1
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
2
|
Chlorinated benzothiadiazines inhibit angiogenesis through suppression of VEGFR2 phosphorylation. Bioorg Med Chem 2022; 67:116805. [PMID: 35635929 PMCID: PMC9888588 DOI: 10.1016/j.bmc.2022.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/02/2023]
Abstract
Angiogenesis inhibitors are a critical pharmacological tool for the treatment of solid tumors. Suppressing vascular permeability leads to inhibition of tumor growth, invasion, and metastatic potential by blocking the supply of oxygen and nutrients. Disruption of the vascular endothelial growth factor (VEGF) signaling pathway is a validated target for the design of antiangiogenic agents. Several VEGFR2 inhibitors have been clinically approved over the past years. Structural analysis of these clinical VEGFR2 inhibitors highlighted key functional group overlap with the benzothiadiazine core contained in a library of in-house compounds. Herein we ascribe anti-angiogenic activity to a series of chlorinated benzothiadiazines. Selected compounds show significant activity to completely ameliorate VEGF-induced endothelial cell proliferation by suppression of VEGFR2 phosphorylation. The scaffold is devoid of activity to inhibit carbonic anhydrases and generally lacks cytotoxicity across a range of cancer and non-malignant cell lines. Assay of activity at 468 kinases shows remarkable selectivity with only four kinases inhibited > 65% at 10 µM concentration, and with significant activity to inhibit TNK2/ACK1 and PKRD2 by > 90%. All four identified kinase targets are known modulators of angiogenesis, thus highlighting compound 17b as a novel angiogenesis inhibitor for further development.
Collapse
|
3
|
Huwaimel BI, Bhakta M, Kulkarni CA, Milliken AS, Wang F, Peng A, Brookes PS, Trippier PC. Discovery of Halogenated Benzothiadiazine Derivatives with Anticancer Activity*. ChemMedChem 2021; 16:1143-1162. [PMID: 33331124 DOI: 10.1002/cmdc.202000729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Mitochondrial respiratory complex II (CII), also known as succinate dehydrogenase, plays a critical role in mitochondrial metabolism. Known but low potency CII inhibitors are selectively cytotoxic to cancer cells including the benzothiadiazine-based anti-hypoglycemic diazoxide. Herein, we study the structure-activity relationship of benzothiadiazine derivatives for CII inhibition and their effect on cancer cells for the first time. A 15-fold increase in CII inhibition was achieved over diazoxide, albeit with micromolar IC50 values. Cytotoxicity evaluation of the novel derivatives resulted in the identification of compounds with much greater antineoplastic effect than diazoxide, the most potent of which possesses an IC50 of 2.93±0.07 μM in a cellular model of triple-negative breast cancer, with high selectivity over nonmalignant cells and more than double the potency of the clinical agent 5-fluorouracil. No correlation between cytotoxicity and CII inhibition was found, thus indicating an as-yet-undefined mechanism of action of this scaffold. The derivatives described herein represent valuable hit compounds for therapeutic discovery in triple-negative breast cancer.
Collapse
Affiliation(s)
- Bader I Huwaimel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Myla Bhakta
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Chaitanya A Kulkarni
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alexander S Milliken
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Feifei Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
4
|
Chhabra S, Shah K. The novel scaffold 1,2,4-benzothiadiazine-1,1-dioxide: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Xing Y, Dong F, Yin X, Wang L, Li S. Facile Construction of 3,4‐dihydro‐2H‐1,2,4‐Benzothiadiazine 1,1‐Dioxides via Redox‐Neutral Cascade Condensation/[1,7]‐Hydride Transfer/Cyclization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yingying Xing
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory The Affiliated Hospital of Qingdao University No. 16, Jiangsu Rd. Qingdao 266003 P. R. China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering Qingdao University of Science and Technology No.53, Zhengzhou Rd. Qingdao 266042 P. R. China
| | - Shuai‐Shuai Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering Qingdao University of Science and Technology No.53, Zhengzhou Rd. Qingdao 266042 P. R. China
| |
Collapse
|
6
|
Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019; 26:2062-2084. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. OBJECTIVE Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. METHODS In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. CONCLUSION This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Jonali Ramani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| |
Collapse
|
7
|
Pirotte B, Florence X, Goffin E, Lebrun P. 2,2-Dimethyl-3,4-dihydro-2 H-1,4-benzoxazines as isosteres of 2,2-dimethylchromans acting as inhibitors of insulin release and vascular smooth muscle relaxants. MEDCHEMCOMM 2019; 10:431-438. [PMID: 31015906 DOI: 10.1039/c8md00593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/01/2019] [Indexed: 11/21/2022]
Abstract
The present study describes the synthesis and biological evaluation of 4-phenylureido/thioureido-substituted 2,2-dimethyl-3,4-dihydro-2H-1,4-benzoxazines as isosteres of corresponding 2,2-dimethylchromans reported to be pancreatic β-cell KATP channel openers. The benzoxazines were found to be less active as inhibitors of the glucose-induced insulin release than their corresponding chromans, while the myorelaxant activity of some 4-arylureido-substituted benzoxazines was more pronounced than that exhibited by their chroman counterparts. The myorelaxant activity of the most potent benzoxazine 8e was further characterized on rat aortic rings precontracted by 30 mM KCl in the presence of glibenclamide (10 μM) or precontracted by 80 mM extracellular KCl. Our findings indicate that, on vascular smooth muscle cells, the benzoxazine 8e mainly behaved as a calcium entry blocker.
