1
|
Manaithiya A, Bhowmik R, Bhattacharya K, Ray R, Shyamal SS, Carta F, Supuran CT, Parkkila S, Aspatwar A. A cheminformatics and network pharmacology approach to elucidate the mechanism of action of Mycobacterium tuberculosis γ-carbonic anhydrase inhibitors. Front Pharmacol 2024; 15:1457012. [PMID: 39286631 PMCID: PMC11402817 DOI: 10.3389/fphar.2024.1457012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) carbonic anhydrases (CAs) are critical enzymes that regulate pH by converting CO2 to HCO3 -, essential for Mtb's survival in acidic environments. Inhibiting γ-CAs presents a potential target for novel antituberculosis drugs with unique mechanisms of action. Objective This study aimed to explore the biological connections underlying Mtb pathogenesis and investigate the mechanistic actions of antituberculosis compounds targeting the Cas9 protein. Methods We employed homology modeling and virtual screening to identify compounds with high binding affinities for Cas9 protein. This study used the homology modeling approach employing high-quality AlphaFold DB models for γ-CA. Furthermore, the systems biology approach was used for analyzing the integrated modelling of compounds, integrating data on genes, pathways, phenotypes, and molecular descriptors. Single-cell RNA sequencing was also conducted to profile gene expression. Results Three compounds, F10921405, F08060425, and F14437079, potentially binding to Cas9 protein, have been identified. F10921405 and F08060425 showed significant overlap in their effects on pathways related to the immune response, while F14437079 displayed distinct mechanistic pathways. Expression profiling revealed high levels of genes such as PDE4D, ROCK2, ITK, MAPK10, and SYK in response to F1092-1405 and F0806-0425, and MMP2 and CALCRL in response to F1443-7079. These genes, which play a role in immune modulation and lung tissue integrity, are essential to fight against Mtb. Conclusion The molecular relationship and pathways linked to the mentioned compounds give the study a holistic perspective of targeting Mtb, which is essential in designing specific therapeutic approaches. Subsequent research will involve experimental validation to demonstrate the efficacy of the promising candidates in Mtb infections.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Enzymes 2024; 55:343-381. [PMID: 39222997 DOI: 10.1016/bs.enz.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), is still a major global health problem. According to the World Health Organization (WHO), TB still causes more deaths worldwide than any other infectious agent. Drug-sensitive TB is treatable using first-line drugs; treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB requires second- and third-line drugs. However, due to the long duration of treatment, the noncompliance of patients with different levels of resistance of Mtb to these drugs has worsened the situation. Previously developed anti-TB drugs targeted the replication machinery, protein synthesis, and cell wall biosynthesis pathways of Mtb. Therefore, novel drugs targeting alternate pathways crucial for the survival and pathogenesis of Mtb in the human host are needed. The genome of Mtb encodes three β-carbonic anhydrases (CAs) that are fundamental for pH homeostasis, hypoxia, survival, and pathogenesis. Recently, several studies have shown that the β-CAs of Mtb could be inhibited both in vitro and in vivo using small chemical molecules, suggesting that these enzymes could be novel targets for developing anti-TB compounds that are devoid of resistance by Mtb. In addition, homologs of β-CAs are absent in humans; therefore, drugs developed to target these enzymes might have minimal off-target effects. In this work, we describe the roles of β-CAs in Mtb and discuss bioinformatics and cheminformatics tools used in development and discovery of novel inhibitors of these enzymes. In addition, we summarize the in vitro and in vivo studies demonstrating that the β-CAs of Mtb are indeed druggable targets.
Collapse
Affiliation(s)
- Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd. and Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
3
|
Supuran CT. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024; 55:383-411. [PMID: 39222998 DOI: 10.1016/bs.enz.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acetazolamide, methazolamide, ethoxzolamide and dorzolamide, classical sulfonamide carbonic anhydrase (CA) inhibitors (CAIs) designed for targeting human enzymes, were also shown to effectively inhibit bacterial CAs and were proposed for repurposing as antibacterial agents against several infective agents. CAs belonging to the α-, β- and/or γ-classes from pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, vacomycin resistant enterococci (VRE), Vibrio cholerae, Mycobacterium tuberculosis, Pseudomonas aeruginosa and other bacteria were considered as drug targets for which several classes of potent inhibitors have been developed. Treatment of some of these pathogens with various classes of such CAIs led to an impairment of the bacterial growth, reduced virulence and for drug resistant bacteria, a resensitization to clinically used antibiotics. Here I will discuss the strategies and challenges for obtaining CAIs with enhanced selectivity for inhibiting bacterial versus human enzymes, which may constitute an important weapon for addressing the drug resistance to β-lactams and other clinically used antibiotics.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Supuran CT. Carbonic Anhydrase Inhibitors from Marine Natural Products. Mar Drugs 2022; 20:721. [PMID: 36422000 PMCID: PMC9696426 DOI: 10.3390/md20110721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 04/14/2024] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in organisms in all life kingdoms, being involved in pH regulation, metabolic processes and many other physiological and pathological conditions. CA inhibitors and activators thus possess applications as pharmacological agents in the management of a range of diseases. Marine natural products have allowed the identification of some highly interesting CA inhibitors, among which are sulfonamides, phenols, polyamines, coumarins and several other miscellaneous inhibitors, which are reviewed here. Psammaplin C and some bromophenols were the most investigated classes of such marine-based inhibitors and have been used as lead molecules for developing interesting types of potent and, in some cases, isoform-selective inhibitors, with applications as antitumor agents by inhibiting human CA XII and P-glycoprotein activities. Some phenols have shown interesting bacterial and fungal β-CA inhibitory effects. Marine natural products thus constitute a gold mine for identifying novel CA inhibitors, some of which may lead to the development of novel types of pharmacological agents.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| |
Collapse
|
6
|
Hao MJ, Chen PN, Li HJ, Wu F, Zhang GY, Shao ZZ, Liu XP, Ma WZ, Xu J, Mahmud T, Lan WJ. β-Carboline Alkaloids From the Deep-Sea Fungus Trichoderma sp. MCCC 3A01244 as a New Type of Anti-pulmonary Fibrosis Agent That Inhibits TGF-β/Smad Signaling Pathway. Front Microbiol 2022; 13:947226. [PMID: 35966687 PMCID: PMC9366743 DOI: 10.3389/fmicb.2022.947226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
Pulmonary fibrosis is a scarring disease of lung tissue, which seriously threatens human health. Treatment options are currently limited, and effective strategies are still lacking. In the present study, 25 compounds were isolated from the deep-sea fungus Trichoderma sp. MCCC 3A01244. Among them, two β-carboline alkaloids, trichocarbolines A (1) and C (4) are new compounds. The chemical structures of these compounds were elucidated based on their HRESIMS, 1D and 2D NMR spectra, optical rotation calculation, and comparisons with data reported in the literature. Trichocarboline B [(+)- and (–)-enantiomers] had previously been synthesized, and this is its first report as a natural product. Their anti-pulmonary fibrosis (PF) activity and cytotoxicity were investigated. Compounds 1, 11, and 13 strongly inhibited TGF-β1-induced total collagen accumulation and showed low cytotoxicity against the HFL1 cell line. Further studies revealed compound 1 inhibited extracellular matrix (ECM) deposition by downregulating the expression of protein fibronectin (FN), proliferating cell nuclear antigen (PCNA), and α-smooth muscle actin (α-SMA). Mechanistic study revealed that compound 1 decreased pulmonary fibrosis by inhibiting the TGF-β/Smad signaling pathway. As a newly identified β-carboline alkaloid, compound 1 may be used as a lead compound for developing more efficient anti-pulmonary fibrosis agents.
