1
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Verma S, Dal NJK, Srivastava A, Bharti R, Siva Reddy DV, Sofi HS, Roy T, Verma K, Raman SK, Azmi L, Ray L, Mugale MN, Singh AK, Singh J, Griffiths G, Misra A. Inhaled Adjunct Therapy with Second-Line Drug Candidates for Dose Reduction in Chemotherapeutic Regimens for Multi-drug-Resistant Tuberculosis. AAPS PharmSciTech 2023; 24:130. [PMID: 37291443 DOI: 10.1208/s12249-023-02585-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Chemotherapy of multi-drug-resistant tuberculosis (TB) requires prolonged administration of multiple drugs. We investigated whether pulmonary delivery of minute doses of drugs, along with reduced oral doses of the same agents, would affect preclinical efficacy. We prepared dry powder inhalation (DPI) formulations comprising sutezolid (SUT), the second-generation pretomanid analog TBA-354 (TBA), or a fluorinated derivative of TBA-354 (32,625) in a matrix of the biodegradable polymer poly(L-lactide). We established formulation characteristics, doses inhaled by healthy mice, and preclinical efficacy in a mouse model of TB. Oral doses of 100 mg/kg/day or DPI doses of 0.25-0.5 mg/kg/day of drugs SUT, TBA-354, or 32,625 administered over 28 days were sub-optimally effective in reducing lung and spleen burden of Mycobacterium tuberculosis (Mtb) in infected mice. The addition of 0.25-0.5 mg/kg/day of SUT, TBA-354, or 32,625 as DPI to oral doses of 50 mg/kg/day was non-inferior in clearing Mtb from the lungs of infected mice. We concluded that adjunct therapy with inhaled second-line agents has the potential to reduce the efficacious oral dose.
Collapse
Affiliation(s)
- Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | | | - Ashish Srivastava
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Reena Bharti
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - D V Siva Reddy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Hasham Shafi Sofi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Trisha Roy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Khushboo Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Sunil K Raman
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Lubna Azmi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Lipika Ray
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Madhav N Mugale
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Amit K Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, 282004, UP, India
| | - Jyotsna Singh
- CSIR-Indian Institute of Toxicology, Lucknow, 226001, UP, India
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| | - Amit Misra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
3
|
Bhandari M, Soria-Carrera H, Wohlmann J, Dal NJK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci 2023; 11:2103-2114. [PMID: 36723226 DOI: 10.1039/d2bm01835g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The combination drug regimens that have long been used to treat tuberculosis (TB), caused by Mycobacterium tuberculosis, are fraught with problems such as frequent administration, long duration of treatment, and harsh adverse effects, leading to the emergence of multidrug resistance. Moreover, there is no effective preventive vaccine against TB infection. In this context, nanoparticles (NPs) have emerged as a potential alternative method for drug delivery. Encapsulating antibiotics in biodegradable NPs has been shown to provide effective therapy and reduced toxicity against M. tuberculosis in different mammalian models, when compared to conventional free drug administration. Here, we evaluate the localization, therapeutic efficacy and toxic effects of polymeric micellar NPs encapsulating a promising but highly hydrophobic and toxic antitubercular drug bedaquiline (BQ) in zebrafish embryos infected with Mycobacterium marinum. Our study shows that the NP formulation of BQ improves survival and reduces bacterial burden in the infected embryos after treatment when compared to its free form. The intravenously injected BQ NPs have short circulation times due to their rapid and efficient uptake into the endothelial cells, as observed by correlative light and electron microscopy (CLEM).
Collapse
Affiliation(s)
- Madhavi Bhandari
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Héctor Soria-Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | | | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
4
|
Dal NJK, Schäfer G, Thompson AM, Schmitt S, Redinger N, Alonso-Rodriguez N, Johann K, Ojong J, Wohlmann J, Best A, Koynov K, Zentel R, Schaible UE, Griffiths G, Barz M, Fenaroli F. Π-Π interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models. J Control Release 2023; 354:851-868. [PMID: 36681282 DOI: 10.1016/j.jconrel.2023.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.
Collapse
Affiliation(s)
- Nils-Jørgen K Dal
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gabriela Schäfer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Natalja Redinger
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | | | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jessica Ojong
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ulrich E Schaible
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
5
|
Singh R, Shaheer M, Sobhia ME. Molecular dynamic assisted investigation on impact of mutations in deazaflavin dependent nitroreductase against pretomanid: a computational study. J Biomol Struct Dyn 2022:1-23. [PMID: 35574601 DOI: 10.1080/07391102.2022.2069156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the past decade, TB drugs belonging to the nitroimidazole class, pretomanid and delamanid, have been authorised to treat MDR-TB and XDR-TB. With a novel inhibition mechanism and a reduction in the span of treatment, it is now being administered in various combinations. This approach is not the ultimate remedy since the target protein Deazaflavin dependent nitroreductase (Ddn) has a high mutation frequency, and already pretomanid resistant clinical isolates are reported in various studies. Ddn is essential for M.tuberculosis to emerge from hypoxia, and point mutations in critical residues confer resistance to Nitro-imidazoles. Among the pool of available mutants, we have selected seven mutants viz DdnL49P, DdnY65S, DdnS78Y, DdnK79Q, DdnW88R, DdnY133C, and DdnY136S, all of which exhibited resistance to pretomanid. To address this issue, through computational study primarily by MD simulation, we attempted to elucidate these point mutations' impact and investigate the resistance mechanism. Hence, the DdnWT and mutant (MT) complexes were subjected to all-atom molecular dynamics (MD) simulations for 100 ns. Interestingly, we observed the escalation of the distance between cofactor and ligand in some mutants, along with a significant change in ligand conformation relative to the DdnWT. Moreover, we confirmed that mutations rendered ligand instability and were ejected from the binding pocket as a result. In conclusion, the results obtained provide a new structural insight and vital clues for designing novel inhibitors to combat nitroimidazole resistanceCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Muhammed Shaheer
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| |
Collapse
|
6
|
Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals (Basel) 2022; 15:ph15050561. [PMID: 35631389 PMCID: PMC9144801 DOI: 10.3390/ph15050561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving drugs and clinical candidates against a number of diseases, including infections (bacterial, viral, parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and leads published from 1950 to 2021. The present review also presents the miscellaneous examples in each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives is also discussed.
