1
|
Sharma A, Singh J, Sharma A. Synthesis of Quinazolinones and Benzothiazoles Using α-Keto Acids under Ball Milling. J Org Chem 2024; 89:5229-5238. [PMID: 38551089 DOI: 10.1021/acs.joc.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Mechanochemistry refers to the initiation of chemical reactions via mechanical forces such as milling, grinding, or shearing to achieve the chemical transformations. As a manifestation of mechanocatalysis, herein, an oxidant-free and solvent-free approach for the synthesis of quinazolinones (23 derivatives) and benzothiazoles (23 derivatives) has been developed through stainless-steel-driven decarboxylative acyl radical generation from α-keto acids. A library of 2-arylquinazolinones and 2-arylbenzothiazoles has been prepared in moderate to good yields at room temperature. Moreover, control experiments and XPS studies supported the reduction (by zerovalent iron) of molecular oxygen through the moderate abrasion of balls, which promoted the generation of a superoxide radical anion via a SET process.
Collapse
Affiliation(s)
- Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
2
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Jin R, Wang J, Li M, Tang T, Feng Y, Zhou S, Xie H, Feng H, Guo J, Fu R, Liu J, Tang Y, Shi Y, Guo H, Wang Y, Nie F, Li J. Discovery of a Novel Benzothiadiazine-Based Selective Aldose Reductase Inhibitor as Potential Therapy for Diabetic Peripheral Neuropathy. Diabetes 2024; 73:497-510. [PMID: 38127948 DOI: 10.2337/db23-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Aldose reductase 2 (ALR2), an activated enzyme in the polyol pathway by hyperglycemia, has long been recognized as one of the most promising targets for complications of diabetes, especially in diabetic peripheral neuropathy (DPN). However, many of the ALR2 inhibitors have shown serious side effects due to poor selectivity over aldehyde reductase (ALR1). Herein, we describe the discovery of a series of benzothiadiazine acetic acid derivatives as potent and selective inhibitors against ALR2 and evaluation of their anti-DPN activities in vivo. Compound 15c, carrying a carbonyl group at the 3-position of the thiadiazine ring, showed high potent inhibition against ALR2 (IC50 = 33.19 nmol/L) and ∼16,109-fold selectivity for ALR2 over ALR1. Cytotoxicity assays ensured the primary biosafety of 15c. Further pharmacokinetic assay in rats indicated that 15c had a good pharmacokinetic feature (t1/2 = 5.60 h, area under the plasma concentration time curve [AUC(0-t)] = 598.57 ± 216.5 μg/mL * h), which was superior to epalrestat (t1/2 = 2.23 h, AUC[0-t] = 20.43 ± 3.7 μg/mL * h). Finally, in a streptozotocin-induced diabetic rat model, 15c significantly increased the nerve conduction velocities of impaired sensory and motor nerves, achieved potent inhibition of d-sorbitol production in the sciatic nerves, and significantly increased the paw withdrawal mechanical threshold. By combining the above investigations, we propose that 15c might represent a promising lead compound for the discovery of an antidiabetic peripheral neuropathy drug. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ruyi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
| | - Jin Wang
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
- Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, China
| | - Mingyue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Tian Tang
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
- Cali Biosciences, Shenzhen, China
| | - Yidong Feng
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
| | - Sha Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin, China
| | - Honglei Xie
- School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Yantai, China
| | - Haiyu Feng
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Ruijia Fu
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuping Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Guo
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuwei Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fayi Nie
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Qi Z, Wen S, Hao Li, Liu S, Jiang D. Palladium-Catalyzed Aminosulfonylation of ortho-Iodoanilines with the Insertion of Sulfur Dioxide for the Synthesis of 3,4-Dihydro-benzothiadiazine 1,1-Dioxides. Org Lett 2023; 25:7322-7326. [PMID: 37791747 DOI: 10.1021/acs.orglett.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A simple and efficient Pd-catalyzed oxidative cyclization system is developed for the chemo- and regioselective synthesis of 3,4-dihydro-benzothiadiazine 1,1-dioxides, which are formed through aminosulfonylation of ortho-iodoanilines with SO2. DABSO is utilized as the source of SO2, and the organic compound O2 acts as an oxidant. This direct C-S, S-N, and C-N functionalization is highly efficient, and broad functional group tolerance is observed, resulting in moderate to excellent yields of 3,4-dihydro-benzothiadiazine 1,1-dioxides. Furthermore, this method is amenable to gram-scale synthesis.