Collapse
Affiliation(s)
- Meng-Jiao Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-Nan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hou-Jin Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guang-Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiu-Pian Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wen-Jian Lan,
| |
Collapse
|
7
|
Di Fiore A, De Luca V, Langella E, Nocentini A, Buonanno M, Maria Monti S, Supuran CT, Capasso C, De Simone G. Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Comput Struct Biotechnol J 2022; 20:4185-4194. [PMID: 36016712 PMCID: PMC9389205 DOI: 10.1016/j.csbj.2022.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Melioidosis is a severe disease caused
Burkholderia pseudomallei. γ-carbonic anhydrases (γ-CAs) have been recently
introduced as novel antibacterial drug targets. A new γ-CA from B.
pseudomallei has been investigated by a
multidisciplinary approach. Obtained results provide an important starting point
for developing new anti-melioidosis drugs.
Melioidosis is a severe disease caused by the highly
pathogenic gram-negative bacterium Burkholderia
pseudomallei. Several studies have highlighted the broad
resistance of this pathogen to many antibiotics and pointed out the pivotal
importance of improving the pharmacological arsenal against it. Since γ-carbonic
anhydrases (γ-CAs) have been recently introduced as potential and novel
antibacterial drug targets, in this paper, we report a detailed characterization
of BpsγCA, a γ-CA from B.
pseudomallei by a multidisciplinary approach. In
particular, the enzyme was recombinantly produced and biochemically
characterized. Its catalytic activity at different pH values was measured, the
crystal structure was determined and theoretical pKa calculations were carried
out. Results provided a snapshot of the enzyme active site and dissected the
role of residues involved in the catalytic mechanism and ligand recognition.
These findings are an important starting point for developing new
anti-melioidosis drugs targeting BpsγCA.
Collapse
|
8
|
Giovannuzzi S, Hewitt CS, Nocentini A, Capasso C, Costantino G, Flaherty DP, Supuran CT. Inhibition studies of bacterial α-carbonic anhydrases with phenols. J Enzyme Inhib Med Chem 2022; 37:666-671. [PMID: 35139743 PMCID: PMC8843131 DOI: 10.1080/14756366.2022.2038592] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The α-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogens Neisseria gonorrhoeae (NgCAα) and Vibrio cholerae (VchCAα) were investigated for their inhibition by a panel of phenols and phenolic acids. Mono-, di- and tri-substituted phenols incorporating additional hydroxyl/hydroxymethyl, amino, acetamido, carboxyl, halogeno and carboxyethenyl moieties were included in the study. The best NgCAα inhibitrs were phenol, 3-aminophenol, 4-hydroxy-benzylalcohol, 3-amino-4-chlorophenol and paracetamol, with KI values of 0.6–1.7 µM. The most effective VchCAα inhibitrs were phenol, 3-amino-4-chlorophenol and 4-hydroxy-benzyl-alcohol, with KI values of 0.7–1.2 µM. Small changes in the phenol scaffold led to drastic effects on the bacterial CA inhibitory activity. This class of underinvestigated bacterial CA inhibitors may thus lead to effective compounds for fighting drug resistant bacteria.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
QM and QM/MM study on inhibition mechanism of polyphenolic compounds as non-classical inhibitors of α-human carbonic anhydrase (II). Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Cazzaniga G, Mori M, Chiarelli LR, Gelain A, Meneghetti F, Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur J Med Chem 2021; 224:113732. [PMID: 34399099 DOI: 10.1016/j.ejmech.2021.113732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
For centuries, natural products (NPs) have served as powerful therapeutics against a variety of human ailments. Nowadays, they still represent invaluable resources for the treatment of many diseases, including bacterial infections. After nearly three decades since the World Health Organization's (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. Nature has always provided a virtually unlimited source of bioactive molecules, which have inspired the development of new drugs. NPs are characterized by an exceptional chemical and structural diversity, the result of millennia of evolutionary responses to various stimuli. Thanks to their favorable structural features and their enzymatic origin, they are naturally prone to bind proteins and exhibit bioactivities. Furthermore, their worldwide distribution and ease of accessibility has contributed to promote investigations on their activity. Overall, these characteristics make NPs excellent models for the design of novel therapeutics. This review offers a critical and comprehensive overview of the most promising NPs, isolated from plants, fungi, marine species, and bacteria, endowed with inhibitory properties against traditional and emerging mycobacterial enzymatic targets. A selection of 86 compounds is here discussed, with a special emphasis on their biological activity, structure-activity relationships, and mechanism of action. Our study corroborates the antimycobacterial potential of NPs, substantiating their relevance in future drug discovery and development efforts.
