1
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
2
|
Fiorucci S, Sepe V, Biagioli M, Fiorillo B, Rapacciuolo P, Distrutti E, Zampella A. Development of bile acid activated receptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem Pharmacol 2023; 216:115776. [PMID: 37659739 DOI: 10.1016/j.bcp.2023.115776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Valentina Sepe
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
3
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
5
|
Festa C, De Marino S, Zampella A, Fiorucci S. Theonella: A Treasure Trove of Structurally Unique and Biologically Active Sterols. Mar Drugs 2023; 21:md21050291. [PMID: 37233485 DOI: 10.3390/md21050291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The marine environment is considered a vast source in the discovery of structurally unique bioactive secondary metabolites. Among marine invertebrates, the sponge Theonella spp. represents an arsenal of novel compounds ranging from peptides, alkaloids, terpenes, macrolides, and sterols. In this review, we summarize the recent reports on sterols isolated from this amazing sponge, describing their structural features and peculiar biological activities. We also discuss the total syntheses of solomonsterols A and B and the medicinal chemistry modifications on theonellasterol and conicasterol, focusing on the effect of chemical transformations on the biological activity of this class of metabolites. The promising compounds identified from Theonella spp. possess pronounced biological activity on nuclear receptors or cytotoxicity and result in promising candidates for extended preclinical evaluations. The identification of naturally occurring and semisynthetic marine bioactive sterols reaffirms the utility of examining natural product libraries for the discovery of new therapeutical approach to human diseases.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, 06132 Perugia, Italy
| |
Collapse
|
6
|
Finamore C, Festa C, Fiorillo B, Leva FSD, Roselli R, Marchianò S, Biagioli M, Spinelli L, Fiorucci S, Limongelli V, Zampella A, De Marino S. Expanding the Library of 1,2,4-Oxadiazole Derivatives: Discovery of New Farnesoid X Receptor (FXR) Antagonists/Pregnane X Receptor (PXR) Agonists. Molecules 2023; 28:molecules28062840. [PMID: 36985811 PMCID: PMC10057480 DOI: 10.3390/molecules28062840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Compounds featuring a 1,2,4-oxadiazole core have been recently identified as a new chemotype of farnesoid X receptor (FXR) antagonists. With the aim to expand this class of compounds and to understand the building blocks necessary to maintain the antagonistic activity, we describe herein the synthesis, the pharmacological evaluation, and the in vitro pharmacokinetic properties of a novel series of 1,2,4-oxadiazole derivatives decorated on the nitrogen of the piperidine ring with different N-alkyl and N-aryl side chains. In vitro pharmacological evaluation showed compounds 5 and 11 as the first examples of nonsteroidal dual FXR/Pregnane X receptor (PXR) modulators. In HepG2 cells, these compounds modulated PXR- and FXR-regulated genes, resulting in interesting leads in the treatment of inflammatory disorders. Moreover, molecular docking studies supported the experimental results, disclosing the ligand binding mode and allowing rationalization of the activities of compounds 5 and 11.
Collapse
Affiliation(s)
- Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029, USA
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Rosalinda Roselli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1-06132 Perugia, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), Via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
7
|
She J, Gu T, Pang X, Liu Y, Tang L, Zhou X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front Pharmacol 2022; 12:772435. [PMID: 35069197 PMCID: PMC8766425 DOI: 10.3389/fphar.2021.772435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
Collapse
Affiliation(s)
- Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
8
|
Anti-Proliferative Potential of Secondary Metabolites from the Marine Sponge Theonella sp.: Moving from Correlation toward Causation. Metabolites 2021; 11:metabo11080532. [PMID: 34436473 PMCID: PMC8400523 DOI: 10.3390/metabo11080532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
Marine sponges have been recognized as a rich source of potential anti-proliferative metabolites. Currently, there are two sponge-derived anti-cancer agents (a macrolide and a nucleoside) isolated from the Porifera phylum, suggesting the great potential of this sponge as a rich source for anti-neoplastic agents. To search for more bioactive metabolites from this phylum, we examined the EtOAc extract of Theonella sp. sponge. We isolated seven compounds (1–7), including four 4-methylene sterols (1–4), two nucleosides (5 and 6), and one macrolide (7). Among them, theonellasterol L (1) was identified for the first time, while 5′-O-acetyl-2′-deoxyuridine (5) and 5′-O-acetylthymidine (6) were the first identified deoxyuridine and thymidine derivatives from the sponge Theonella sp. These structures were elucidated based on their spectroscopic data. The anti-proliferation activity of compounds 1–7 against the MCF-7, MDA-MB-231, T-47D, HCT-116, DLD-1, K562, and Molt 4 cancer cell lines was determined. The results indicated that the 14-/15-oxygenated moiety played an important role in the antiproliferative activity and the macrolide derivatives dominated the anti-proliferative effect of the sponge Theonella sp. The in silico analysis, using a chemical global positioning system for natural products (ChemGPS-NP), indicated an anti-proliferative mode of actions (MOA) suggesting the potential applications of the isolated active metabolites as anti-proliferative agents.
Collapse
|
9
|
Shin AY, Lee HS, Lee YJ, Lee JS, Son A, Choi C, Lee J. Oxygenated Theonellastrols: Interpretation of Unusual Chemical Behaviors Using Quantum Mechanical Calculations and Stereochemical Reassignment of 7 α-Hydroxytheonellasterol. Mar Drugs 2020; 18:md18120607. [PMID: 33265994 PMCID: PMC7760259 DOI: 10.3390/md18120607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023] Open
Abstract
A total of eight new oxygenated 4-exo-methylene sterols, 1–8, together with one artifact 9 and six known sterols 11–16, were isolated from the marine sponge Theonella swinhoei collected from the Bohol province in Philippines. Structures of sterols 1–8 were determined from 1D and 2D NMR data. Among the sterols, 8α-hydroxytheonellasterol (4) spontaneously underwent an allylic 1,3-hydroxyl shift to produce 15α-hydroxytheonellasterol (9) as an artifact; this was rationalized by quantum mechanical calculations of the transition state. In addition, the 1,2-epoxy alcohol subunit of 8α-hydroxy-14,15-β-epoxytheonellasterol (5) was assigned using the Gauge-Independent Atomic Orbital (GIAO) NMR chemical shift calculations and subsequent DP4+ analysis. Finally, comparison of the 13C chemical shifts of isolated 7α-hydroxytheonellasterol (6) with the reported values revealed significant discrepancies at C-6, C-7, C-8, and C-14, leading to reassignment of the C-7 stereochemistry in the known structure.