Collapse
|
7
|
Abstract
Given the low treatment success rates of drug-resistant tuberculosis (TB), novel TB drugs are urgently needed. The landscape of TB treatment has changed considerably over the last decade with the approval of three new compounds: bedaquiline, delamanid and pretomanid. Of these, delamanid and pretomanid belong to the same class of drugs, the nitroimidazoles. In order to close the knowledge gap on how delamanid and pretomanid compare with each other, we summarize the main findings from preclinical research on these two compounds. We discuss the compound identification, mechanism of action, drug resistance, in vitro activity, in vivo pharmacokinetic profiles, and preclinical in vivo activity and efficacy. Although delamanid and pretomanid share many similarities, several differences could be identified. One finding of particular interest is that certain Mycobacterium tuberculosis isolates have been described that are resistant to either delamanid or pretomanid, but with preserved susceptibility to the other compound. This might imply that delamanid and pretomanid could replace one another in certain regimens. Regarding bactericidal activity, based on in vitro and preclinical in vivo activity, delamanid has lower MICs and higher mycobacterial load reductions at lower drug concentrations and doses compared with pretomanid. However, when comparing in vivo preclinical bactericidal activity at dose levels equivalent to currently approved clinical doses based on drug exposure, this difference in activity between the two compounds fades. However, it is important to interpret these comparative results with caution knowing the variability inherent in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Saskia E. Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Corresponding author. E-mail:
| | | | - Anne Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Hannelore I. Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurriaan E. M. De Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Zinad DS, Mahal A, Salman GA. Synthesis and Antibacterial Activity of Novel 1,3-Oxazine Derivatives. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1975486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dhafer S. Zinad
- Applied Science Department, University of Technology, Baghdad 10001, Iraq
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
- Guangzhou HC Pharmaceutical Co., Ltd, Guangzhou 510663, People's Republic of China
| | - Ghazwan Ali Salman
- Department of Chemistry, College of Sciences, Mustansiriyah University, 10052, Baghdad, Iraq
| |
Collapse
|
9
|
Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050461. [PMID: 34068171 PMCID: PMC8152995 DOI: 10.3390/ph14050461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration and complexity of TB treatment are the main issues leading to treatment failures. Other challenges faced by currently deployed TB regimens include drug-drug interactions, miss-matched pharmacokinetics parameters of drugs in a regimen, and lack of activity against slow replicating sub-population. These challenges underpin the continuous search for novel TB drugs and treatment regimens. This review summarizes new TB drugs/drug candidates under development with emphasis on their chemical classes, biological targets, mode of resistance generation, and pharmacokinetic properties. As effective TB treatment requires a combination of drugs, the issue of drug-drug interaction is, therefore, of great concern; herein, we have compiled drug-drug interaction reports, as well as efficacy reports for drug combinations studies involving antitubercular agents in clinical development.
Collapse
|
10
|
Rice AM, Long Y, King SB. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021; 11:267. [PMID: 33673069 PMCID: PMC7918234 DOI: 10.3390/biom11020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the development of new treatments for these conditions, the associated toxicity and lack of clear mechanisms of action have limited their therapeutic development. Nitroaromatic antibiotics require reductive bioactivation for activity and this reductive metabolism can convert the nitro group to nitric oxide (NO) or a related reactive nitrogen species (RNS). As nitric oxide plays important roles in the defensive immune response to bacterial infection through both signaling and redox-mediated pathways, defining controlled NO generation pathways from these antibiotics would allow the design of new therapeutics. This review focuses on the release of nitrogen oxide species from various nitroaromatic antibiotics to portend the increased ability for these compounds to positively impact infectious disease treatment.
Collapse
Affiliation(s)
| | | | - S. Bruce King
- Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; (A.M.R.); (Y.L.)
| |
Collapse
|
11
|
Thompson AM, O'Connor PD, Marshall AJ, Francisco AF, Kelly JM, Riley J, Read KD, Perez CJ, Cornwall S, Thompson RCA, Keenan M, White KL, Charman SA, Zulfiqar B, Sykes ML, Avery VM, Chatelain E, Denny WA. Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both in vitro and in vivo trypanocidal efficacy. Eur J Med Chem 2020; 207:112849. [PMID: 33007723 DOI: 10.1016/j.ejmech.2020.112849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
Abstract
Phenotypic screening of a 900 compound library of antitubercular nitroimidazole derivatives related to pretomanid against the protozoan parasite Trypanosoma cruzi (the causative agent for Chagas disease) identified several structurally diverse hits with an unknown mode of action. Following initial profiling, a first proof-of-concept in vivo study was undertaken, in which once daily oral dosing of a 7-substituted 2-nitroimidazooxazine analogue suppressed blood parasitemia to low or undetectable levels, although sterile cure was not achieved. Limited hit expansion studies alongside counter-screening of new compounds targeted at visceral leishmaniasis laid the foundation for a more in-depth assessment of the best leads, focusing on both drug-like attributes (solubility, metabolic stability and safety) and maximal killing of the parasite in a shorter timeframe. Comparative appraisal of one preferred lead (58) in a chronic infection mouse model, monitored by highly sensitive bioluminescence imaging, provided the first definitive evidence of (partial) curative efficacy with this promising nitroimidazooxazine class.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Amanda F Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Catherine J Perez
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Scott Cornwall
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - R C Andrew Thompson
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Martine Keenan
- Epichem Pty Ltd, Suite 5, 3 Brodie-Hall Drive, Technology Park, Bentley, Western Australia, 6102, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202, Geneva, Switzerland
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
12
|
Showalter HD. Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles to Treat Tuberculosis and Neglected Tropical Diseases. Molecules 2020; 25:molecules25184137. [PMID: 32927749 PMCID: PMC7576498 DOI: 10.3390/molecules25184137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
Nitroimidazole drugs have a long history as therapeutic agents to treat bacterial and parasitic diseases. The discovery in 1989 of a bicyclic nitroimidazole lead, displaying in vitro and in vivo antitubercular activity, spurred intensive exploration of this and related scaffolds, which led to the regulatory approval of pretomanid and delamanid as a new class of tuberculosis drugs. Much of the discovery work related to this took place over a 20-year period ending in 2010, which is covered in a number of cited reviews. This review highlights subsequent research published over the 2011–August 2020 timeframe, and captures detailed structure–activity relationship studies and synthetic strategies directed towards uncovering newer generation drugs for both tuberculosis and selected neglected tropical diseases. Additionally, this review presents in silico calculations relating to the drug-like properties of lead compounds and clinical agents, as well as chemical development and manufacturing processes toward providing bulk drug supplies.