Collapse
Affiliation(s)
- Zhenjie Qi
- Department of Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Simiaomiao Wen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410219, China
| | - Hao Li
- Department of Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Dongfang Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410219, China
| |
Collapse
|
5
|
Tian Y, Nusantara AC, Hamoh T, Mzyk A, Tian X, Perona Martinez F, Li R, Permentier HP, Schirhagl R. Functionalized Fluorescent Nanodiamonds for Simultaneous Drug Delivery and Quantum Sensing in HeLa Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39265-39273. [PMID: 35984747 PMCID: PMC9437893 DOI: 10.1021/acsami.2c11688] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we present multifunctional fluorescent nanodiamonds (FNDs) for simultaneous drug delivery and free radical detection. For this purpose, we modified FNDs containing nitrogen vacancy (NV) centers with a diazoxide derivative. We found that our particles enter cells more easily and are able to deliver this cancer drug into HeLa cells. The particles were characterized by infrared spectroscopy, dynamic light scattering, and secondary electron microscopy. Compared to the free drug, we observe a sustained release over 72 h rather than 12 h for the free drug. Apart from releasing the drug, with these particles, we can measure the drug's effect on free radical generation directly. This has the advantage that the response is measured locally, where the drug is released. These FNDs change their optical properties based on their magnetic surrounding. More specifically, we make use of a technique called relaxometry to detect spin noise from the free radical at the nanoscale with subcellular resolution. We further compared the results from our new technique with a conventional fluorescence assay for the detection of reactive oxygen species. This provides a new method to investigate the relationship between drug release and the response by the cell via radical formation or inhibition.
Collapse
Affiliation(s)
- Yuchen Tian
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Anggrek C. Nusantara
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Thamir Hamoh
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Aldona Mzyk
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
- Institute
of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059, Cracow, Poland
| | - Xiaobo Tian
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Felipe Perona Martinez
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Hjalmar P. Permentier
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| |
Collapse
|
6
|
Rao MS, Hussain S. One-Pot, Borax-mediated synthesis of structurally diverse N, S-heterocycles in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chhabra S, Shah K. The novel scaffold 1,2,4-benzothiadiazine-1,1-dioxide: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Xing Y, Dong F, Yin X, Wang L, Li S. Facile Construction of 3,4‐dihydro‐2H‐1,2,4‐Benzothiadiazine 1,1‐Dioxides via Redox‐Neutral Cascade Condensation/[1,7]‐Hydride Transfer/Cyclization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yingying Xing
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory The Affiliated Hospital of Qingdao University No. 16, Jiangsu Rd. Qingdao 266003 P. R. China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering Qingdao University of Science and Technology No.53, Zhengzhou Rd. Qingdao 266042 P. R. China
| | - Shuai‐Shuai Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University No.700, Changcheng Rd. Qingdao 266109 P. R. China
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering Qingdao University of Science and Technology No.53, Zhengzhou Rd. Qingdao 266042 P. R. China
| |
Collapse
|
9
|
Kumar GR, Banik S, Ramesh B, Sridhar B, Venkata Subba Reddy B. Oxidative Annulation of 3-Aryl-2 H
-benzo[e][1,2,4]thiadiazine-1,1-dioxides with Aryl Aldehydes: An Easy Access to Hydroxyisoindolo[1,2- b
] benzothiadiazinedioxide Scaffolds. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G. Ravi Kumar
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | - Swarnayu Banik
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | - Boora Ramesh
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | - Balasubramanian Sridhar
- Laboratory of X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; 500 007 Hyderabad India
| | | |
Collapse
|
10
|
Padmaja RD, Balamurali MM, Chanda K. One-Pot, Telescopic Approach for the Chemoselective Synthesis of Substituted Benzo[e]pyrido/pyrazino/pyridazino[1,2-b][1,2,4]thiadiazine dioxides and Their Significance in Biological Systems. J Org Chem 2019; 84:11382-11390. [DOI: 10.1021/acs.joc.9b00869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| |
Collapse
|
11
|
Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019; 26:2062-2084. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. OBJECTIVE Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. METHODS In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. CONCLUSION This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Jonali Ramani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| |
Collapse
|
12
|
Teng Q, Sun Y, Yao Y, Tang H, Li J, Pan Y. Metal‐ and Catalyst‐Free Electrochemical Synthesis of Quinazolinones from Alkenes and 2‐Aminobenzamides. ChemElectroChem 2019. [DOI: 10.1002/celc.201900682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qing‐Hu Teng
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Yu Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Jia‐Rong Li
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
13
|
Dalvi PB, Lin KL, Kulkarni MV, Sun CM. Rhodium-Catalyzed Regioselective Synthesis of Isocoumarins through Benzothiadiazine-Fused Frameworks. Org Lett 2016; 18:3706-9. [DOI: 10.1021/acs.orglett.6b01408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prashant B. Dalvi
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan, ROC
| | - Kuang-Ling Lin
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan, ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100
Shih-Chuan First Road, Kaohsiung 807-08, Taiwan, ROC
| | - Manohar V. Kulkarni
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan, ROC
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan, ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100
Shih-Chuan First Road, Kaohsiung 807-08, Taiwan, ROC
| |
Collapse
|
14
|
Xi LY, Zhang RY, Shi L, Chen SY, Yu XQ. Iodine-mediated synthesis of 3-acylbenzothiadiazine 1,1-dioxides. Beilstein J Org Chem 2016; 12:1072-8. [PMID: 27340493 PMCID: PMC4902049 DOI: 10.3762/bjoc.12.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
An iodine-mediated synthesis of 3-acylbenzothiadizine 1,1-dioxides is described. A range of electronically diverse acetophenones reacted well with several 2-aminobenzenesulfonamides, affording 3-acylbenzothiadiazine 1,1-dioxides in good yields.