Collapse
Affiliation(s)
- A-Young Shin
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Korea; (A-Y.S.); (H.-S.L.); (Y.-J.L.); (J.S.L.)
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Hyi-Seung Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Korea; (A-Y.S.); (H.-S.L.); (Y.-J.L.); (J.S.L.)
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Yeon-Ju Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Korea; (A-Y.S.); (H.-S.L.); (Y.-J.L.); (J.S.L.)
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Jong Seok Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Korea; (A-Y.S.); (H.-S.L.); (Y.-J.L.); (J.S.L.)
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (A.S.); (C.C.)
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (A.S.); (C.C.)
| | - Jihoon Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Korea; (A-Y.S.); (H.-S.L.); (Y.-J.L.); (J.S.L.)
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-51-664-3343
| |
Collapse
|
10
|
De Vita S, Terracciano S, Bruno I, Chini MG. From Natural Compounds to Bioactive Molecules through NMR and
In Silico
Methodologies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simona De Vita
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Stefania Terracciano
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Ines Bruno
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory University of Molise C.da Fonte Lappone‐ 86090 Pesche (IS) Italy
| |
Collapse
|
11
|
Carazo A, Mladěnka P, Pávek P. Marine Ligands of the Pregnane X Receptor (PXR): An Overview. Mar Drugs 2019; 17:md17100554. [PMID: 31569349 PMCID: PMC6836225 DOI: 10.3390/md17100554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnane X Receptor (PXR) is a ligand-activated transcription factor which binds many structurally different molecules. The receptor is able to regulate the expression of a wide array of genes and is involved in cancer and different key physiological processes such as the metabolism of drugs/xenobiotics and endogenous compounds including lipids and carbohydrates, and inflammation. Algae, sponges, sea squirts, and other marine organisms are some of the species from which structurally new molecules have been isolated that have been subsequently identified in recent decades as ligands for PXR. The therapeutic potential of these natural compounds is promising in different areas and has recently resulted in the registration of trabectedin by the FDA as a novel antineoplastic drug. Apart from being potentially novel drugs, these compounds can also serve as models for the development of new molecules with improved activity. The aim of this review is to succinctly summarize the currently known natural molecules isolated from marine organisms with a proven ability to interact with PXR.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| |
Collapse
|
12
|
Gao Y, Wu S. Comprehensive analysis of the phospholipids and phytosterols in Schisandra chinensis oil by UPLC-Q/TOF- MSE. Chem Phys Lipids 2019; 221:15-23. [DOI: 10.1016/j.chemphyslip.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/26/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
|
13
|
Naturally occurring of α,β-diepoxy-containing compounds: origin, structures, and biological activities. Appl Microbiol Biotechnol 2019; 103:3249-3264. [PMID: 30852659 DOI: 10.1007/s00253-019-09711-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/12/2023]
Abstract
Diepoxy-containing compounds are widely distributed in nature. These metabolites are found in plants and marine organisms and are also produced by many microorganisms, fungi, or fungal endophytes. Many of these metabolites are antibiotics and exhibit a wide variety of biological activities. More than 80 α,β-diepoxy-containing compounds are presented in this article, which belong to different classes of chemical compounds including lipids, terpenoids, alkaloids, quinones, hydroquinones, and pyrones. The main activities that characterize α,β-diepoxy-containing compounds are antineoplastic with confidence up to 99%, antifungal with confidence up to 94%, antiinflammatory with confidence up to 92%, or antibacterial with confidence up to 78%. In addition, these metabolites can be used as a lipid metabolism regulator with a certainty of up to 81%, antiviral (Arbovirus) activity with a certainty of up to 71%, or antiallergic activity with confidence up to 69%. These data on the biological activity of diepoxy-containing compounds are of considerable interest to pharmacologists, chemists, and medical professionals who are involved in phytomedicine and related areas of science and industry.
Collapse
|
14
|
Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods. Sci Rep 2018; 8:16207. [PMID: 30385820 PMCID: PMC6212460 DOI: 10.1038/s41598-018-34373-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023] Open
Abstract
The Pregnane X Receptor (PXR) is a ligand-activated transcription factor belonging to the nuclear receptor family. PXR can bind diverse drugs and environmental toxicants with different binding modes, making it an intriguing target for drug discovery. Here we investigated the binding mechanism of the SR12813 ligand to elucidate the significant steps, from the ligand entrance pathway into the binding cavity, to the ligand-induced conformational changes, and to the exploration of its alternative binding geometries. We used the advanced Molecular Dynamics-based methods implemented in the BiKi suite and developed specific methodological approaches to overcome the complexity induced by the buried and flexible binding cavity. The adopted methods provided a full dynamic description of the binding event and allowed rationalization of the observed multiple binding modes. These results suggest that the same approach could be exploited for the study of other binding processes with similar characteristics.