Collapse
Affiliation(s)
- Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. J Control Release 2020; 324:728-749. [PMID: 32380201 DOI: 10.1016/j.jconrel.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance has become a global crisis, driving the exploration for novel antibiotics and novel treatment approaches. Among these research efforts two classes of antibiotics, bicyclic nitroimidazoles and antimicrobial peptides, have recently shown promise as novel antimicrobial agents with the possibility to treat multi-drug resistant infections. However, they suffer from the issue of poor oral bioavailability due to disparate factors: low solubility in the case of nitroimidazoles (BCS class II drugs), and low permeability in the case of peptides (BCS class III drugs). Moreover, antimicrobial peptides present another challenge as they are susceptible to chemical and enzymatic degradation, which can present an additional pharmacokinetic hurdle for their oral bioavailability. Formulation technologies offer a potential means for improving the oral bioavailability of poorly permeable and poorly soluble drugs, but there are still drawbacks and limitations associated with this approach. This review discusses in depth the challenges associated with oral delivery of nitroimidazoles and antimicrobial peptides and the formulation technologies that have been used to overcome these problems, including an assessment of the drawbacks and limitations associated with the technologies that have been applied. Furthermore, the potential for supercritical fluid technology to overcome the shortcomings associated with conventional drug formulation methods is reviewed.
Collapse
|
14
|
Aher RB, Sarkar D. Pharmacophore modeling of pretomanid (PA-824) derivatives for antitubercular potency against replicating and non-replicating Mycobacterium tuberculosis. J Biomol Struct Dyn 2020; 39:889-900. [PMID: 31983295 DOI: 10.1080/07391102.2020.1719205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pretomanid (PA-824) is the recently (2019) approved drug for the treatment of extensively drug-resistant (XDR) TB and the multidrug-resistant (MDR) TB by US FDA. The experimental data of antitubercular activity of 543 pretomanid derivatives (total 6 datasets) against replicating (active) and non-replicating (dormant) forms of Mycobacterium tuberculosis (strain H37Rv) are available in the literature. Such vast experimental data of pretomanid derivatives against both of these endpoints, and recent approval of pretomanid molecule as a drug encouraged us to utilize this existing experimental information for the development of the 3D-pharmacophore models. The developed model (Hypo-1, MABA) showed the three physicochemical features namely, the oxygen atom of nitro group (HBA_1), fused pyran ring of imidazopyran heterocycle (HYAl_2) and the 4-fluorophenyl moiety (HYAr_3) are crucial for the antitubercular activity against replicating M. tb. Subsequently, the pharmacophore model (Hypo-1, LORA) developed against the non-replicating form of M. tb also showed the contribution of three physicochemical features namely, the 4-tri-fluoromethyl group (HYAl_2) and both the phenyl groups (HYAr_3, HYAr_4) of biaryl moiety in increasing the antitubercular activity. Both the pharmacophoric classifier models showed the classification accuracies of 82.98 and 74.42% for the training set compounds, and 63.91 and 61.60% for the test set compounds respectively, for labelling the compounds into higher and lower active classes. Both the models were also found to be retaining the higher active compounds in top 1.00% of the total number of compounds (decoys and actives), after performing the decoy set screening. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahul Balasaheb Aher
- Combi Chem Bioresource Centre, Organic Chemistry Division (OCD), CSIR-National Chemical Laboratory, Pune, Maharashtra State, India
| | - Dhiman Sarkar
- Combi Chem Bioresource Centre, Organic Chemistry Division (OCD), CSIR-National Chemical Laboratory, Pune, Maharashtra State, India
| |
Collapse
|
15
|
Li YK, Cui MX, Sha F, Li Q, Wu XY. Construction of indazolo[3,2-a]isoquinolines via [3 + 2] cycloaddition of benzynes. Org Biomol Chem 2019; 17:8963-8968. [PMID: 31576394 DOI: 10.1039/c9ob01878f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [3 + 2] annulation protocol for the construction of N-substituted indazolo[3,2-a]isoquinolines starting from benzynes and C,N-cyclic azomethine imines was developed. A diverse range of highly functionalized products indazolo[3,2-a]isoquinolines featuring an indazole scaffold can be easily accessed via a one-step reaction under mild conditions, and they show good anti-proliferative activity on cancer cells.
Collapse
Affiliation(s)
- Yue-Kun Li
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Ming-Xin Cui
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Feng Sha
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Qiong Li
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Xin-Yan Wu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
16
|
Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MRF. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem Biol Drug Des 2019; 95:16-47. [DOI: 10.1111/cbdd.13633] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dhafer S. Zinad
- Applied Science Department University of Technology Baghdad Iraq
| | - Ahmed Mahal
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Guangzhou HC Pharmaceutical Co., Ltd. Guangzhou China
| | - Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Ashish K. Sarangi
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Mohammad Rizki Fadhil Pratama
- Department of Pharmacy Faculty of Health Sciences Muhammadiyah University of Palangkaraya Palangka Raya Indonesia
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Airlangga University Surabaya Indonesia
| |
Collapse
|
17
|
Tao X, Gao C, Huang ZG, Luo W, Liu KL, Peng CT, Ding CZ, Li J, Chen SH, Yu LT. Discovery and evaluation of novel nitrodihydroimidazooxazoles as promising anti-tuberculosis agents. Bioorg Med Chem Lett 2019; 29:2511-2515. [PMID: 31353295 DOI: 10.1016/j.bmcl.2019.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
New analogues of antitubercular drug Delamanid were prepared, seeking drug candidates with enhanced aqueous solubility and high efficacy. The strategy involved replacement of phenoxy linker proximal to the 2-nitroimidazooxazole of Delamanid by piperidine fused 5 or 6-membered ring heterocycles (ring A). The new compounds were all more hydrophilic than Delamanid, and several class of analogues showed remarkable activities against M. bovis. And among these series, the tetrahydro-naphthyridine-linked nitroimidazoles displayed excellent antimycobacterial activity against both replicating (MABA) and nonreplicating (LORA) M. tb H37Rv and low cytotoxicity. Compared to Delamanid, these new compounds (6, 7, 45) demonstrated dramatically improved physicochemical properties and are suitable for further in vitro and in vivo evaluation.
