
Collapse
|
33
|
Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 2015. [DOI: 10.1039/c4ra15710a] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pyrrole is widely known as a biologically active scaffold which possesses a diverse nature of activities.
Collapse
Affiliation(s)
- Varun Bhardwaj
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| | - Divya Gumber
- Department of Pharmaceutical Chemistry
- Banasthali
- India
| | - Vikrant Abbot
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| | - Saurabh Dhiman
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| | - Poonam Sharma
- Pharmaceutical Chemistry Laboratory
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
| |
Collapse
|
34
|
Qi X, Xiang H, Yang Y, Yang C. Synthesis of substituted pyrroles using a silver-catalysed reaction between isocyanoacetates/benzyl isocyanides and chromones. RSC Adv 2015. [DOI: 10.1039/c5ra21915a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel synthetic strategy to construct substituted-pyrroles has been developed through silver-catalysed cycloadditions of isocyanides with chromones.
Collapse
Affiliation(s)
- Xueyu Qi
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Haoyue Xiang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Yuhong Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Chunhao Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| |
Collapse
|
35
|
Sasi NK, Tiwari K, Soon FF, Bonte D, Wang T, Melcher K, Xu HE, Weinreich M. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds. PLoS One 2014; 9:e113300. [PMID: 25412417 PMCID: PMC4239038 DOI: 10.1371/journal.pone.0113300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
- Graduate Program in Genetics, Michigan State University, East Lansing, MI, United States of America
| | - Kanchan Tiwari
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
| | - Fen-Fen Soon
- Laboratory of Structural Sciences, VARI, Grand Rapids, MI, United States of America
| | - Dorine Bonte
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
| | - Tong Wang
- Translational Drug Development, Inc. (TD2), Scottsdale, AZ, United States of America
| | - Karsten Melcher
- Laboratory of Structural Biology and Biochemistry, VARI, Grand Rapids, MI, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, VARI, Grand Rapids, MI, United States of America
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
- * E-mail:
| |
Collapse
|
36
|
Murai S, Katagiri Y, Yamashita S. Maturation-associatedDbf4expression is essential for mouse zygotic DNA replication. Dev Growth Differ 2014; 56:625-39. [DOI: 10.1111/dgd.12180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Shin Murai
- Department of Biochemistry; Toho University School of Medicine; 5-21-16 Omorinishi Otaku 143-8540 Tokyo Japan
| | - Yukiko Katagiri
- Department of Obstetrics and Gynecology Reproduction Center; Omori Medical Center; Toho University; 6-11-1, Omori-Nishi Ota-ku 143-8541 Tokyo Japan
| | - Shigeru Yamashita
- Department of Biochemistry; Toho University School of Medicine; 5-21-16 Omorinishi Otaku 143-8540 Tokyo Japan
| |
Collapse
|
37
|
A highly efficient group-assisted purification method for the synthesis of poly-functionalized pyrimidin-5-yl-pyrroles via one-pot four-component domino reaction. Mol Divers 2014; 19:173-87. [DOI: 10.1007/s11030-014-9547-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
|
38
|
Brasca MG, Nesi M, Avanzi N, Ballinari D, Bandiera T, Bertrand J, Bindi S, Canevari G, Carenzi D, Casero D, Ceriani L, Ciomei M, Cirla A, Colombo M, Cribioli S, Cristiani C, Della Vedova F, Fachin G, Fasolini M, Felder ER, Galvani A, Isacchi A, Mirizzi D, Motto I, Panzeri A, Pesenti E, Vianello P, Gnocchi P, Donati D. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. Bioorg Med Chem 2014; 22:4998-5012. [PMID: 25009002 DOI: 10.1016/j.bmc.2014.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/05/2023]
Abstract
We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.