Collapse
|
15
|
Li J, Tang H, Kurtán T, Mándi A, Zhuang CL, Su L, Zheng GL, Zhang W. Swinhoeisterols from the South China Sea Sponge Theonella swinhoei. JOURNAL OF NATURAL PRODUCTS 2018; 81:1645-1650. [PMID: 29989811 DOI: 10.1021/acs.jnatprod.8b00281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Swinhoeisterols C-F (1-4), four new steroids having a rearranged 6/6/5/7 ring system, were isolated from the Xisha sponge Theonella swinhoei, together with the known analogue swinhoeisterol A (5). Their structures were determined based on spectroscopic analysis, TDDFT-ECD and optical rotation calculations, and biogenetic correlations. In an in vitro assay, compound 1 showed an inhibitory effect on (h)p300 with an IC50 value of 8.8 μM, whereas compounds 2-4 were not active.
Collapse
Affiliation(s)
- Jiao Li
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Hua Tang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , POB 400, H-4002 Debrecen , Hungary
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , POB 400, H-4002 Debrecen , Hungary
| | - Chun-Lin Zhuang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Li Su
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Gui-Liang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery , Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , 1665 Kong-Jiang Road , Shanghai 200092 , People's Republic of China
| | - Wen Zhang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| |
Collapse
|
16
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
17
|
Abstract
A series of 4-methylidene sterols including three new compounds 1-3, were isolated from the marine sponge Theonella swinhoei. The structures of new compounds were determined on the basis of spectroscopic analyses. Compounds 3, 5, and 6 showed cytotoxicities against U937, MCF-7, and PC-9 cancer cells with IC50 in the range of 1.6-8.8 μM. The new compound 3 exhibited remarkable proapoptotic activity in breast cancer cells. Mechanically, 3 significantly triggered reactive oxygen species (ROS) accumulation resulting in apoptosis and DNA damage in breast cancer cells.
Collapse
Affiliation(s)
- Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan-Yun Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
18
|
Conformational modulation of the farnesoid X receptor by prenylflavonoids: Insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1667-1677. [PMID: 27596062 DOI: 10.1016/j.bbapap.2016.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
We report on the molecular interactions of the farnesoid X receptor (FXR) with prenylflavonoids, an emerging class of FXR modulators. FXR is an attractive therapeutic target for mitigating metabolic syndromes (MetS) because FXR activates the inhibitory nuclear receptor, small heterodimer partner (SHP), thereby inhibiting both gluconeogenesis and de novo lipogenesis. We and others have shown that xanthohumol (XN), the principal prenylflavonoid of the hop plant (Humulus lupulus L.), is a FXR agonist based on its ability to affect lipid and glucose metabolism in vivo and to induces FXR target genes in biliary carcinoma cells and HEK293 cells. However, studies are currently lacking to rationalize the molecular mechanisms of FXR modulation by prenylflavonoids. We addressed this deficiency and report the first systematic study of FXR prenylflavonoid interactions. We combined hydrogen deuterium exchange mass spectrometry (HDX-MS) with computational studies for dissecting molecular recognition and conformational impact of prenylflavonoid interactions on the ligand binding domain (LBD) of human FXR. Four prenylflavonoids were tested: xanthohumol, a prenylated chalcone, two prenylated flavonones, namely isoxanthohumol (IX) and 8-prenylnaringenin (8PN), and a semisynthetic prenylflavonoid derivative, tetrahydroxanthohumol (TX). Enhancement of the HDX protection profile data by in silico predicted models of FXR prenylflavonoid complexes resulted in mapping of the prenylflavonoid interactions within the canonical ligand binding pocket. Our findings provide a foundation for the exploration of the chemical scaffolds of prenylated chalcones and flavanones as leads for future structure activity studies of this important nuclear receptor with potential relevance for ameliorating lipid metabolic disorders associated with obesity and MetS.
Collapse
|
19
|
Yuan ZQ, Li KW. Role of farnesoid X receptor in cholestasis. J Dig Dis 2016; 17:501-509. [PMID: 27383832 DOI: 10.1111/1751-2980.12378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid X receptor (FXR) plays an important role in physiological bile acid synthesis, secretion and transport. Defects of FXR regulation in these processes can cause cholestasis and subsequent pathological changes. FXR regulates the synthesis and uptake of bile acid via enzymes. It also increases bile acid solubility and elimination by promoting conjugation reactions and exports pump expression in cholestasis. The changes in bile acid transporters are involved in cholestasis, which can result from the mutations of transporter genes or acquired dysfunction of transport systems, such as inflammation-induced intrahepatic cholestasis. The modulation function of FXR in extrahepatic cholestasis is not identical to that in intrahepatic cholestasis, but the discrepancy may be reduced over time. In extrahepatic cholestasis, increasing biliary pressure can induce bile duct proliferation and bile infarcts, but the absence of FXR may ameliorate them. This review provides an update on the function of FXR in the regulation of bile acid metabolism, its role in the pathophysiological process of cholestasis and the therapeutic use of FXR agonists.
Collapse
Affiliation(s)
- Zhi Qing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ke Wei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
20
|
Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem 2015; 7:1109-35. [DOI: 10.4155/fmc.15.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile acids (BAs) are experiencing a new life. Next to their ancestral roles in lipid digestion and solubilization, BAs are today recognized signaling molecules involved in many physiological functions. These signaling pathways involve the activation of metabolic nuclear receptors, mainly the BA sensor FXR, and the dedicated membrane G protein-coupled receptor, GPBAR1 (TGR5). As a consequence, the discovery of GPBAR1/FXR selective or dual modulators represents an important answer to the urgent demand of new pharmacological opportunity for several human diseases including dyslipidemia, cholestasis, nonalcoholic steatohepatitis, Type 2 diabetes and inflammation. Targeted oriented discovery of natural compounds and medicinal chemistry manipulation have allowed the development of promising drug candidates.
Collapse
|
21
|
Margarucci L, Monti MC, Tosco A, Esposito R, Zampella A, Sepe V, Mozzicafreddo M, Riccio R, Casapullo A. Theonellasterone, a steroidal metabolite isolated from a Theonella sponge, protects peroxiredoxin-1 from oxidative stress reactions. Chem Commun (Camb) 2015; 51:1591-3. [DOI: 10.1039/c4cc09205h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxiredoxin-1, a key enzyme in the cellular detoxification pathway, has been identified through a chemoproteomic approach as the main partner of theonellasterone, a marine bioactive metabolite.