Collapse
Affiliation(s)
- Bernard Pirotte
- Laboratoire de Chimie Pharmaceutique , Center for Interdisciplinary Research on Medicines (CIRM) , Université de Liège , Quartier Hôpital , Avenue Hippocrate 15 , B-4000 Liège , Belgium .
| | - Xavier Florence
- Laboratoire de Chimie Pharmaceutique , Center for Interdisciplinary Research on Medicines (CIRM) , Université de Liège , Quartier Hôpital , Avenue Hippocrate 15 , B-4000 Liège , Belgium . .,Laboratoire de Physiologie et Pharmacologie , Université Libre de Bruxelles , Faculté de Médecine , 808 Route de Lennik , B-1070 Bruxelles , Belgium
| | - Eric Goffin
- Laboratoire de Chimie Pharmaceutique , Center for Interdisciplinary Research on Medicines (CIRM) , Université de Liège , Quartier Hôpital , Avenue Hippocrate 15 , B-4000 Liège , Belgium .
| | - Philippe Lebrun
- Laboratoire de Physiologie et Pharmacologie , Université Libre de Bruxelles , Faculté de Médecine , 808 Route de Lennik , B-1070 Bruxelles , Belgium
| |
Collapse
|
8
|
Pirotte B, Florence X, Goffin E, Medeiros MB, de Tullio P, Lebrun P. 4-Phenylureido/thioureido-substituted 2,2-dimethylchroman analogs of cromakalim bearing a bulky ‘carbamate’ moiety at the 6-position as potent inhibitors of glucose-sensitive insulin secretion. Eur J Med Chem 2016; 121:338-351. [DOI: 10.1016/j.ejmech.2016.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
|
9
|
Chrobak E, Boryczka S, Wlekliński M, Kusz J, Zubko M, Maślankiewicz A. Synthesis and Transformations of 2-Oxo-2,3-dihydro-(1H,3H)-quino[4,3-e]-1,2,4-thiadiazine 4,4-Dioxide to N-Methyl-, 2-Chloro- and 2-Aminoquino[4,3-e]-1,2,4-thiadiazine 4,4-Dioxides. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Constant-Urban C, Charif M, Goffin E, Van Heugen JC, Elmoualij B, Chiap P, Mouithys-Mickalad A, Serteyn D, Lebrun P, Pirotte B, De Tullio P. Triphenylphosphonium salts of 1,2,4-benzothiadiazine 1,1-dioxides related to diazoxide targeting mitochondrial ATP-sensitive potassium channels. Bioorg Med Chem Lett 2013; 23:5878-81. [DOI: 10.1016/j.bmcl.2013.08.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023]
|
11
|
Pirotte B, de Tullio P, Florence X, Goffin E, Somers F, Boverie S, Lebrun P. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action. J Med Chem 2013; 56:3247-56. [PMID: 23517501 DOI: 10.1021/jm301743b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.
Collapse
Affiliation(s)
- Bernard Pirotte
- Laboratoire de Chimie Pharmaceutique, Centre Interfacultaire de Recherche du Médicament (Drug Research Center), Université de Liège, CHU, 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Maślankiewicz A, Chrobak E, Wlekliński M, Kusz J, Zubko M, Michalik E. Pyrido- and Quino-1,2,4-thiadiazine S,S-Dioxides from Reactions of 4-Chloro-3-pyridinesulfonyl- and 4-Chloro-3-quinolinesulfonyl Chlorides with O-Methylisourea. HETEROCYCLES 2011. [DOI: 10.3987/com-11-12247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|