Collapse
Affiliation(s)
- Xin Tao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Changzhou Yinsheng Pharmacy Co., Ltd., Weitang Chemical Industry Zone, Changzhou 213000, China
| | - Chao Gao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Gang Huang
- WuXi AppTec. Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wei Luo
- WuXi AppTec. Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Kun-Lin Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cui-Ting Peng
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Charles Z Ding
- WuXi AppTec. Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Li
- WuXi AppTec. Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shu-Hui Chen
- WuXi AppTec. Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Luo-Ting Yu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Hu X, Wan B, Liu Y, Shen J, Franzblau SG, Zhang T, Ding K, Lu X. Identification of Pyrazolo[1,5- a]pyridine-3-carboxamide Diaryl Derivatives as Drug Resistant Antituberculosis Agents. ACS Med Chem Lett 2019; 10:295-299. [PMID: 30891129 DOI: 10.1021/acsmedchemlett.8b00410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
A series of pyrazolo[1,5-a]pyridine-3-carboxamide (PPA) derivatives bearing diaryl side chain was designed and synthesized as new antituberculosis agents, aiming to improve the efficacy toward drug resistant Mycobacterium tuberculosis (Mtb) strains. Most of the substituted diphenyl and heterodiaryl PPAs exhibited excellent in vitro potency against the drug susceptive H37Rv strain (MIC < 0.002-0.381 μg/mL) and drug resistant Mtb strains (INH-resistant (rINH), MIC < 0.002-0.465 μg/mL; RMP-resistant (rRMP), MIC < 0.002-0.004 μg/mL). Noticeably, some compounds also showed very low cytotoxicity against Vero cells. Further, compound 6j displayed good pharmacokinetic profiles with oral bioavailability (F) of 41% and significantly reduced the bacterial burden in an autoluminescent H37Ra infected mouse model.
Collapse
Affiliation(s)
- Xianglong Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190, Kai Yuan Avenue, Guangzhou 510530, China
| | - Jiayi Shen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190, Kai Yuan Avenue, Guangzhou 510530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
19
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
20
|
Abstract
The nitro group is considered to be a versatile and unique functional group in medicinal chemistry. Despite a long history of use in therapeutics, the nitro group has toxicity issues and is often categorized as a structural alert or a toxicophore, and evidence related to drugs containing nitro groups is rather contradictory. In general, drugs containing nitro groups have been extensively associated with mutagenicity and genotoxicity. In this context, efforts toward the structure-mutagenicity or structure-genotoxicity relationships have been undertaken. The current Perspective covers various aspects of agents that contain nitro groups, their bioreductive activation mechanisms, their toxicities, and approaches to combat their toxicity issues. In addition, recent advances in the field of anticancer, antitubercular and antiparasitic agents containing nitro groups, along with a patent survey on hypoxia-activated prodrugs containing nitro groups, are also covered.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
21
|
Thompson AM, O'Connor PD, Marshall AJ, Blaser A, Yardley V, Maes L, Gupta S, Launay D, Braillard S, Chatelain E, Wan B, Franzblau SG, Ma Z, Cooper CB, Denny WA. Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H-imidazo[2,1- b][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis. J Med Chem 2018; 61:2329-2352. [PMID: 29461823 PMCID: PMC5867678 DOI: 10.1021/acs.jmedchem.7b01581] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Discovery
of the potent antileishmanial effects of antitubercular
6-nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles and
7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines
stimulated the examination of further scaffolds (e.g., 2-nitro-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]oxazepines), but the results for these seemed less
attractive. Following the screening of a 900-compound pretomanid analogue
library, several hits with more suitable potency, solubility, and
microsomal stability were identified, and the superior efficacy of
newly synthesized 6R enantiomers with phenylpyridine-based
side chains was established through head-to-head assessments in a Leishmania donovani mouse model. Two such leads (R-84 and R-89) displayed promising activity in the more stringent Leishmania
infantum hamster model but were unexpectedly found to be
potent inhibitors of hERG. An extensive structure–activity
relationship investigation pinpointed two compounds (R-6 and pyridine R-136)
with better solubility and pharmacokinetic properties that also provided
excellent oral efficacy in the same hamster model (>97% parasite
clearance
at 25 mg/kg, twice daily) and exhibited minimal hERG inhibition. Additional
profiling earmarked R-6 as the favored
backup development candidate.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Vanessa Yardley
- Faculty of Infectious & Tropical Diseases , London School of Hygiene & Tropical Medicine , Keppel Street , London WC1E 7HT , United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium
| | - Suman Gupta
- Division of Parasitology , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant , 1202 Geneva , Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant , 1202 Geneva , Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant , 1202 Geneva , Switzerland
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development , 40 Wall Street , New York , New York 10005 , United States
| | - Christopher B Cooper
- Global Alliance for TB Drug Development , 40 Wall Street , New York , New York 10005 , United States
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| |
Collapse
|
22
|
Chen JL, Zhao Y, Gong YJ, Pan BB, Wang X, Su XC. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2018; 70:77-92. [PMID: 29224182 DOI: 10.1007/s10858-017-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
Thompson AM, Marshall AJ, Maes L, Yarlett N, Bacchi CJ, Gaukel E, Wring SA, Launay D, Braillard S, Chatelain E, Mowbray CE, Denny WA. Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorg Med Chem Lett 2017; 28:207-213. [PMID: 29191556 PMCID: PMC5840523 DOI: 10.1016/j.bmcl.2017.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023]
Abstract
A 900 compound nitroimidazole-based library derived from our pretomanid backup program with TB Alliance was screened for utility against human African trypanosomiasis (HAT) by the Drugs for Neglected Diseases initiative. Potent hits included 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides, which surprisingly displayed good metabolic stability and excellent cell permeability. Following comprehensive mouse pharmacokinetic assessments on four hits and determination of the most active chiral form, a thiazine oxide counterpart of pretomanid (24) was identified as the best lead. With once daily oral dosing, this compound delivered complete cures in an acute infection mouse model of HAT and increased survival times in a stage 2 model, implying the need for more prolonged CNS exposure. In preliminary SAR findings, antitrypanosomal activity was reduced by removal of the benzylic methylene but enhanced through a phenylpyridine-based side chain, providing important direction for future studies.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Nigel Yarlett