Collapse
Affiliation(s)
- L. Margarucci
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - M. C. Monti
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - A. Tosco
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - R. Esposito
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - A. Zampella
- Department of Pharmacy
- University of Napoli “Federico II”
- Naples
- Italy
| | - V. Sepe
- Department of Pharmacy
- University of Napoli “Federico II”
- Naples
- Italy
| | - M. Mozzicafreddo
- School of Biosciences and Veterinary Medicine
- University of Camerino
- 62032 Camerino
- Italy
| | - R. Riccio
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| | - A. Casapullo
- Department of Pharmacy
- University of Salerno
- Fisciano
- Italy
| |
Collapse
|
22
|
Marine and semi-synthetic hydroxysteroids as new scaffolds for pregnane X receptor modulation. Mar Drugs 2014; 12:3091-115. [PMID: 24871460 PMCID: PMC4071567 DOI: 10.3390/md12063091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
Abstract
In recent years many sterols with unusual structures and promising biological profiles have been identified from marine sources. Here we report the isolation of a series of 24-alkylated-hydroxysteroids from the soft coral Sinularia kavarattiensis, acting as pregnane X receptor (PXR) modulators. Starting from this scaffold a number of derivatives were prepared and evaluated for their ability to activate the PXR by assessing transactivation and quantifying gene expression. Our study reveals that ergost-5-en-3β-ol (4) induces PXR transactivation in HepG2 cells and stimulates the expression of the PXR target gene CYP3A4. To shed light on the molecular basis of the interaction between these ligands and PXR, we investigated, through docking simulations, the binding mechanism of the most potent compound of the series, 4, to the PXR. Our findings provide useful functional and structural information to guide further investigations and drug design.
Collapse
|
23
|
Chianese G, Sepe V, Limongelli V, Renga B, D'Amore C, Zampella A, Taglialatela-Scafati O, Fiorucci S. Incisterols, highly degraded marine sterols, are a new chemotype of PXR agonists. Steroids 2014; 83:80-5. [PMID: 24582706 DOI: 10.1016/j.steroids.2014.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/15/2022]
Abstract
During the chromatographic purification of organic extracts obtained from Plakortis cfr. lita we obtained three highly degraded steroid derivatives, the known incisterol A2 (1) and the new incisterols A5 (2) and A6 (3). The new compounds were characterized basing on NMR and MS evidences along with comparison with model compounds. Incisterol A5 proved to bear a 17S-ethyl-15E,18-diene (incisterol numbering system) side chain, found for the first time in a marine organism. The new incisterols A5 and A6 proved to be potent inducers of transactivation of the pregnane X receptor (PXR) and they also stimulate the expression of CYP7A4 and MDR1 with a potency comparable to that of Rifaximin. These observations prompt to consider incisterols A5 and A6 as new potent agonists of PXR. On the other hand, the 17R-methyl analogue incisterol A2 shows only a poor PXR agonist activity. Molecular docking simulations elucidated the binding mechanism of the active incisterols in the ligand binding domain of PXR.
Collapse
Affiliation(s)
- Giuseppina Chianese
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Valentina Sepe
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Vittorio Limongelli
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina, Via Gambuli 1, 06132 Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina, Via Gambuli 1, 06132 Perugia, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano, 49, I-80131 Napoli, Italy
| | | | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina, Via Gambuli 1, 06132 Perugia, Italy
| |
Collapse
|
24
|
Gong J, Sun P, Jiang N, Riccio R, Lauro G, Bifulco G, Li TJ, Gerwick WH, Zhang W. New Steroids with a Rearranged Skeleton as (h)P300 Inhibitors from the Sponge Theonella swinhoei. Org Lett 2014; 16:2224-7. [DOI: 10.1021/ol5007345] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jun Gong
- Research
Center for Marine Drugs, and Department of Pharmacology, School of
Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, P. R. China
| | - Peng Sun
- Research
Center for Marine Drugs, and Department of Pharmacology, School of
Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, P. R. China
| | - Nan Jiang
- Jiangsu
Collaborative Innovation Center For Cardiovascular Disease Translational
Medicine, School of Pharmacy, Nanjing Medical University, 140 Hanzhong
Road, Nanjing 210029, P. R. China
| | - Raffaele Riccio
- Dipartimento
di Farmacia, Universita’ di Salerno, Via Giovanni Paolo II 132 84084 Fisciano (SA), Italy
| | - Gianluigi Lauro
- Dipartimento
di Farmacia, Universita’ di Salerno, Via Giovanni Paolo II 132 84084 Fisciano (SA), Italy
| | - Giuseppe Bifulco
- Dipartimento
di Farmacia, Universita’ di Salerno, Via Giovanni Paolo II 132 84084 Fisciano (SA), Italy
| | - Tie-Jun Li
- Research
Center for Marine Drugs, and Department of Pharmacology, School of
Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, P. R. China
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wen Zhang
- Research
Center for Marine Drugs, and Department of Pharmacology, School of
Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, P. R. China
| |
Collapse
|
25
|
Di Micco S, Renga B, Carino A, D'Auria MV, Zampella A, Riccio R, Fiorucci S, Bifulco G. Structural insights into Estrogen Related Receptor-β modulation: 4-methylenesterols from Theonella swinhoei sponge as the first example of marine natural antagonists. Steroids 2014; 80:51-63. [PMID: 24315836 DOI: 10.1016/j.steroids.2013.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022]
Abstract
In this paper, we report the first evidence of 4-methylenesterols, isolated from the marine sponge Theonella swinhoei, as antagonists of Estrogen Related Receptors (ERRs). The interactions of 4-methylenesterols with ERRs were investigated through a multi-parametric approach involving biological assays and molecular modelling. Here the first homology model of active and inactive conformations of the Estrogen Related Receptor β (ERRβ) is also reported, benchmarked with the well known agonists gsk4716 and genistein, and the antagonists 4-hydroxytamoxifen and diethylstilbestrol. Our proposed model could contribute to the clarification of small molecule interaction mode in the ERRβ and, notably, to the rational design of new potential and selective modulators of this emerging therapeutic target.