Collapse
Affiliation(s)
- Maria Gabriella Brasca
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | - Marcella Nesi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Nilla Avanzi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Dario Ballinari
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Tiziano Bandiera
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Jay Bertrand
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Simona Bindi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Giulia Canevari
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Davide Carenzi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Casero
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Lucio Ceriani
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Ciomei
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Alessandra Cirla
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Maristella Colombo
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Sabrina Cribioli
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Cinzia Cristiani
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Franco Della Vedova
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Gabriele Fachin
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Fasolini
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Eduard R Felder
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Arturo Galvani
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonella Isacchi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Danilo Mirizzi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Ilaria Motto
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Achille Panzeri
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Enrico Pesenti
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Vianello
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Gnocchi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Donati
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| |
Collapse
|
39
|
A high through-put screen for small molecules modulating MCM2 phosphorylation identifies Ryuvidine as an inducer of the DNA damage response. PLoS One 2014; 9:e98891. [PMID: 24902048 PMCID: PMC4047068 DOI: 10.1371/journal.pone.0098891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
DNA replication is an essential process for cell division and as such it is a process that is directly targeted by several anticancer drugs. CDC7 plays an essential role in the activation of replication origins and has recently been proposed as a novel target for drug discovery. The MCM DNA helicase complex (MCM2-7) is a key target of the CDC7 kinase, and MCM phosphorylation status at specific sites is a reliable biomarker of CDC7 cellular activity. In this work we describe a cell-based assay that utilizes the "In Cell Western Technique" (ICW) to identify compounds that affect cellular CDC7 activity. By screening a library of approved drugs and kinase inhibitors we found several compounds that can affect CDC7-dependent phosphorylation of MCM2 in HeLa cells. Among these, Mitoxantrone, a topoisomerase inhibitor, and Ryuvidine, previously described as a CDK4 inhibitor, cause a reduction in phosphorylated MCM2 levels and a sudden blockade of DNA synthesis that is accompanied by an ATM-dependent checkpoint response. This study sheds light on the previously observed cytotoxity of Ryuvidine, strongly suggesting that it is related to its effect of causing DNA damage.
Collapse
|
40
|
Reichelt A, Bailis JM, Bartberger MD, Yao G, Shu H, Kaller MR, Allen JG, Weidner MF, Keegan KS, Dao JH. Synthesis and structure-activity relationship of trisubstituted thiazoles as Cdc7 kinase inhibitors. Eur J Med Chem 2014; 80:364-82. [PMID: 24793884 DOI: 10.1016/j.ejmech.2014.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
The Cell division cycle 7 (Cdc7) protein kinase is essential for DNA replication and maintenance of genome stability. We systematically explored thiazole-based compounds as inhibitors of Cdc7 kinase activity in cancer cells. Our studies resulted in the identification of a potent, selective Cdc7 inhibitor that decreased phosphorylation of the direct substrate MCM2 in vitro and in vivo, and inhibited DNA synthesis and cell viability in vitro.
Collapse
Affiliation(s)
- Andreas Reichelt
- Medicinal Chemistry, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Julie M Bailis
- Oncology Research, Amgen, Inc., 1201 Amgen Court West, Seattle, WA 98119, USA
| | - Michael D Bartberger
- Molecular Structure and Characterization, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Guomin Yao
- Medicinal Chemistry, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Hong Shu
- Medicinal Chemistry, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Matthew R Kaller
- Medicinal Chemistry, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - John G Allen
- Medicinal Chemistry, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Margaret F Weidner
- Oncology Research, Amgen, Inc., 1201 Amgen Court West, Seattle, WA 98119, USA
| | - Kathleen S Keegan
- Oncology Research, Amgen, Inc., 1201 Amgen Court West, Seattle, WA 98119, USA
| | - Jennifer H Dao
- Molecular Structure and Characterization, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
41
|
Rossi R, Bellina F, Lessi M, Manzini C. Cross-Coupling of Heteroarenes by CH Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300922] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Srivastava A, Shukla G, Nagaraju A, Verma GK, Raghuvanshi K, Jones RCF, Singh MS. In(OTf)3-catalysed one-pot versatile pyrrole synthesis through domino annulation of α-oxoketene-N,S-acetals with nitroolefins. Org Biomol Chem 2014; 12:5484-91. [DOI: 10.1039/c4ob00781f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An operationally simple and efficient one-pot direct access to pyrroles has been achieved by annulation of α-oxoketene-N,S-acetals with β-nitrostyrenes catalyzed by In(OTf)3under solvent-free conditions.