- Haskins Laboratories, Pace University, NY 10038, USA
| | | | - Eric Gaukel
- Scynexis, Inc., Research Triangle Park, NC 27713, USA
| | | | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Drug development against tuberculosis: Past, present and future. ACTA ACUST UNITED AC 2017; 64:252-275. [DOI: 10.1016/j.ijtb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
|
25
|
Biopharmaceutic parameters, pharmacokinetics, transport and CYP-mediated drug interactions of IIIM-017: A novel nitroimidazooxazole analogue with anti-tuberculosis activity. Eur J Pharm Sci 2017; 106:71-78. [DOI: 10.1016/j.ejps.2017.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 01/20/2023]
|
26
|
6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]thiazoles: Facile synthesis and comparative appraisal against tuberculosis and neglected tropical diseases. Bioorg Med Chem Lett 2017; 27:2583-2589. [DOI: 10.1016/j.bmcl.2017.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022]
|
27
|
Thompson AM, O'Connor PD, Marshall AJ, Yardley V, Maes L, Gupta S, Launay D, Braillard S, Chatelain E, Franzblau SG, Wan B, Wang Y, Ma Z, Cooper CB, Denny WA. 7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis. J Med Chem 2017; 60:4212-4233. [PMID: 28459575 PMCID: PMC7722354 DOI: 10.1021/acs.jmedchem.7b00034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Within a backup program for the clinical investigational agent pretomanid (PA-824), scaffold hopping from delamanid inspired the discovery of a novel class of potent antitubercular agents that unexpectedly possessed notable utility against the kinetoplastid disease visceral leishmaniasis (VL). Following the identification of delamanid analogue DNDI-VL-2098 as a VL preclinical candidate, this structurally related 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazine class was further explored, seeking efficacious backup compounds with improved solubility and safety. Commencing with a biphenyl lead, bioisosteres formed by replacing one phenyl by pyridine or pyrimidine showed improved solubility and potency, whereas more hydrophilic side chains reduced VL activity. In a Leishmania donovani mouse model, two racemic phenylpyridines (71 and 93) were superior, with the former providing >99% inhibition at 12.5 mg/kg (b.i.d., orally) in the Leishmania infantum hamster model. Overall, the 7R enantiomer of 71 (79) displayed more optimal efficacy, pharmacokinetics, and safety, leading to its selection as the preferred development candidate.
![]()
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Vanessa Yardley
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine , Keppel Street, London WC1E 7HT, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp , Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Suman Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development , 40 Wall Street, New York 10005, United States
| | - Christopher B Cooper
- Global Alliance for TB Drug Development , 40 Wall Street, New York 10005, United States
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
28
|
Bikas R, Emami M, Ślepokura K, Noshiranzadeh N. Preparing Mn(iii) salen-type Schiff base complexes using 1,3-oxazines obtained by Mannich condensation: towards removing ortho-hydroxyaldehydes. NEW J CHEM 2017. [DOI: 10.1039/c7nj01562c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of Mn(iii)-salen type Schiff base complexes from 1,3-oxazines obtained from Mannich condensation. This method eliminates the restrictions on the use ofortho-hydroxyaldehydes.
Collapse
Affiliation(s)
- Rahman Bikas
- Department of Chemistry
- Faculty of Sciences
- University of Zanjan 45371-38791
- Zanjan
- Iran
| | - Marzieh Emami
- Department of Chemistry
- Faculty of Sciences
- University of Zanjan 45371-38791
- Zanjan
- Iran
| | - Katarzyna Ślepokura
- Faculty of Chemistry
- University of Wroclaw
- Joliot-Curie 14
- Wroclaw 50-383
- Poland
| | - Nader Noshiranzadeh
- Department of Chemistry
- Faculty of Sciences
- University of Zanjan 45371-38791
- Zanjan
- Iran
| |
Collapse
|
29
|
Couturier C, Lair C, Pellet A, Upton A, Kaneko T, Perron C, Cogo E, Menegotto J, Bauer A, Scheiper B, Lagrange S, Bacqué E. Identification and optimization of a new series of anti-tubercular quinazolinones. Bioorg Med Chem Lett 2016; 26:5290-5299. [DOI: 10.1016/j.bmcl.2016.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/18/2023]
|
30
|
Kroth H, Sreenivasachary N, Hamel A, Benderitter P, Varisco Y, Giriens V, Paganetti P, Froestl W, Pfeifer A, Muhs A. Synthesis and structure–activity relationship of 2,6-disubstituted pyridine derivatives as inhibitors of β-amyloid-42 aggregation. Bioorg Med Chem Lett 2016; 26:3330-3335. [DOI: 10.1016/j.bmcl.2016.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
|
31
|
Kour G, Chandan BK, Khullar M, Munagala G, Singh PP, Bhagat A, Gupta AP, Vishwakarma RA, Ahmed Z. Development and validation of a highly sensitive LC-MS/MS-ESI method for quantification of IIIM-019-A novel nitroimidazole derivative with promising action against Tuberculosis: Application to drug development. J Pharm Biomed Anal 2016; 124:26-33. [PMID: 26922579 DOI: 10.1016/j.jpba.2016.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/26/2023]
Abstract
The study aims to illustrate an analytical validation of a rapid and sensitive liquid chromatography (LC) coupled to tandem mass spectrometry (MS-MS) and electrospray ionization (ESI) method for quantification of IIIM-019 (a novel nitroimidazole derivative with potential activity against Tuberculosis) in mice plasma. The extraction of the analyte and the internal standard (Tolbutamide) from the plasma samples involves protein precipitation using acetonitrile. The chromatographic separation was accomplished using a gradient mode and the mobile phase comprised of acetonitrile and 0.1% formic acid in water. The flow rate used was 0.7 ml/min on a C18e high performance Chromolith column. IIIM-019 and Tolbutamide (IS) were analyzed by combined reversed-phase LC/MS-MS with positive ion electrospray ionization. The MS-MS ion transitions used were 533>170.1, 533>198 for IIIM-019 and 271>74, 271>155 for internal standard (IS) respectively. The method was linear over a concentration range of 0.5-1000 ng/ml and the lower limit of quantification was 0.50 ng/ml. The entire study was validated for accuracy, precision, linearity, range, selectivity, lower limit of quantification (LLOQ), recovery, and matrix effect in accordance with the FDA guidelines of method validation. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The intra and inter-day precisions were in the range of 0.51-11.18% and 0.51-7.55%. The pharmacokinetics was performed on male Balb/c mice by oral (2.5mg/kg), intraperitoneal (2.5mg/kg) and intravenous (1mg/kg) routes. The oral bioavailability of IIIM-019 was 51.6%. The method was also applied successfully in determining microsomal stability wherein the compound was found to be very slightly metabolized by rat liver microsomes.