Collapse
Affiliation(s)
- Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
11
|
Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Akalın Çiftçi G, Beydemir Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113:105009. [PMID: 34052739 DOI: 10.1016/j.bioorg.2021.105009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.
Collapse
Affiliation(s)
- Sercan Askin
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
12
|
Nair AM, Halder I, Sharma R, Volla CMR. Water Mediated Rearrangement of Alkynyl Cyclohexadienones: Access to meta-Alkenylated Phenols. Org Lett 2021; 23:1840-1845. [DOI: 10.1021/acs.orglett.1c00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Akshay M. Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Indranil Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ritu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Tang BC, He C, Chen XL, Ma JT, Wang M, Wu YD, Wu AX. Palladium catalyzed annulation of 2-iodobiphenyl with a non-terminal alkene enabled by neighboring group assistance. Chem Commun (Camb) 2021; 57:121-124. [PMID: 33290470 DOI: 10.1039/d0cc07133a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, an efficient palladium catalyzed annulation of 2-iodobiphenyl with a non-terminal alkene was developed. The key factor in this transformation was the formation of a highly reactive oxo-palladacycle intermediate, which was enabled by a neighboring hydroxyl group, and remarkably restrained the β-H elimination process. Mechanistically, control experiments demonstrated that the hydroxyl group may act as an anionic ligand, which was irreplaceable in this reaction. This transformation presented good reactivity and selectivity, and no simple Heck coupling products were detected for all of the explored substrates.
Collapse
Affiliation(s)
- Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
D’Ambrosio K, Di Fiore A, Buonanno M, Kumari S, Tiwari M, Supuran CT, Mishra CB, Monti SM, De Simone G. The crystal structures of 2-(4-benzhydrylpiperazin-1-yl)- N-(4-sulfamoylphenyl)acetamide in complex with human carbonic anhydrase II and VII provide insights into selective CA inhibitor development. NEW J CHEM 2021. [DOI: 10.1039/d0nj03544k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Our studies suggest that the acetamide linker and long tails are suitable structural features to design selective CA inhibitors.
Collapse
Affiliation(s)
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR
- Napoli
- Italy
| | | | - Shikha Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- Delhi
- India
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research
- University of Delhi
- Delhi
- India
| | | | | | | | | |
Collapse
|
15
|
Munakala A, Chegondi R. Silver(I)-Catalyzed Enyne Cyclization/Aromatization of Alkyne-Tethered Cyclohexadienones to Access Meta-Substituted Phenols. Org Lett 2020; 23:317-323. [PMID: 33381974 DOI: 10.1021/acs.orglett.0c03819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein we report a highly regioselective silver(I)-catalyzed intramolecular annulation of alkyne-tethered cyclohexadienones to access meta-substituted phenols with enone functionality, which are difficult to synthesize from conventional methods. The reaction proceeds via intramolecular 1,6-enyne cyclization followed by aromatization and subsequent oxetene ring rearrangement. This strategy has also been compatible with a wide range of C-tethered cyclohexadienones to afford indanes in high yields. The unique functionality of products allows further transformations to expand the diversity.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Quadruple C-H activation coupled to hydrofunctionalization and C-H silylation/borylation enabled by weakly coordinated palladium catalyst. Nat Commun 2020; 11:5662. [PMID: 33168832 PMCID: PMC7652853 DOI: 10.1038/s41467-020-19508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
Unlike the well-reported 1,2-difunctionalization of alkenes that is directed by classic pyridine and imine-containing directing groups, oxo-palladacycle intermediates featuring weak Pd-O coordination have been less demonstrated in C-H activated cascade transformations. Here we report a quadruple C-H activation cascade as well as hydro-functionalization, C-H silylation/borylation sequence based on weakly coordinated palladium catalyst. The hydroxyl group modulates the intrinsic direction of the Heck reaction, and then acts as an interrupter that biases the reaction away from the classic β-H elimination and toward C-H functionalization. Mechanistically, density functional theory calculation provides important insights into the key six-membered oxo-palladacycle intermediates, and indicates that the β-H elimination is unfavorable both thermodynamically and kinetically. In this article, we focus on the versatility of this approach, which is a strategic expansion of the Heck reaction. Combining the Heck reaction with other transformations provides a powerful strategy to access diverse, complex compounds. Here, the authors report a weak coordination dominated Pd(0)-catalyzed quadruple C-H activation followed by hydro-functionalization, C-H silylation, and C-H borylation.
Collapse
|
17
|
D'Ambrosio K, Carradori S, Cesa S, Angeli A, Monti SM, Supuran CT, De Simone G. Catechols: a new class of carbonic anhydrase inhibitors. Chem Commun (Camb) 2020; 56:13033-13036. [PMID: 33000794 DOI: 10.1039/d0cc05172a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To date, catechols have been only poorly investigated as carbonic anhydrase (CA) inhibitors. Here we report the first structural information on the CA inhibition mechanism of these molecules, showing that they adopt a peculiar binding mode to the enzyme active site which involves the zinc-bound water molecule and the "deep water".
Collapse
Affiliation(s)
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Angeli
- Neurofarba Department, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Simona M Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Naples, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
18
|
The Anticancer Activity for the Bumetanide-Based Analogs via Targeting the Tumor-Associated Membrane-Bound Human Carbonic Anhydrase-IX Enzyme. Pharmaceuticals (Basel) 2020; 13:ph13090252. [PMID: 32961906 PMCID: PMC7558282 DOI: 10.3390/ph13090252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4–23.7 nM) and have an excellent selectivity profile (SI = 14.5–804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds’ structure–activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.