Collapse
Affiliation(s)
- Simone Di Micco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori 1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori 1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Maria Valeria D'Auria
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Raffaele Riccio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori 1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
26
|
Yang C, Li Q, Li Y. Targeting nuclear receptors with marine natural products. Mar Drugs 2014; 12:601-35. [PMID: 24473166 PMCID: PMC3944506 DOI: 10.3390/md12020601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qianrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
27
|
Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar Drugs 2013; 12:36-53. [PMID: 24368568 PMCID: PMC3917259 DOI: 10.3390/md12010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
In the present study we provide evidence that solomonsterol A, a selective pregnane X receptor (PXR) agonist isolated from the marine sponge Theonella swinhoei, exerts anti-inflammatory activity and attenuates systemic inflammation and immune dysfunction in a mouse model of rheumatoid arthritis. Solomonsterol A was effective in protecting against the development of arthritis induced by injecting transgenic mice harboring a humanized PXR, with anti-collagen antibodies (CAIA) with beneficial effects on joint histopathology and local inflammatory response reducing the expression of inflammatory markers (TNFα, IFNγ and IL-17 and chemokines MIP1α and RANTES) in draining lymph nodes. Solomonsterol A rescued mice from systemic inflammation were assessed by measuring arthritis score, CRP and cytokines in the blood. In summary, the present study provides a molecular basis for the regulation of systemic local and systemic immunity by PXR agonists.
Collapse
|
28
|
Sepe V, D'Amore C, Ummarino R, Renga B, D'Auria MV, Novellino E, Sinisi A, Taglialatela-Scafati O, Nakao Y, Limongelli V, Zampella A, Fiorucci S. Insights on pregnane-X-receptor modulation. Natural and semisynthetic steroids from Theonella marine sponges. Eur J Med Chem 2013; 73:126-34. [PMID: 24388834 DOI: 10.1016/j.ejmech.2013.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pregnane-X-receptor (PXR) is a member of nuclear receptors superfamily that activates gene transcription by binding to responsive elements in the promoter of target genes. PXR is a master gene orchestrating the expression/activity of genes involved in the metabolism of endobiotics including bilirubin, bile acids, glucose and lipid. In addition PXR oversights the metabolism of the large majority of xenobiotics including a large amount of prescribing drugs. Thus, developing PXR ligands represents a great opportunity for a therapeutic intervention on human diseases including diabetes, obesity, dyslipidemias and liver disorders. To this end, natural compounds represent an arsenal of new chemical scaffolds useful for the identification of novel PXR ligands. Here, we report a series of 4-methylenesteroid derivatives isolated from Theonella marine sponges as novel PXR modulators. In addition, combining medicinal chemistry, pharmacological experiments and computational studies, we have investigated the effects of different modifications on ring A and on the side chain of 4-methylenesteroid derivatives toward PXR modulation. This study provides the molecular bases of ligand/PXR interaction useful for designing novel PXR modulators.
Collapse
Affiliation(s)
- Valentina Sepe
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy.
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Raffella Ummarino
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, 06132 Perugia, Italy
| | | | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Annamaria Sinisi
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | | | - Yoichi Nakao
- Department of Chemistry and Biochemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Vittorio Limongelli
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, 06132 Perugia, Italy
| |
Collapse
|
29
|
Merk D, Steinhilber D, Schubert-Zsilavecz M. Characterizing ligands for farnesoid X receptor – availablein vitrotest systems for farnesoid X receptor modulator development. Expert Opin Drug Discov 2013; 9:27-37. [DOI: 10.1517/17460441.2014.860129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Sinisi A, Calcinai B, Cerrano C, Dien HA, Zampella A, D'Amore C, Renga B, Fiorucci S, Taglialatela-Scafati O. New tridecapeptides of the theonellapeptolide family from the Indonesian sponge Theonella swinhoei. Beilstein J Org Chem 2013; 9:1643-51. [PMID: 24062824 PMCID: PMC3778368 DOI: 10.3762/bjoc.9.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022] Open
Abstract
Chemical analysis of the organic extract of Theonella swinhoei yielded two new tridecadepsipeptides of the theonellapeptolide family, namely sulfinyltheonellapeptolide, characterized by a methylsulfinylacetyl group at the N-terminus, and theonellapeptolide If, the first member of this class of compounds to show four valine residues. The structures of the compounds, isolated along with the known theonellapeptolide Id, were determined by extensive 2D NMR and MS/MS analyses followed by application of Marfey’s method. The isolated peptides exhibited moderate antiproliferative activity against HepG2 cells, a hepatic carcinoma cell line.
Collapse
Affiliation(s)
- Annamaria Sinisi
- Dipartimento di Farmacia, Università di Napoli "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Festa C, D’Amore C, Renga B, Lauro G, De Marino S, D’Auria MV, Bifulco G, Zampella A, Fiorucci S. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Mar Drugs 2013; 11:2314-27. [PMID: 23820629 PMCID: PMC3736425 DOI: 10.3390/md11072314] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022] Open
Abstract
Further purification of the apolar extracts of the sponge Plakinastrella mamillaris, afforded a new oxygenated polyketide named gracilioether K, together with the previously isolated gracilioethers E-G and gracilioethers I and J. The structure of the new compound has been elucidated by extensive NMR (1H and 13C, COSY, HSQC, HMBC, and ROESY) and ESI-MS analysis. With the exception of gracilioether F, all compounds are endowed with potent pregnane-X-receptor (PXR) agonistic activity and therefore represent a new chemotype of potential anti-inflammatory leads. Docking calculations suggested theoretical binding modes of the identified compounds, compatible with an agonistic activity on hPXR, and clarified the molecular basis of their biological activities.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Claudio D’Amore
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| | - Barbara Renga
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy; E-Mails: (G.L.); (G.B.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Maria Valeria D’Auria
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy; E-Mails: (G.L.); (G.B.)