Collapse
Affiliation(s)
- Gurleen Kour
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Bal Krishan Chandan
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Mowkshi Khullar
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Gurunadham Munagala
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Asha Bhagat
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Analysis Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India
| | - Ram A Vishwakarma
- Director- Indian Institute of Integrative Medicine, anal Road, Jammu 180001, J&K, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India.
| |
Collapse
|
32
|
Thompson AM, O'Connor PD, Blaser A, Yardley V, Maes L, Gupta S, Launay D, Martin D, Franzblau SG, Wan B, Wang Y, Ma Z, Denny WA. Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles for Neglected Tropical Diseases: Structure-Activity Studies on a Preclinical Candidate for Visceral Leishmaniasis. J Med Chem 2016; 59:2530-50. [PMID: 26901446 DOI: 10.1021/acs.jmedchem.5b01699] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazole derivatives were initially studied for tuberculosis within a backup program for the clinical trial agent pretomanid (PA-824). Phenotypic screening of representative examples against kinetoplastid diseases unexpectedly led to the identification of DNDI-VL-2098 as a potential first-in-class drug candidate for visceral leishmaniasis (VL). Additional work was then conducted to delineate its essential structural features, aiming to improve solubility and safety without compromising activity against VL. While the 4-nitroimidazole portion was specifically required, several modifications to the aryloxy side chain were well-tolerated e.g., exchange of the linking oxygen for nitrogen (or piperazine), biaryl extension, and replacement of phenyl rings by pyridine. Several less lipophilic analogues displayed improved aqueous solubility, particularly at low pH, although stability toward liver microsomes was highly variable. Upon evaluation in a mouse model of acute Leishmania donovani infection, one phenylpyridine derivative (37) stood out, providing efficacy surpassing that of the original preclinical lead.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Vanessa Yardley
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine , Keppel Street, London WC1E 7HT, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp , Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Suman Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Delphine Launay
- Drugs for Neglected Diseases Initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Denis Martin
- Drugs for Neglected Diseases Initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development, 40 Wall Street, New York 10005, United States
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
33
|
Beaudegnies R, Quaranta L, Murphy Kessabi F, Lamberth C, Knauf-Beiter G, Fraser T. Synthesis and anti-oomycete activity of novel quinazolin- and benzothiazol-6-yloxyacetamides: Potent aza-analogs and five-ring analogs of quinoline fungicides. Bioorg Med Chem 2016; 24:444-52. [DOI: 10.1016/j.bmc.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 11/26/2022]
|
34
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1806] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
35
|
Kwon YS, Koh WJ. Synthetic investigational new drugs for the treatment of tuberculosis. Expert Opin Investig Drugs 2015; 25:183-93. [PMID: 26576631 DOI: 10.1517/13543784.2016.1121993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is a major global health concern. And while there are treatments already on the market, there is a demand for new drugs that are effective and safe against Mycobacterium tuberculosis, which reduce the number of drugs and the duration of treatment in both drug-susceptible TB and multidrug-resistant TB (MDR-TB). AREA COVERED This review covers promising novel investigational TB drugs that are currently under development. Specifically, the authors review the efficacy of novel agents for the treatment of TB in preclinical, phase I and phase II clinical trials. The authors also review the safety and tolerability profiles of these drugs. EXPERT OPINION Bedaquiline and delamanid are the most promising novel drugs for the treatment of MDR-TB, each having high efficacy and tolerability. However, the best regimen for achieving better outcomes and reducing adverse drug reactions remains to be determined, with safety concerns regarding cardiac events due to QT prolongation still to be addressed. Pretomanid is a novel drug that potentially shortens the duration of treatment in both drug-susceptible and drug-resistant TB in combination with moxifloxacin and pyrazinamide. Linezolid shows marked efficacy in the treatment of MDR-TB and extensively drug-resistant TB (XDR-TB), but the drug is known to cause significant adverse drug reactions, including peripheral neuropathy, optic neuropathy and myelosuppression. These adverse reactions must be considered prior to prescribing long-term usage of this drug.
Collapse
Affiliation(s)
- Yong-Soo Kwon
- a Department of Internal Medicine , Chonnam National University Hospital , Gwangju , South Korea
| | - Won-Jung Koh
- b Division of Pulmonary and Critical Care Medicine, Department of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| |
Collapse
|
36
|
Rakesh, Bruhn DF, Scherman MS, Singh AP, Yang L, Liu J, Lenaerts AJ, Lee RE. Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids. Bioorg Med Chem Lett 2015; 26:388-391. [PMID: 26711150 DOI: 10.1016/j.bmcl.2015.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 01/19/2023]
Abstract
Pretomanid (PA-824) is an important nitroimidazole antitubercular agent in late stage clinical trials. However, pretomanid is limited by poor solubility and high protein binding, which presents opportunities for improvement in its physiochemical properties. Conversely, the oxazolidinone linezolid has excellent physicochemical properties and has recently shown impressive activity for the treatment of drug resistant tuberculosis. In this study we explore if incorporation of the outer ring elements found in first and second generation oxazolidinones into the nitroimidazole core of pretomanid can be used to improve its physicochemical and antitubercular properties. The synthesis of pretomanid outer oxazolidinone ring hybrids was successfully performed producing hybrids that maintained antitubercular activity and had improved in vitro physicochemical properties. Three lead compounds were identified and evaluated in a chronic model of tuberculosis infection in mice. However, the compounds lacked efficacy suggesting that portions of PA-824 tail not found in the hybrid molecules are required for in vivo efficacy.