Collapse
|
19
|
Quantum mechanical study of human carbonic anhydrase II in complex with polyamines as novel inhibitors: Kinetic and thermodynamic investigation. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Güzel-Akdemir Ö, Carradori S, Grande R, Demir-Yazıcı K, Angeli A, Supuran CT, Akdemir A. Development of Thiazolidinones as Fungal Carbonic Anhydrase Inhibitors. Int J Mol Sci 2020; 21:ijms21082960. [PMID: 32331447 PMCID: PMC7215574 DOI: 10.3390/ijms21082960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
In our efforts to find new and selective thiazolidinone-based anti-Candida agents, we synthesized and tested 26 thiazolidinones against several Candida spp. and Gram-positive and Gram-negative bacteria. The compounds showed selective antifungal activity with potency similar to fluconazole and clotrimazole, while lacking strong antibacterial activity. Molecular docking and molecular dynamics studies were performed on Candida CYP51a1 and carbonic anhydrase (CA) enzymes to further suggest putative targets that could mediate the antifungal effects of these compounds. Finally, the compounds were tested in enzyme inhibition assays to assess their putative mechanism of action and showed promising KI values in the 0.1–10 µM range against the Candida glabrata β-CA enzyme CgNce103.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Istanbul University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 34116 Istanbul, Turkey; (Ö.G.-A.); (K.D.-Y.)
| | - Simone Carradori
- Dipartimento di Farmacia, “G. d′Annunzio” University of Chieti-Pescara, Via dei vestini 31, 66100 Chieti, Italy; (S.C.); (R.G.)
| | - Rossella Grande
- Dipartimento di Farmacia, “G. d′Annunzio” University of Chieti-Pescara, Via dei vestini 31, 66100 Chieti, Italy; (S.C.); (R.G.)
| | - Kübra Demir-Yazıcı
- Istanbul University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 34116 Istanbul, Turkey; (Ö.G.-A.); (K.D.-Y.)
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (C.T.S.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (C.T.S.)
| | - Atilla Akdemir
- Bezmialem Vakif University, Computer-aided drug discovery laboratory, Department of Pharmacology, Faculty of Pharmacy, 34093 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-523-2288 (ext. 3142)
| |
Collapse
|
21
|
Milite C, Amendola G, Nocentini A, Bua S, Cipriano A, Barresi E, Feoli A, Novellino E, Da Settimo F, Supuran CT, Castellano S, Cosconati S, Taliani S. Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J Enzyme Inhib Med Chem 2019; 34:1697-1710. [PMID: 31537132 PMCID: PMC6758606 DOI: 10.1080/14756366.2019.1666836] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Inhibition of Carbonic Anhydrases (CAs) has been clinically exploited for many decades for a variety of therapeutic applications. Within a research project aimed at developing novel classes of CA inhibitors (CAIs) with a proper selectivity for certain isoforms, a series of derivatives featuring the 2-substituted-benzimidazole-6-sulfonamide scaffold, conceived as frozen analogs of Schiff bases and secondary amines previously reported in the literature as CAIs, were investigated. Enzyme inhibition assays on physiologically relevant human CA I, II, IX and XII isoforms revealed a number of potent CAIs, showing promising selectivity profiles towards the transmembrane tumor-associated CA IX and XII enzymes. Computational studies were attained to clarify the structural determinants behind the activities and selectivity profiles of the novel inhibitors.
Collapse
Affiliation(s)
- Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli , Caserta , Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Silvia Bua
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy.,PhD Program in Drug Discovery and Development, University of Salerno , Fisciano (SA) , Italy
| | | | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples , Naples , Italy
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli , Caserta , Italy
| | | |
Collapse
|
22
|
Alissa SA, Alghulikah HA, ALOthman ZA, Osman SM, Del Prete S, Capasso C, Nocentini A, Supuran CT. Inhibition survey with phenolic compounds against the δ- and η-class carbonic anhydrases from the marine diatom thalassiosira weissflogii and protozoan Plasmodium falciparum. J Enzyme Inhib Med Chem 2019; 35:377-382. [PMID: 31856608 PMCID: PMC6968676 DOI: 10.1080/14756366.2019.1706089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The inhibition of δ- and η-class carbonic anhydrases (CAs; EC 4.2.1.1) was poorly investigated so far. Only one δ-CA, TweCA from the diatom Thalassiosira weissflogii, and one η-CA, PfCA, from Plasmodium falciparum, have been cloned and characterised to date. To enrich δ- and η-CAs inhibition profiles, a panel of 22 phenols was investigated for TweCA and PfCA inhibition. Some derivatives showed effective, sub-micromolar inhibition of TweCA (KIs 0.81–65.4 µM) and PfCA (KIs 0.62–78.7 µM). A subset of compounds demonstrated a significant selectivity for the target CAs over the human physiologically relevant ones. This study promotes the identification of new potent and selective inhibitors of TweCA and PfCA, which could be considered as leads for finding molecular probes in the study of carbon fixation processes (in which TweCA and orthologue enzymes are involved) or drug candidates in the treatment of malaria.
Collapse
Affiliation(s)
- Siham A Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan A Alghulikah
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
23
|
Extending the γ-class carbonic anhydrases inhibition profiles with phenolic compounds. Bioorg Chem 2019; 93:103336. [DOI: 10.1016/j.bioorg.2019.103336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023]
|
24
|
Aspatwar A, Kairys V, Rala S, Parikka M, Bozdag M, Carta F, Supuran CT, Parkkila S. Mycobacterium tuberculosis β-Carbonic Anhydrases: Novel Targets for Developing Antituberculosis Drugs. Int J Mol Sci 2019; 20:ijms20205153. [PMID: 31627429 PMCID: PMC6834203 DOI: 10.3390/ijms20205153] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
The genome of Mycobacterium tuberculosis (Mtb) encodes three β-carbonic anhydrases (CAs, EC 4.2.1.1) that are crucial for the life cycle of the bacterium. The Mtbβ-CAs have been cloned and characterized, and the catalytic activities of the enzymes have been studied. The crystal structures of two of the enzymes have been resolved. In vitro inhibition studies have been conducted using different classes of carbonic anhydrase inhibitors (CAIs). In vivo inhibition studies of pathogenic bacteria containing β-CAs showed that β-CA inhibitors effectively inhibited the growth of pathogenic bacteria. The in vitro and in vivo studies clearly demonstrated that β-CAs of not only mycobacterial species, but also other pathogenic bacteria, can be targeted for developing novel antimycobacterial agents for treating tuberculosis and other microbial infections that are resistant to existing drugs. In this review, we present the molecular and structural data on three β-CAs of Mtb that will give us better insights into the roles of these enzymes in pathogenic bacterial species. We also present data from both in vitro inhibition studies using different classes of chemical compounds and in vivo inhibition studies focusing on M. marinum, a model organism and close relative of Mtb.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Sangeetha Rala
- Tampere University of Applied Sciences, Kuntokatu 3, FI-33520 Tampere, Finland.