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-678525; Fax: +39-081-678552
| | - Stefano Fiorucci
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| |
Collapse
|
32
|
Modulation of xenobiotic receptors by steroids. Molecules 2013; 18:7389-406. [PMID: 23884115 PMCID: PMC3777271 DOI: 10.3390/molecules18077389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the expression of their target genes. NRs play important roles in many human diseases, including metabolic diseases and cancer, and are therefore a key class of therapeutic targets. Steroids play important roles in regulating nuclear receptors; in addition to being ligands of steroid receptors, steroids (and their metabolites) also regulate other NRs, such as the pregnane X receptor and constitutive androstane receptor (termed xenobiotic receptors), which participate in steroid metabolism. Xenobiotic receptors have promiscuous ligand-binding properties, and their structurally diverse ligands include steroids and their metabolites. Therefore, steroids, their metabolism and metabolites, xenobiotic receptors, steroid receptors, and the respective signaling pathways they regulate have functional interactions. This review discusses these functional interactions and their implications for activities mediated by steroid receptors and xenobiotic receptors, focusing on steroids that modulate pathways involving the pregnane X receptor and constitutive androstane receptor. The emphasis of the review is on structure-function studies of xenobiotic receptors bound to steroid ligands.
Collapse
|
33
|
Sinisi A, Calcinai B, Cerrano C, Dien HA, Zampella A, D'Amore C, Renga B, Fiorucci S, Taglialatela-Scafati O. Isoswinholide B and swinholide K, potently cytotoxic dimeric macrolides from Theonella swinhoei. Bioorg Med Chem 2013; 21:5332-8. [PMID: 23830699 DOI: 10.1016/j.bmc.2013.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023]
Abstract
Chemical investigation of an Indonesian specimen of Theonella swinhoei afforded the new dimeric macrolides isoswinholide B (5) and swinholide K (6), along with the known swinholides A (1), B (2) and D (3) and isoswinholide A (4). Isoswinholide B showed an unprecedented 21/19' lactonization pattern, while swinholide K included an sp(2) methylene attached at C-4 and an additional oxymethine group at C-5, whose configuration has been determined through application of J-based configuration analysis. The isolated swinholides (1-6), with the exception of isoswinholide B, showed a cytotoxic activity on HepG2 (hepatocarcinoma cell line) in the nanomolar range.
Collapse
Affiliation(s)
- Annamaria Sinisi
- Dipartimento di Farmacia, Università di Napoli 'Federico II', Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Di Leva FS, Festa C, D'Amore C, De Marino S, Renga B, D'Auria MV, Novellino E, Limongelli V, Zampella A, Fiorucci S. Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands. J Med Chem 2013; 56:4701-17. [PMID: 23656455 DOI: 10.1021/jm400419e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we report suvanine, a marine sponge sesterterpene, as an antagonist of the mammalian bile acid sensor farnesoid-X-receptor (FXR). Using suvanine as a template, we shed light on the molecular bases of FXR antagonism, identifying the essential conformational changes responsible for the transition from the agonist to the antagonist form. Molecular characterization of the nuclear corepressor NCoR and coactivator Src-1 revealed that receptor conformational changes are associated with a specific dynamic of recruitment of these cofactors to the promoter of OSTα, a FXR regulated gene. Using suvanine as a novel hit, a library of semisynthetic derivatives has been designed and prepared, leading to pharmacological profiles ranging from agonism to antagonism toward FXR. Deep pharmacological evaluation demonstrated that derivative 19 represents a new chemotype of FXR modulator, whereas alcohol 6, with a simplified molecular scaffold, exhibits excellent antagonistic activity.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
36
|
Espiritu RA, Matsumori N, Murata M, Nishimura S, Kakeya H, Matsunaga S, Yoshida M. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance. Biochemistry 2013; 52:2410-8. [PMID: 23477347 DOI: 10.1021/bi4000854] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theonellamides (TNMs) are members of a distinctive family of antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. Recently, it has been shown that TNMs recognize 3β-hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular membranes. However, to date, the detailed mode of sterol binding at a molecular level has not been determined. In this study, to gain insight into the mechanism of sterol recognition of TNM in lipid bilayers, surface plasmon resonance (SPR) experiments and solid-state deuterium nuclear magnetic resonance ((2)H NMR) measurements were performed on theonellamide A (TNM-A). SPR results revealed that the incorporation of 10 mol % cholesterol or ergosterol into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes significantly enhances the affinity of the peptide for the membrane, particularly in the initial binding to the membrane surface. These findings, together with the fact that binding of TNM-A to epicholesterol (3α-cholesterol)-containing liposomes and pure POPC liposomes was comparably weak, confirmed the preference of the peptide for the 3β-hydroxysterol-containing membranes. To further establish the formation of the complex of TNM-A with 3β-hydroxysterols in lipid bilayers, solid-state (2)H NMR measurements were conducted using deuterium-labeled cholesterol, ergosterol, or epicholesterol. The (2)H NMR spectra showed that TNM-A significantly inhibits the fast rotational motion of cholesterol and ergosterol, but not epicholesterol, therefore verifying the direct complexation between TNM-A and 3β-hydroxysterols in lipid bilayers. This study demonstrates that TNM-A directly recognizes the 3β-OH moiety of sterols, which greatly facilitates its binding to bilayer membranes.