Collapse
Affiliation(s)
- Abhijeet Srivastava
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-05, India
| | - Gaurav Shukla
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-05, India
| | - Anugula Nagaraju
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-05, India
| | - Girijesh Kumar Verma
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-05, India
| | - Keshav Raghuvanshi
- Institut für Organische und Biomolekulare Chemie
- Georg-August-Universität
- Göttingen, Germany
| | | | - Maya Shankar Singh
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-05, India
| |
Collapse
|
43
|
D. Lubell W, A. Dörr A. Aminophenylpyrrole Synthesis and Application to Pyrrolo[1,2-c]quinazolinone Synthesis. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Awasthi A, Lohani M, Singh MK, Singh AT, Jaggi M. Pharmacokinetic evaluation of C-3 modified 1,8-naphthyridine-3-carboxamide derivatives with potent anticancer activity: lead finding. J Enzyme Inhib Med Chem 2013; 29:710-21. [PMID: 24156741 DOI: 10.3109/14756366.2013.845817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To develop naphthyridine derivatives as anticancer candidates, pharmacokinetic (PK) evaluations of 10 novel derivatives of 1,4-dihydro-4-oxo-1-proparagyl-1,8-naphthyridine-3-carboxamide, with potent anticancer activity were done using in vitro ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic--pharmcodynamic (PK/PD) assays. Only derivatives 5, 6, 9 and 10 showed better metabolic stability, solubility, permeability, partition coefficient and cytochrome P450 (CYP) inhibition values. PK of derivatives 5, 6, 9 and 10 in rat showed comparable PK profile for derivative 5 (C0 = 6.98 µg/mL) and 6 (C0 = 6.61 µg/mL) with no detectable plasma levels for derivatives 9 and 10 at 5.0 mg/kg i.v. dose. PK/PD assay of derivatives 5 and 6 in tumor-bearing mice (TBM) showed comparable PK but tumor plasma index (TPI) of derivative 6 (4.02) was better than derivative 5 (2.50), suggesting better tumor uptake of derivative 6. Derivative 6, as lead compound, showed highest tumor growth inhibition (TGI) value of 33.6% in human ovary cancer xenograft model.
Collapse
Affiliation(s)
- Anshumali Awasthi
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Dabur Research Foundation, Ghaziabad , Uttar Pradesh , India and
| | | | | | | | | |
Collapse
|
45
|
Harrington PE, Bourbeau MP, Fotsch C, Frohn M, Pickrell AJ, Reichelt A, Sham K, Siegmund AC, Bailis JM, Bush T, Escobar S, Hickman D, Heller S, Hsieh F, Orf JN, Rong M, San Miguel T, Tan H, Zalameda L, Allen JG. The optimization of aminooxadiazoles as orally active inhibitors of Cdc7. Bioorg Med Chem Lett 2013; 23:6396-400. [PMID: 24120542 DOI: 10.1016/j.bmcl.2013.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
A series of aminooxadiazoles was optimized for inhibition of Cdc7. Early lead isoquinoline 1 suffered from modest cell potency (cellular IC50=0.71 μM measuring pMCM2), low selectivity against structurally related kinases, and high IV clearance in rats (CL=18 L/h/kg). Extensive optimization resulted in azaindole 26 (Cdc7 IC50=1.1 nM, pMCM2 IC50=32 nM) that demonstrated robust lowering of pMCM2 in a mouse pharmacodynamic (PD) model when dosed orally. Modifications to improve the pharmacokinetic profile of this series were guided by trapping experiments with glutathione in rat hepatocytes.
Collapse
Affiliation(s)
- Paul E Harrington
- Medicinal Chemistry, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Natoni A, Coyne MRE, Jacobsen A, Rainey MD, O’Brien G, Healy S, Montagnoli A, Moll J, O’Dwyer M, Santocanale C. Characterization of a Dual CDC7/CDK9 Inhibitor in Multiple Myeloma Cellular Models. Cancers (Basel) 2013; 5:901-18. [PMID: 24202326 PMCID: PMC3795371 DOI: 10.3390/cancers5030901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022] Open
Abstract
Two key features of myeloma cells are the deregulation of the cell cycle and the dependency on the expression of the BCL2 family of anti-apoptotic proteins. The cell division cycle 7 (CDC7) is an essential S-phase kinase and emerging CDC7 inhibitors are effective in a variety of preclinical cancer models. These compounds also inhibit CDK9 which is relevant for MCL-1 expression. The activity and mechanism of action of the dual CDC7/CDK9 inhibitor PHA-767491 was assessed in a panel of multiple myeloma cell lines, in primary samples from patients, in the presence of stromal cells and in combination with drugs used in current chemotherapeutic regimens. We report that in all conditions myeloma cells undergo cell death upon PHA-767491 treatment and we report an overall additive effect with melphalan, bortezomib and doxorubicin, thus supporting further assessment of targeting CDC7 and CDK9 in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Natoni
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
| | - Mark R. E. Coyne
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
- Department of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Haematology, Galway University Hospital, Galway, Ireland
| | - Alan Jacobsen
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
| | - Michael D. Rainey
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
| | - Gemma O’Brien
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
| | - Sandra Healy
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
| | - Alessia Montagnoli
- Nerviano Medical Sciences S.r.l., Via Pasteur 10, Nerviano 20014, Italy; E-Mail:
| | - Jürgen Moll
- Nerviano Medical Sciences S.r.l., Via Pasteur 10, Nerviano 20014, Italy; E-Mail:
| | - Michael O’Dwyer
- Department of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Haematology, Galway University Hospital, Galway, Ireland
- Authors to whom correspondence should be addressed; E-Mails: (M.O.); (C.S.); Tel.: +353-91-544-281 (M.O.); Fax: +353-91-542-469 (M.O.); Tel.: +353-91-495-174 (C.S.); Fax: +353-91-495-547 (C.S.)