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.
| | - Murat Bozdag
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.
- Fimlab Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| |
Collapse
|
25
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
26
|
Bozdag M, Ferraroni M, Ward C, Carta F, Bua S, Angeli A, Langdon SP, Kunkler IH, Al-Tamimi AMS, Supuran CT. Carbonic anhydrase inhibitors based on sorafenib scaffold: Design, synthesis, crystallographic investigation and effects on primary breast cancer cells. Eur J Med Chem 2019; 182:111600. [PMID: 31419777 DOI: 10.1016/j.ejmech.2019.111600] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Carbonic anhydrase inhibitors (CAIs) of the sulfonamide, sulfamate and coumarin classes bearing the phenylureido tail found in the clinically used drug Sorafenib, a multikinase inhibitor actually used for the management of hepatocellular carcinomas, are reported. All compounds were assayed on human (h) CA isoforms I, II, VII and IX, involved in various pathologies. Among the sulfonamides, several compounds were selective for inhibiting hCA IX, with KI values in the low nanomolar ranges (i.e. 0.7-30.2 nM). We explored the binding modes of such compounds by means of X-ray crystallographic studies on isoform hCA I in adduct with one sulfonamide and a sulfamate inhibitor. Antiproliferative properties of some sulfamates on breast tumor cell lines were also investigated.
Collapse
Affiliation(s)
- Murat Bozdag
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Carol Ward
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Silvia Bua
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Simon P Langdon
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Ian H Kunkler
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Abdul-Malek S Al-Tamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Alkharj, 11942, Saudi Arabia
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
27
|
|
28
|
Aspatwar A, Winum JY, Carta F, Supuran CT, Hammaren M, Parikka M, Parkkila S. Carbonic Anhydrase Inhibitors as Novel Drugs against Mycobacterial β-Carbonic Anhydrases: An Update on In Vitro and In Vivo Studies. Molecules 2018; 23:molecules23112911. [PMID: 30413024 PMCID: PMC6278287 DOI: 10.3390/molecules23112911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a variety of diseases, such as tuberculosis, leprosy, and opportunistic diseases in immunocompromised people. The treatment of these diseases is problematic, necessitating the development of novel treatment strategies. Recently, β-carbonic anhydrases (β-CAs) have emerged as potential drug targets in mycobacteria. The genomes of mycobacteria encode for three β-CAs that have been cloned and characterized from Mycobacterium tuberculosis (Mtb) and the crystal structures of two of the enzymes have been determined. Different classes of inhibitor molecules against Mtb β-CAs have subsequently been designed and have been shown to inhibit these mycobacterial enzymes in vitro. The inhibition of these centrally important mycobacterial enzymes leads to reduced growth of mycobacteria, lower virulence, and impaired biofilm formation. Thus, the inhibition of β-CAs could be a novel approach for developing drugs against the severe diseases caused by pathogenic mycobacteria. In the present article, we review the data related to in vitro and in vivo inhibition studies in the field.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France.
| | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Milka Hammaren
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
- Oral and Maxillofacial Unit, Tampere University Hospital, 33521 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
- Fimlab Ltd. and Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
29
|
Huang J, Liu N, Lu T, Dou X. Synthesis of meta
-Arylated Phenol Derivatives by Rhodium(I)-Catalyzed Arylation of Quinone Monoacetal. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianhang Huang
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
| | - Na Liu
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
| | - Tao Lu
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 People's Republic of China
| | - Xiaowei Dou
- Department of Organic Chemistry, School of Science; China Pharmaceutical University; 639 Longmian Avenue Nanjing 211198 People's Republic of China
| |
Collapse
|
30
|
Ahamad S, Hassan MI, Dwivedi N. Designing of phenol-based β-carbonic anhydrase1 inhibitors through QSAR, molecular docking, and MD simulation approach. 3 Biotech 2018; 8:256. [PMID: 29765814 DOI: 10.1007/s13205-018-1278-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (Tb) is an airborne infectious disease caused by Mycobacterium tuberculosis. Beta-carbonic anhydrase 1 (β-CA1) has emerged as one of the potential targets for new antitubercular drug development. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulation approaches were performed on a series of natural and synthetic phenol-based β-CA1 inhibitors. The developed 3D-QSAR model (r2 = 0.94, q2 = 0.86, and pred_r2 = 0.74) indicated that the steric and electrostatic factors are important parameters to modulate the bioactivity of phenolic compounds. Based on this indication, we designed 72 new phenolic inhibitors, out of which two compounds (D25 and D50) effectively stabilized β-CA1 receptor and, thus, are potential candidates for new generation antitubercular drug discovery program.