Collapse
Affiliation(s)
- Rafael Atillo Espiritu
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Macchiarulo A, Carotti A, Cellanetti M, Sardella R, Gioiello A. Navigations of chemical space to further the understanding of polypharmacology in human nuclear receptors. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The article analyses properties featuring the binding site of human nuclear receptors and cognate ligands, investigating aspects of polypharmacology.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Andrea Carotti
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Marco Cellanetti
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Roccaldo Sardella
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
39
|
Preliminary structure-activity relationship on theonellasterol, a new chemotype of FXR antagonist, from the marine sponge Theonella swinhoei. Mar Drugs 2012. [PMID: 23203270 PMCID: PMC3509528 DOI: 10.3390/md10112448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using theonellasterol as a novel FXR antagonist hit, we prepared a series of semi-synthetic derivatives in order to gain insight into the structural requirements for exhibiting antagonistic activity. These derivatives are characterized by modification at the exocyclic carbon-carbon double bond at C-4 and at the hydroxyl group at C-3 and were prepared from theonellasterol using simple reactions. Pharmacological investigation showed that the introduction of a hydroxyl group at C-4 as well as the oxidation at C-3 with or without concomitant modification at the exomethylene functionality preserve the ability of theonellasterol to inhibit FXR transactivation caused by CDCA. Docking analysis showed that the placement of these molecules in the FXR-LBD is well stabilized when on ring A functional groups, able to form hydrogen bonds and π interactions, are present.
Collapse
|
40
|
Marine sponge steroids as nuclear receptor ligands. Trends Pharmacol Sci 2012; 33:591-601. [DOI: 10.1016/j.tips.2012.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
|
41
|
Festa C, Lauro G, De Marino S, D'Auria MV, Monti MC, Casapullo A, D'Amore C, Renga B, Mencarelli A, Petek S, Bifulco G, Fiorucci S, Zampella A. Plakilactones from the marine sponge Plakinastrella mamillaris. Discovery of a new class of marine ligands of peroxisome proliferator-activated receptor γ. J Med Chem 2012; 55:8303-17. [PMID: 22934537 DOI: 10.1021/jm300911g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this paper we report the isolation and the molecular characterization of a new class of PPARγ ligands from the marine environment. Biochemical characterization of a library of 13 oxygenated polyketides isolated from the marine sponge Plakinastrella mamillaris allowed the discovery of gracilioether B and plakilactone C as selective PPARγ ligands in transactivation assays. Both agents covalently bind to the PPARγ ligand binding domain through a Michael addition reaction involving a protein cysteine residue and the α,β-unsaturated ketone in their side chains. Additionally, gracilioether C is a noncovalent agonist for PPARγ, and methyl esters 1 and 2 are noncovalent antagonists. Structural requirements for the interaction of these agents within the PPARγ ligand binding domain were obtained by docking analysis. Gracilioether B and plakilactone C regulate the expression of PPARγ-dependent genes in the liver and inhibit the generation of inflammatory mediators by macrophages.
Collapse
Affiliation(s)
- Carmen Festa
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Farnesoid X receptor: from medicinal chemistry to clinical applications. Future Med Chem 2012; 4:877-91. [PMID: 22571613 DOI: 10.4155/fmc.12.41] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The farnesoid X receptor (FXR) is a bile sensor that acts in coordination with other nuclear receptors to regulate essential steps in bile acid uptake, metabolism and excretion. In addition, FXR is an ancillary receptor involved in lipid and glucose homeostasis. Steroidal and non-steroidal FXR ligands are currently available. Both groups have shown limitations in the preclinical studies regarding absorption, metabolism, specificity of target and intrinsic toxicity. FXR ligands endowed with agonistic activity are under development for the treatment of cholestatic liver diseases, including primary biliary cirrhosis and metabolic disorders linked to insulin resistance. Despite the fact that results from preclinical models are encouraging, targeting FXR holds potential for side effects (i.e., impaired cholesterol disposal and cholestasis). Thus, results from FXR gene-ablated mice and mice administered an FXR antagonist support a role for FXR antagonists or modulators (i.e., FXR agonists that selectively activate specific subsets of FXR target genes in a tissue) or co-regulator-specific manner.
Collapse
|
43
|
Chini MG, De Simone R, Bruno I, Riccio R, Dehm F, Weinigel C, Barz D, Werz O, Bifulco G. Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. Eur J Med Chem 2012; 54:311-23. [DOI: 10.1016/j.ejmech.2012.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/09/2012] [Accepted: 05/09/2012] [Indexed: 01/09/2023]
|
44
|
Sepe V, Ummarino R, D'Auria MV, Renga B, Fiorucci S, Zampella A. The First Total Synthesis of Solomonsterol B, a Marine Pregnane X Receptor Agonist. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Guo JK, Chiang CY, Lu MC, Chang WB, Su JH. 4-Methylenesterols from a sponge Theonella swinhoei. Mar Drugs 2012; 10:1536-1544. [PMID: 22851924 PMCID: PMC3407929 DOI: 10.3390/md10071536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 11/16/2022] Open
Abstract
Three new 4-methylenesterols, theonellasterol K (1), acetyltheonellasterol (2) and acetyldehydroconicasterol (3), along with two known sterols, theonellasterol (4) and theonellasterone (5), were isolated from the sponge Theonella swinhoei. The structures of these compounds were elucidated on the basis of their spectroscopic data and comparison of the NMR data with those of known analogues. Compound 1 exhibited significant cytotoxic activity against HCT-116, K562 and Molt 4 cancer cell lines.
Collapse
Affiliation(s)
- Jheng-Kun Guo
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; (J.-K.G.); (M.-C.L.)
- Graduate Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Ching-Ying Chiang
- Center of General Studies, National Kaohsiung Marine University, Kaohsiung 811, Taiwan;
| | - Mei-Chin Lu
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; (J.-K.G.); (M.-C.L.)
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Wen-Been Chang
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; (J.-K.G.); (M.-C.L.)
- Graduate Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung 944, Taiwan
- Authors to whom correspondence should be addressed; (W.-B.C.); (J.-H.S.); Tel.: +886-8-8825001 (ext. 3126); Fax: +886-8-8825087
| | - Jui-Hsin Su
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; (J.-K.G.); (M.-C.L.)