Collapse
Affiliation(s)
- Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael S Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO, USA
| | - Aman P Singh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
37
|
Anticancer efficacy of unique pyridine-based tetraindoles. Eur J Med Chem 2015; 104:165-76. [DOI: 10.1016/j.ejmech.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023]
|
38
|
The anti-tuberculosis agents under development and the challenges ahead. Future Med Chem 2015; 7:1981-2003. [PMID: 26505682 DOI: 10.4155/fmc.15.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is a serious health problem causing 1.5 million deaths worldwide. After the discovery of first-line anti-TB drugs, the mortality rate declined sharply, however, the emergence of drug-resistant strains and HIV co-infection have led to increased incidence of this disease. A number of new potential antitubercular drug candidates with novel modes of action have entered clinical trials in recent years. Compounds such as gatifloxacin, moxifloxacin and linezolid, the already known antibiotics are currently being evaluated for their anti-TB activity. OPC-67683 and TMC207 have been approved for the treatment of MDR-TB patients recently, while PA-824, SQ109, PNU-100480, AZD5847, LL3858, SQ609, SQ641, BTZ043, DC-159a, CPZEN-45, Q-203, DNB1, TBA-354 are in various phases of clinical and preclinical developments. This review evaluates the current status of TB drug development and future aspects.
Collapse
|
39
|
Yempalla KR, Munagala G, Singh S, Kour G, Sharma S, Chib R, Kumar S, Wazir P, Singh GD, Raina S, Bharate SS, Khan IA, Vishwakarma RA, Singh PP. Synthesis and Biological Evaluation of Polar Functionalities Containing Nitrodihydroimidazooxazoles as Anti-TB Agents. ACS Med Chem Lett 2015; 6:1059-64. [PMID: 26487912 DOI: 10.1021/acsmedchemlett.5b00202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Novel polar functionalities containing 6-nitro-2,3-dihydroimidazooxazole (NHIO) analogues were synthesized to produce a compound with enhanced solubility. Polar functionalities including sulfonyl, uridyl, and thiouridyl-bearing NHIO analogues were synthesized and evaluated against Mycobacterium tuberculosis (MTB) H37Rv. The aqueous solubility of compounds with MIC values ≤0.5 μg/mL were tested, and six compounds showed enhanced aqueous solubility. The best six compounds were further tested against resistant (Rif(R) and MDR) and dormant strains of MTB and tested for cytotoxicity in HepG2 cell line. Based on its overall in vitro characteristics and solubility profile, compound 6d was further shown to possess high microsomal stability, solubility under all tested biological conditions (PBS, SGF and SIF), and favorable oral in vivo pharmacokinetics and in vivo efficacy.
Collapse
Affiliation(s)
- Kushalava Reddy Yempalla
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Gurunadham Munagala
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Samsher Singh
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Gurleen Kour
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Shweta Sharma
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Reena Chib
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Sunil Kumar
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Priya Wazir
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - G. D. Singh
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Sushil Raina
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Sonali S. Bharate
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Inshad Ali Khan
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, ‡Academy of Scientific and Innovative
Research, §Clinical Microbiology, ∥PK−PD and
Toxicology Division, and ⊥Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India
| |
Collapse
|
40
|
Thompson AM, Blaser A, Palmer BD, Franzblau SG, Wan B, Wang Y, Ma Z, Denny WA. Biarylmethoxy 2-nitroimidazooxazine antituberculosis agents: Effects of proximal ring substitution and linker reversal on metabolism and efficacy. Bioorg Med Chem Lett 2015; 25:3804-9. [DOI: 10.1016/j.bmcl.2015.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022]
|
41
|
Kang YG, Park CY, Shin H, Singh R, Arora G, Yu CM, Lee IY. Synthesis and anti-tubercular activity of 2-nitroimidazooxazines with modification at the C-7 position as PA-824 analogs. Bioorg Med Chem Lett 2015. [DOI: 10.1016/j.bmcl.2015.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Inturi B, Pujar GV, Purohit MN. Structural insights of PA-824 derivatives: ligand-based 3D-QSAR study and design of novel PA824 derivatives as anti-tubercular agents. J Recept Signal Transduct Res 2015; 35:468-78. [DOI: 10.3109/10799893.2015.1015734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Palmer BD, Sutherland HS, Blaser A, Kmentova I, Franzblau SG, Wan B, Wang Y, Ma Z, Denny WA, Thompson AM. Synthesis and Structure–Activity Relationships for Extended Side Chain Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J Med Chem 2015; 58:3036-59. [DOI: 10.1021/jm501608q] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Brian D. Palmer
- Auckland
Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hamish S. Sutherland
- Auckland
Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adrian Blaser
- Auckland
Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Iveta Kmentova
- Auckland
Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Baojie Wan
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Yuehong Wang
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Zhenkun Ma
- Global Alliance for TB Drug Development, 40 Wall Street, New York, New York 10005, United States
| | - William A. Denny
- Auckland
Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M. Thompson
- Auckland
Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
44
|
Sonopo MS, Venter K, Boyle G, Winks S, Marjanovic-Painter B, Zeevaart JR. Carbon-14 radiolabeling and in vivo biodistribution of a potential anti-TB compound. J Labelled Comp Radiopharm 2015; 58:23-9. [PMID: 25689967 DOI: 10.1002/jlcr.3256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/28/2014] [Accepted: 12/04/2014] [Indexed: 11/07/2022]
Abstract
A potential anti-TB compound bearing a nitroimidazole moiety from iThemba Pharmaceuticals TB chemical library exhibits promising in vitro activity in the microplate almar blue assay (MABA) with a minimum inhibitory concentration (MIC) value of 3 µg/mL. It is equipotent to the front-line drug Isoniazid, but the compound is less toxic with an IC50 of >100 µg/mL. Therefore, this potential iThemba nitroimidazole, 4-([1,1'-[(14)C6]biphenyl]-4-ylmethyl)-9-nitro-3,4,5,6-tetrahydro-2H-imidazo[2,1-b][1,3,6]oxadiazocine, was radiolabeled with the C-14 isotope. The synthesis of the (14)C-labeled nitroimidazole was accomplished in seven steps from diethanolamine with a final specific radioactivity of 3.552 GBq/mmol, a radiochemical yield of 87%, and a radiochemical purity of ≥96%. The source of the C-14 radiolabel was bromobenzene which was introduced by the Suzuki-Miyaura reaction. Tissue distribution results showed that the radiotracer has a high accumulation in the lungs of TB-infected mice, statistically significantly higher than in healthy mice. However, the clearance (for both TB-infected and non-TB-infected mice) from all organs (except the small intestine) from 1 to 2 h as well as the low percentage of injected dose per gram values achieved indicates breakdown of the compound in vivo and subsequent clearance from the body. The latter suggests that the compound might not be useful as an anti-TB drug in humans.