Collapse
Affiliation(s)
- Shahzaib Ahamad
- 1School of Biotechnology, IFTM University, Lodhipur Rajpoot, Delhi Road, Moradabad, India
| | - Md Imtaiyaz Hassan
- 2Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Neeraja Dwivedi
- 1School of Biotechnology, IFTM University, Lodhipur Rajpoot, Delhi Road, Moradabad, India
| |
Collapse
|
31
|
Nakai M, Pan J, Lin KS, Thompson JR, Nocentini A, Supuran CT, Nakabayashi Y, Storr T. Evaluation of 99mTc-sulfonamide and sulfocoumarin derivatives for imaging carbonic anhydrase IX expression. J Inorg Biochem 2018; 185:63-70. [PMID: 29778927 DOI: 10.1016/j.jinorgbio.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
With the aim to prepare hypoxia tumor imaging agents, technetium(I) and rhenium(I) tricarbonyl complexes with dipyridylamine (L1 = N-{[1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazol-4-yl]methyl}-N-(2-pyridinylmethyl)-2-pyridinemethanamine; L3 = N-{[1-[N-(4-aminosulfonylphenyl)]-1H-1,2,3-triazol-4-yl]methyl}-N-(2-pyridinyl-methyl)-2-pyridinemethanamine), and iminodiacetate (H2L2 = N-{[1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazole-4-yl]methyl}-N-(carboxy-methyl)-glycine; H2L4 = N-{[1-[N-(4-aminosulfonylphenyl)]-1H-1,2,3-triazole-4-yl]methyl}-N-(carboxymethyl)-glycine) ligands appended to sulfonamide or sulfocoumarin carbonic anhydrase inhibitors were synthesized. The Re(I) complexes were characterized using 1H/13C NMR, MS, EA, and in one case the X-ray structure of [Et3NH][Re(CO)3(L2)] was obtained. As expected, the Re coordination geometry is distorted octahedral, with a tridentate iminodiacetate ligand in a fac arrangement dictated by the three strong-field CO ligands. Inhibition studies of human carbonic anhydrases (hCAs) showed that the Re sulfocoumarin derivatives were inactive against hCA-I, -II and -IV, but had moderate affinity for hCA-IX. The Re sulfonamides showed improved affinity against all tested hCAs, with [Re(CO)3(L4)]- being the most active and selective for the hCA-IX isoform. The corresponding 99mTc complexes were synthesized from fac-[99mTc(CO)3(H2O)3]+, purified by HPLC, and obtained with average 41-76% decay-corrected radiochemical yields and with >99% radiochemical purity. Uptake in HT-29 tumors at 1 h post-injection was highest for [99mTc(CO)3(L4)]- (0.14 ± 0.10%ID/g) in comparison to [99mTc(CO)3(L1)]+ (0.06 ± 0.01%ID/g), [99mTc(CO)3(L2)]- (0.03 ± 0.00%ID/g), and [99mTc(CO)3(L3)]+ (0.07 ± 0.03%ID/g). The uptake in tumors was further reduced at 4 h post-injection. For potential imaging application with single photon emission computed tomography, further optimization is needed to improve the affinity to hCA-IX and uptake in hCA-IX expressing tumors.
Collapse
Affiliation(s)
- Misaki Nakai
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamatecho, Suita-shi, Osaka 564-8680, Japan.
| | - Jihne Pan
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | - John R Thompson
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Alessio Nocentini
- NEUROFARBA Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino,50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino,50019 Florence, Italy
| | - Yasuo Nakabayashi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamatecho, Suita-shi, Osaka 564-8680, Japan
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
32
|
Havránková E, Csöllei J, Vullo D, Garaj V, Pazdera P, Supuran CT. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg Chem 2018; 77:25-37. [DOI: 10.1016/j.bioorg.2017.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/16/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
|
33
|
Nocentini A, Bua S, Del Prete S, Heravi YE, Saboury AA, Karioti A, Bilia AR, Capasso C, Gratteri P, Supuran CT. Natural Polyphenols Selectively Inhibit β-Carbonic Anhydrase from the Dandruff-Producing Fungus Malassezia globosa: Activity and Modeling Studies. ChemMedChem 2018; 13:816-823. [PMID: 29575699 DOI: 10.1002/cmdc.201800015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Around 50 % of the worldwide population is affected by dandruff, which is triggered by a variety of factors. The yeast Malassezia globosa has been labeled as the most probable causative agent for the onset of dandruff. The β-carbonic anhydrase (CA) of MgCA was recently validated as an anti-dandruff target, with its inhibition being responsible for in vivo growth defects in the fungus. As classical CA inhibitors of the sulfonamide type give rise to permeability problems through biological membranes, finding non-sulfonamide alternatives for MgCA inhibition is of considerable interest in the cosmetic field. We recently screened a large library of human (h) CA inhibitors for MgCA inhibition, including different chemotypes, such as monothiocarbamates, dithiocarbamates, phenols, and benzoxaboroles. Herein, we expanded the research toward new MgCA inhibitors by considering a set of natural polyphenols (including flavones, flavonols, flavanones, flavanols, isoflavones, and depsides) that exhibited MgCA inhibitory activity in the micromolar range, as well as selectivity for the fungal isozyme over off-target human isoforms. The binding mode of representative derivatives within the MgCA catalytic cleft was investigated by docking studies using a homology-built model.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.,Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Bua
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, via P. Castellino 111, 80131, Napoli, Italy
| | | | - Ali A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Anastasia Karioti
- Laboratory of Pharmacognosy, Aristotle University of Thessaloniki, School of Pharmacy, University Campus, 54124, Thessaloniki, Greece
| | - Anna Rita Bilia
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, via P. Castellino 111, 80131, Napoli, Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
34
|
Antonsen S, Østby RB, Stenstrøm Y. Naturally Occurring Cyclobutanes: Their Biological Significance and Synthesis. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00001-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Angapelly S, Sri Ramya PV, Angeli A, Supuran CT, Arifuddin M. Sulfocoumarin-, Coumarin-, 4-Sulfamoylphenyl-Bearing Indazole-3-carboxamide Hybrids: Synthesis and Selective Inhibition of Tumor-Associated Carbonic Anhydrase Isozymes IX and XII. ChemMedChem 2017; 12:1578-1584. [DOI: 10.1002/cmdc.201700446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Srinivas Angapelly
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| | - Andrea Angeli
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Claudiu T. Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| |
Collapse
|
36
|
Dallaston MA, Rajan S, Chekaiban J, Wibowo M, Cross M, Coster MJ, Davis RA, Hofmann A. Dichloro-naphthoquinone as a non-classical inhibitor of the mycobacterial carbonic anhydrase Rv3588c. MEDCHEMCOMM 2017; 8:1318-1321. [PMID: 30108843 PMCID: PMC6072524 DOI: 10.1039/c7md00090a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022]
Abstract
The soluble mycobacterial carbonic anhydrases Rv3588c and Rv1284 belong to a different class of carbonic anhydrases than those found in humans, making them attractive drug targets by using the inherent differences in the folds of the different classes. By screening a natural product library, we identified naphthoquinone derivatives as a novel non-classical inhibitor scaffold of mycobacterial carbonic anhydrases that lack the sulfonamide/sulfamate group and thus did not affect human carbonic anhydrase II.