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Authors to whom correspondence should be addressed; (W.-B.C.); (J.-H.S.); Tel.: +886-8-8825001 (ext. 3126); Fax: +886-8-8825087
| |
Collapse
|
46
|
Putra MY, Bavestrello G, Cerrano C, Renga B, D'Amore C, Fiorucci S, Fattorusso E, Taglialatela-Scafati O. Polyhydroxylated sterols from the Indonesian soft coral Sinularia sp. and their effect on farnesoid X-activated receptor. Steroids 2012; 77:433-40. [PMID: 22252013 DOI: 10.1016/j.steroids.2011.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 01/12/2023]
Abstract
Chemical investigation of the Indonesian soft coral Sinularia sp. resulted in the isolation of three known (1, 2 and 7) and five new (3-6 and 8) sterols, characterized by either 24-methylcholestane or gorgostane skeletons. The stereostructures of the new compounds have been elucidated by application of HR-MS and 2D NMR techniques. The isolated steroids have been evaluated for their interaction with the farnesoid X-activated receptor (FXR) and some of them, including the new compound 3 and gorgosterol (7), showed a consistent antagonistic activity, potentially useful for the treatment of cholestasis. The FXR antagonistic activity of gorgosterol (7) was also supported by gene expression experiments. Our results represent the first evaluation of soft coral steroids for interaction with nuclear receptors and qualify gorgosterol (7) as a new chemotype of FXR antagonist.
Collapse
Affiliation(s)
- Masteria Yunovilsa Putra
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
De Marino S, Ummarino R, D'Auria MV, Chini MG, Bifulco G, D'Amore C, Renga B, Mencarelli A, Petek S, Fiorucci S, Zampella A. 4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity. Steroids 2012; 77:484-95. [PMID: 22285937 DOI: 10.1016/j.steroids.2012.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
Abstract
We report the isolation and the structural elucidation of a family of polyhydroxylated steroids from the marine sponge Theonella swinhoei. Decodification of interactions of these family with nuclear receptors shows that these steroids are potent agonists of human pregnane-X-receptor (PXR) and antagonists of human farnesoid-X-receptor (FXR) with the putative binding mode to nuclear receptors (NRs) obtained through docking experiments. By using monocytes isolated from transgenic mice harboring hPXR, we demonstrated that swinhosterol B counter-regulates induction of pro-inflammatory cytokines in a PXR-dependent manner. Exposure of CD4(+) T cells to swinhosterol B upregulates the expression of IL-10 causing a shift toward a T cells regulatory phenotype in a PXR dependent manner. These results pave the way to development of a dual PXR agonist/FXR antagonist with a robust immunomodulatory activity and endowed with the ability to modulate the expression of bile acid-regulated genes in the liver.
Collapse
MESH Headings
- Animals
- Binding Sites
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/metabolism
- Cholesterol/analogs & derivatives
- Cholesterol/chemistry
- Cholesterol/isolation & purification
- Cholesterol/pharmacology
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression/drug effects
- Gene Expression Profiling
- Hep G2 Cells
- Humans
- Isomerism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Structure
- Monocytes/drug effects
- Monocytes/metabolism
- Pregnane X Receptor
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Steroid/agonists
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sterols/chemistry
- Sterols/isolation & purification
- Sterols/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Theonella/chemistry
Collapse
Affiliation(s)
- Simona De Marino
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Festa C, De Marino S, D’Auria MV, Monti MC, Bucci M, Vellecco V, Debitus C, Zampella A. Anti-inflammatory cyclopeptides from the marine sponge Theonella swinhoei. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Chini MG, Jones CR, Zampella A, D’Auria MV, Renga B, Fiorucci S, Butts CP, Bifulco G. Quantitative NMR-Derived Interproton Distances Combined with Quantum Mechanical Calculations of 13C Chemical Shifts in the Stereochemical Determination of Conicasterol F, a Nuclear Receptor Ligand from Theonella swinhoei. J Org Chem 2012; 77:1489-96. [DOI: 10.1021/jo2023763] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Giovanna Chini
- Dipartimento di Scienze Farmaceutiche
e Biomediche, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
| | - Catharine R. Jones
- Department of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol,
United Kingdom
| | - Angela Zampella
- Dipartimento
di Chimica delle
Sostanze Naturali, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Maria Valeria D’Auria
- Dipartimento
di Chimica delle
Sostanze Naturali, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica
e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori
1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica
e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori
1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Craig P. Butts
- Department of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol,
United Kingdom
| | - Giuseppe Bifulco
- Dipartimento di Scienze Farmaceutiche
e Biomediche, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
| |
Collapse
|
50
|
Renga B, Mencarelli A, D'Amore C, Cipriani S, D'Auria MV, Sepe V, Chini MG, Monti MC, Bifulco G, Zampella A, Fiorucci S. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PLoS One 2012; 7:e30443. [PMID: 22291955 PMCID: PMC3264597 DOI: 10.1371/journal.pone.0030443] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Background The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions. Principal Findings Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTα, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4. Conclusions FXR antagonism in vivo results in a positive modulation of MRP4 expression in the liver and is a feasible strategy to target obstructive cholestasis.
Collapse
Affiliation(s)
- Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Sabrina Cipriani
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Maria Valeria D'Auria
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, “Federico II”, Napoli, Italy
| | - Valentina Sepe
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, “Federico II”, Napoli, Italy
| | - Maria Giovanna Chini
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Salerno, Italy
| | - Maria Chiara Monti
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Salerno, Italy
| | - Giuseppe Bifulco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Fisciano, Salerno, Italy
| | - Angela Zampella
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, “Federico II”, Napoli, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facoltà di Medicina e Chirurgia, Università di Perugia, S. Andrea delle Fratte, Perugia, Italy
- * E-mail:
| |
Collapse
|