Collapse
|
45
|
Krátký M, Bősze S, Baranyai Z, Szabó I, Stolaříková J, Paraskevopoulos G, Vinšová J. Synthesis and in vitro biological evaluation of 2-(phenylcarbamoyl)phenyl 4-substituted benzoates. Bioorg Med Chem 2015; 23:868-75. [DOI: 10.1016/j.bmc.2014.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/28/2022]
|
46
|
Munagala G, Yempalla KR, Singh S, Sharma S, Kalia NP, Rajput VS, Kumar S, Sawant SD, Khan IA, Vishwakarma RA, Singh PP. Synthesis of new generation triazolyl- and isoxazolyl-containing 6-nitro-2,3-dihydroimidazooxazoles as anti-TB agents: in vitro, structure–activity relationship, pharmacokinetics and in vivo evaluation. Org Biomol Chem 2015; 13:3610-24. [DOI: 10.1039/c5ob00054h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Promising nitroimidazoloxazole scaffold gives another novel triazolyl-containing 6-nitro-2,3-dihydroimidazooxazole as anti-TB lead.
Collapse
|
47
|
Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother 2014; 59:129-35. [PMID: 25331697 DOI: 10.1128/aac.03822-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New regimens based on two or more novel agents are sought in order to shorten or simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. PA-824 is a nitroimidazo-oxazine now in phase II trials and has shown significant early bactericidal activity alone and in combination with the newly approved agent bedaquiline or with pyrazinamide with or without moxifloxacin. While the development of PA-824 continues, a potential next-generation derivative, TBA-354, has been discovered to have in vitro potency superior to that of PA-824 and greater metabolic stability than that of the other nitroimidazole derivative in clinical development, delamanid. In the present study, we compared the activities of PA-824 and TBA-354 as monotherapies in murine models of the initial intensive and continuation phases of treatment, as well as in combination with bedaquiline plus pyrazinamide, sutezolid, and/or clofazimine. The monotherapy studies demonstrated that TBA-354 is 5 to 10 times more potent than PA-824, but selected mutants are cross-resistant to PA-824 and delamanid. The combination studies revealed that TBA-354 is 2 to 4 times more potent than PA-824 when combined with bedaquiline, and when administered at a dose equivalent to that of PA-824, TBA-354 demonstrated superior sterilizing efficacy. Perhaps most importantly, the addition of either nitroimidazole significantly improved the sterilizing activities of bedaquiline and sutezolid, with or without pyrazinamide, confirming the value of each agent in this potentially universally active short-course regimen.
Collapse
|
48
|
In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 59:136-44. [PMID: 25331696 DOI: 10.1128/aac.03823-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole.
Collapse
|
49
|
Poce G, Cocozza M, Consalvi S, Biava M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur J Med Chem 2014; 86:335-51. [PMID: 25173852 DOI: 10.1016/j.ejmech.2014.08.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/22/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
Abstract
Despite enormous efforts have been made in the hunt for new drugs, tuberculosis (TB) still remains the first bacterial cause of mortality worldwide, causing an estimated 8.6 million new cases and 1.3 million deaths in 2012. Multi-drug resistant-TB strains no longer respond to first-line drugs and are inexorably spreading with an estimated 650,000 cases as well as extensively-drug resistant-TB strains, which are resistant to any fluoroquinolone and at least one of the second-line drugs, with 60,000 cases. Thus the discovery and development of new medicines is a major keystone for tuberculosis treatment and control. After decades of dormancy in the field of TB drug development, recent efforts from various groups have generated a promising TB drug pipeline. Several new therapeutic agents are concurrently studied in clinical trials together with much activity in the hittolead and lead optimization stages. In this article we will review the recent advances in TB drug discovery with a special focus on structure activity relationship studies of the most advanced compound classes.
Collapse
Affiliation(s)
- Giovanna Poce
- Dipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Martina Cocozza
- Dipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sara Consalvi
- Dipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Mariangela Biava
- Dipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
50
|
Lakshminarayana SB, Boshoff HIM, Cherian J, Ravindran S, Goh A, Jiricek J, Nanjundappa M, Nayyar A, Gurumurthy M, Singh R, Dick T, Blasco F, Barry CE, Ho PC, Manjunatha UH. Pharmacokinetics-pharmacodynamics analysis of bicyclic 4-nitroimidazole analogs in a murine model of tuberculosis. PLoS One 2014; 9:e105222. [PMID: 25141257 PMCID: PMC4139342 DOI: 10.1371/journal.pone.0105222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/18/2014] [Indexed: 12/02/2022] Open
Abstract
PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 invivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both invivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with invivo efficacy. Our findings show that the invivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with invivo efficacy (rs = 0.88) followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs.
Collapse
Affiliation(s)
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Cherian
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Anne Goh
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Amit Nayyar
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ramandeep Singh
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Dick
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul C. Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- * E-mail: (SBL); (UHM)
| |
Collapse
|