Collapse
Affiliation(s)
- M A Dallaston
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - S Rajan
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - J Chekaiban
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - M Wibowo
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - M Cross
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - M J Coster
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - R A Davis
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - A Hofmann
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
- Faculty of Veterinary and Agricultural Sciences , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Queensland Tropical Health Alliance , Smithfield , Queensland 4878 , Australia
| |
Collapse
|
37
|
Carreyre H, Carré G, Ouedraogo M, Vandebrouck C, Bescond J, Supuran CT, Thibaudeau S. Bioactive Natural Product and Superacid Chemistry for Lead Compound Identification: A Case Study of Selective hCA III and L-Type Ca 2+ Current Inhibitors for Hypotensive Agent Discovery. Molecules 2017; 22:molecules22060915. [PMID: 28561785 PMCID: PMC6152723 DOI: 10.3390/molecules22060915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Dodoneine (Ddn) is one of the active compounds identified from Agelanthusdodoneifolius, which is a medicinal plant used in African pharmacopeia and traditional medicine for the treatment of hypertension. In the context of a scientific program aiming at discovering new hypotensive agents through the original combination of natural product discovery and superacid chemistry diversification, and after evidencing dodoneine's vasorelaxant effect on rat aorta, superacid modifications allowed us to generate original analogues which showed selective human carbonic anhydrase III (hCA III) and L-type Ca2+ current inhibition. These derivatives can now be considered as new lead compounds for vasorelaxant therapeutics targeting these two proteins.
Collapse
Affiliation(s)
- Hélène Carreyre
- Superacid Group/Organic Synthesis Team, Université de Poitiers, IC2MP-UMR CNRS 7285, 86073 Poitiers CEDEX 09, France.
| | - Grégoire Carré
- STIM-ERL CNRS 7368 Université de Poitiers, 86073 Poitiers Cedex 9, France.
| | - Maurice Ouedraogo
- Laboratoire de Physiologie Animale, Université de Ouagadougou, 03 BP 7021 Ouagadougou 01, Burkina Faso.
| | | | - Jocelyn Bescond
- STIM-ERL CNRS 7368 Université de Poitiers, 86073 Poitiers Cedex 9, France.
| | - Claudiu T Supuran
- Department of Neurofarba, Sez, Chimica Farmaceutica e Nutraceutica, University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Sébastien Thibaudeau
- Superacid Group/Organic Synthesis Team, Université de Poitiers, IC2MP-UMR CNRS 7285, 86073 Poitiers CEDEX 09, France.
| |
Collapse
|
38
|
Structure and function of carbonic anhydrases. Biochem J 2017; 473:2023-32. [PMID: 27407171 DOI: 10.1042/bcj20160115] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.
Collapse
|
39
|
Entezari Heravi Y, Bua S, Nocentini A, Del Prete S, Saboury AA, Sereshti H, Capasso C, Gratteri P, Supuran CT. Inhibition of Malassezia globosa carbonic anhydrase with phenols. Bioorg Med Chem 2017; 25:2577-2582. [PMID: 28343756 DOI: 10.1016/j.bmc.2017.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
A panel of 22 phenols was investigated as inhibitors of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa (MgCA), a validated anti-dandruff drug target. The displayed inhibitory activities were compared to the ones previously reported against the off-target widely distributed human (h) isoforms hCA I and II. All tested phenols possessed a better efficacy in inhibiting MgCA than the clinically used sulfonamide acetazolamide, with KIs in the range of 2.5 and 65.0μM. A homology-built model of MgCA was also used for understanding the binding mode of phenols to the fungal enzyme. Indeed, a wide network of hydrogen bonds and hydrophobic interactions between the phenol and active site residues were evidenced. The OH moiety of the inhibitor was observed anchored to the zinc-coordinated water, also making hydrogen bonds with Ser48 and Asp49. The diverse substituents at the phenolic scaffold were observed to interact with different portions of the hydrophobic pocket according to their nature and position. Considering the effective MgCA inhibitory properties of phenols, beside to the rather low inhibition against the off-target hCA I and II, this class of compounds might be of considerable interest in the cosmetics field as potential anti-dandruff drugs.
Collapse
Affiliation(s)
- Yeganeh Entezari Heravi
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran; Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Silvia Bua
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy; Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Sonia Del Prete
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy; Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Gratteri
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
40
|
Le Duc Y, Licsandru E, Vullo D, Barboiu M, Supuran CT. Carbonic anhydrases activation with 3-amino-1H-1,2,4-triazole-1-carboxamides: Discovery of subnanomolar isoform II activators. Bioorg Med Chem 2017; 25:1681-1686. [DOI: 10.1016/j.bmc.2017.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
41
|
Karioti A, Carta F, Supuran CT. Phenols and Polyphenols as Carbonic Anhydrase Inhibitors. Molecules 2016; 21:molecules21121649. [PMID: 27918439 PMCID: PMC6273245 DOI: 10.3390/molecules21121649] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 01/26/2023] Open
Abstract
Phenols are among the largest and most widely distributed groups of secondary metabolites within the plant kingdom. They are implicated in multiple and essential physiological functions. In humans they play an important role as microconstituents of the daily diet, their consumption being considered healthy. The physical and chemical properties of phenolic compounds make these molecules versatile ligands, capable of interacting with a wide range of targets, such as the Carbonic Anhydrases (CAs, EC 4.2.1.1). CAs reversibly catalyze the fundamental reaction of CO2 hydration to bicarbonate and protons in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. This review will discuss the most recent advances in the search of naturally occurring phenols and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts or mixtures are not considered in the present review.