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences National University of Ireland Galway, Galway, Ireland; E-Mails: (A.N.); (M.R.E.C.); (A.J.); (M.D.R.); (G.O.); (S.H.)
- Authors to whom correspondence should be addressed; E-Mails: (M.O.); (C.S.); Tel.: +353-91-544-281 (M.O.); Fax: +353-91-542-469 (M.O.); Tel.: +353-91-495-174 (C.S.); Fax: +353-91-495-547 (C.S.)
| |
Collapse
|
47
|
Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 2013; 74:39-52. [PMID: 23424178 DOI: 10.1002/ana.23870] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/14/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP-43-specific kinases are candidate targets for intervention. METHODS To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic Caenorhabditis elegans. RESULTS We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In frontotemporal lobar degeneration (FTLD)-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore, PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43-dependent neurodegeneration in TDP-43-transgenic animals. INTERPRETATION Taken together, these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies, including FTLD-TDP and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | |
Collapse
|
48
|
Bryan MC, Falsey JR, Frohn M, Reichelt A, Yao G, Bartberger MD, Bailis JM, Zalameda L, Miguel TS, Doherty EM, Allen JG. N-substituted azaindoles as potent inhibitors of Cdc7 kinase. Bioorg Med Chem Lett 2013; 23:2056-60. [DOI: 10.1016/j.bmcl.2013.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 01/30/2023]
|
49
|
Tong Y, Stewart KD, Florjancic AS, Harlan JE, Merta PJ, Przytulinska M, Soni N, Swinger KK, Zhu H, Johnson EF, Shoemaker AR, Penning TD. Azaindole-Based Inhibitors of Cdc7 Kinase: Impact of the Pre-DFG Residue, Val 195. ACS Med Chem Lett 2013; 4:211-5. [PMID: 24900653 DOI: 10.1021/ml300348c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/15/2013] [Indexed: 12/24/2022] Open
Abstract
To investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3β, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.g., H, methyl) led to reduced Cdc7 inhibition. Meanwhile, data from other replacements (e.g., F, O) indicated that loss of such hydrophobic interaction could be compensated by enhanced hydrogen bonding to Lys 90. Our findings not only provide an in-depth understanding of the pre-DFG residue as another viable position impacting kinase inhibition, they also expand the existing knowledge of ligand-Cdc7 binding.
Collapse
Affiliation(s)
- Yunsong Tong
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Kent D. Stewart
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Alan S. Florjancic
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - John E. Harlan
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Philip J. Merta
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Magdalena Przytulinska
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Nirupama Soni
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Kerren K. Swinger
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Haizhong Zhu
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Eric F. Johnson
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Alexander R. Shoemaker
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| | - Thomas D. Penning
- Cancer
Research, ‡Structural Biology, §Lead Discovery, and ∥Protein Biochemistry, Global Pharmaceutical Research
and Development, Abbott Laboratories, 100
Abbott Park Road, Abbott Park, Illinois 60064, United States
| |
Collapse
|
50
|
Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett 2012; 22:3727-31. [PMID: 22560567 DOI: 10.1016/j.bmcl.2012.04.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
CDC7 is a serine/threonine kinase that has been shown to be required for the initiation and maintenance of DNA replication. Up-regulation of CDC7 is detected in multiple tumor cell lines, with inhibition of CDC7 resulting in cell cycle arrest. In this paper, we disclose the discovery of a potent and selective CDC7 inhibitor, XL413 (14), which was advanced into Phase 1 clinical trials. Starting from advanced lead 3, described in a preceding communication, we optimized the CDC7 potency and selectivity to demonstrate in vitro CDC7 dependent cell cycle arrest and in vivo tumor growth inhibition in a Colo-205 xenograft model.
Collapse
|