Collapse
Affiliation(s)
- Anastasia Karioti
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece.
| | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
42
|
Abstract
INTRODUCTION The enzyme carbonic anhydrase (CA, EC 4.2.1.1) is found in numerous organisms across the tree of life, with seven distinct classes known to date. CA inhibition can be exploited for the treatment of edema, glaucoma, seizures, obesity, cancer and infectious diseases. A myriad of CA inhibitor (CAI) classes and inhibition mechanisms have been identified over the past decade, mainly through structure-based drug design approaches. Five different CA inhibition mechanisms are presently known. Areas covered: Recent advances in structure-based CAI design are reviewed, with periodic table-based organization of inhibitor classes. Expert opinion: Various structure-based drug design studies have led to deep understanding of factors governing tight binding and selectivity for the various isoforms. Carboxylic acids, phenols, polyamines, diols, borols, boronic acids, coumarins and sulfonamides represent successful stories which led to an anti-tumor sulfonamide in Phase I clinical trials (SLC-0111). For many inhibitor classes, no detailed crystallographic data are available. Detailed structural characterization of all CAI classes may lead to further advances in the field with potential therapeutic implications in the management of indications including neuropathic pain, cerebral ischemia, arthritis and tumor imaging.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
43
|
Mujumdar P, Teruya K, Tonissen KF, Vullo D, Supuran CT, Peat TS, Poulsen SA. An Unusual Natural Product Primary Sulfonamide: Synthesis, Carbonic Anhydrase Inhibition, and Protein X-ray Structures of Psammaplin C. J Med Chem 2016; 59:5462-70. [DOI: 10.1021/acs.jmedchem.6b00443] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Prashant Mujumdar
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Kanae Teruya
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Kathryn F. Tonissen
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Daniela Vullo
- Polo
Scientifico, Neurofarba Department, and Laboratorio di Chimica Bioinorganica, Universitádegli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Neurofarba Department, and Laboratorio di Chimica Bioinorganica, Universitádegli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Thomas S. Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
44
|
Woods LA, Dolezal O, Ren B, Ryan JH, Peat TS, Poulsen SA. Native State Mass Spectrometry, Surface Plasmon Resonance, and X-ray Crystallography Correlate Strongly as a Fragment Screening Combination. J Med Chem 2016; 59:2192-204. [PMID: 26882437 DOI: 10.1021/acs.jmedchem.5b01940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Collapse
Affiliation(s)
- Lucy A Woods
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| | - Olan Dolezal
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Bin Ren
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Sally-Ann Poulsen
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| |
Collapse
|
45
|
Guzmán-Beltrán S, Rubio-Badillo MÁ, Juárez E, Hernández-Sánchez F, Torres M. Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy. Int Immunopharmacol 2016; 31:149-57. [DOI: 10.1016/j.intimp.2015.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/09/2023]
|
46
|
Cornelio B, Laronze-Cochard M, Ceruso M, Ferraroni M, Rance GA, Carta F, Khlobystov AN, Fontana A, Supuran CT, Sapi J. 4-Arylbenzenesulfonamides as Human Carbonic Anhydrase Inhibitors (hCAIs): Synthesis by Pd Nanocatalyst-Mediated Suzuki–Miyaura Reaction, Enzyme Inhibition, and X-ray Crystallographic Studies. J Med Chem 2016; 59:721-32. [DOI: 10.1021/acs.jmedchem.5b01771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Benedetta Cornelio
- Institut de Chimie
Moléculaire de Reims, CNRS UMR 7312, Université de Reims
Champagne—Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, F-51096 Reims Cedex, France
- Dipartimento
di Farmacia, Università “G. d’Annunzio”, Via dei Vestini, I-66100 Chieti, Italy
| | - Marie Laronze-Cochard
- Institut de Chimie
Moléculaire de Reims, CNRS UMR 7312, Université de Reims
Champagne—Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, F-51096 Reims Cedex, France
| | - Mariangela Ceruso
- Dipartimento
di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Marta Ferraroni
- Dipartimento
di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Graham A. Rance
- School
of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Fabrizio Carta
- Dipartimento
di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
- Nottingham
Nanotechnology and Nanoscience Centre, University of Nottingham, University
Park, Nottingham, NG7 2RD, U.K
| | - Antonella Fontana
- Dipartimento
di Farmacia, Università “G. d’Annunzio”, Via dei Vestini, I-66100 Chieti, Italy
| | - Claudiu T. Supuran
- Dipartimento
di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
- Neurofarba
Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Janos Sapi
- Institut de Chimie
Moléculaire de Reims, CNRS UMR 7312, Université de Reims
Champagne—Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, F-51096 Reims Cedex, France
| |
Collapse
|
47
|
Cau Y, Mori M, Supuran CT, Botta M. Mycobacterial carbonic anhydrase inhibition with phenolic acids and esters: kinetic and computational investigations. Org Biomol Chem 2016; 14:8322-30. [DOI: 10.1039/c6ob01477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Phenolic acids and their ester derivatives show specific inhibition of beta-carbonic anhydrases from Mycobacterium tuberculosis, and are interesting anti-mycobacterial leads.
Collapse
Affiliation(s)
- Ylenia Cau
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- I-53100 Siena
- Italy
| | - Mattia Mori
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- I-53100 Siena
- Italy
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA
- Sezione di Scienze Farmaceutiche
- Università degli Studi di Firenze
- 50019 Sesto Fiorentino (Firenze)
- Italy
| | - Maurizio Botta
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- I-53100 Siena
- Italy
| |
Collapse
|
48
|
Nocentini A, Ceruso M, Carta F, Supuran CT. 7-Aryl-triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2015; 31:1226-33. [DOI: 10.3109/14756366.2015.1115401] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Alessio Nocentini
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
| | - Mariangela Ceruso
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Fabrizio Carta
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T. Supuran
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
49
|
Abstract
Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Neurofarba Department, Laboratorio Di Chimica Bioinorganica, Sezione Di Chimica Farmaceutica E Nutraceutica, Università Degli Studi Di Firenze , Florence , Italy
| |
Collapse
|
50
|
Karioti A, Ceruso M, Carta F, Bilia AR, Supuran CT. New natural product carbonic anhydrase inhibitors incorporating phenol moieties. Bioorg Med Chem 2015; 23:7219-25. [PMID: 26498393 DOI: 10.1016/j.bmc.2015.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.
Collapse
Affiliation(s)
- Anastasia Karioti
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy.
| | - Anna-Rita Bilia
- Università degli Studi di Firenze, PHYTOLAB, Departimento di Chimica Ugo Schiff, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|