Collapse
Affiliation(s)
- Long-Yi Xi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ruo-Yi Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Lei Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
15
|
Kumar PPS, Suchetan PA, Sreenivasa S, Naveen S, Lokanath NK, Kumar DBA. Molecular and crystal structures of two 1,2,4-benzothiadiazine derivatives. J STRUCT CHEM+ 2015. [DOI: 10.1134/s0022476615070215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Shinoj Kumar PP, Suchetan PA, Sreenivasa S, Naveen S, Lokanath NK, Aruna Kumar DB. Crystal structure of (R)-6'-bromo-3,3-dimethyl-3',4'-di-hydro-2'H-spiro-[cyclo-hexane-1,3'-1,2,4-benzo-thia-diazine] 1',1'-dioxide. Acta Crystallogr Sect E Struct Rep Online 2014; 70:359-61. [PMID: 25484745 PMCID: PMC4257282 DOI: 10.1107/s1600536814022417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 11/10/2022]
Abstract
In the title compound, C14H19BrN2O2S, the 1,2,4-thia-diazinane ring adopts an envelope conformation with the N atom (attached to the sulfonyl group) as the flap, while the cyclo-hexane ring adopts a chair conformation. The mean plane of the cyclo-hexane ring is almost normal to the benzene ring and the mean plane of the 1,2,4-thia-diazinane ring, making dihedral angles of 70.4 (2) and 71.43 (19)°, respectively. Furthermore, the dihedral angle between the benzene ring and the mean plane of the 1,2,4-thia-diazinane ring is 4.91 (18)°. The mol-ecular structure is stabilized by an intra-molecular C-H⋯O hydrogen bond, which encloses an S(6) ring motif. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds into chains along [10-1], forming a C(6) graph-set motif. These chains are inter-connected via C-H⋯π inter-actions, leading to chains along [-101], so finally forming sheets parallel to (010).
Collapse
Affiliation(s)
- P P Shinoj Kumar
- Department of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, India
| | - P A Suchetan
- Department of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur 572 013, India
| | - S Sreenivasa
- Department of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, India
| | - S Naveen
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, India
| | - N K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India
| | - D B Aruna Kumar
- Department of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103, India
| |
Collapse
|
17
|
Kolesnik NP, Rozhenko AB, Kinzhybalo V, Lis T, Shermolovich YG. 1-Oxo-1-fluoro-1,2,4-benzothiadiazines—A new type of cyclic sulfonimidoyl fluorides. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Raphemot R, Swale DR, Dadi PK, Jacobson DA, Cooper P, Wojtovich AP, Banerjee S, Nichols CG, Denton JS. Direct activation of β-cell KATP channels with a novel xanthine derivative. Mol Pharmacol 2014; 85:858-65. [PMID: 24646456 DOI: 10.1124/mol.114.091884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry.
Collapse
Affiliation(s)
- Rene Raphemot
- Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sharif M, Opalach J, Langer P, Beller M, Wu XF. Oxidative synthesis of quinazolinones and benzothiadiazine 1,1-dioxides from 2-aminobenzamide and 2-aminobenzenesulfonamide with benzyl alcohols and aldehydes. RSC Adv 2014. [DOI: 10.1039/c3ra45765f] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
20
|
Constant-Urban C, Charif M, Goffin E, Van Heugen JC, Elmoualij B, Chiap P, Mouithys-Mickalad A, Serteyn D, Lebrun P, Pirotte B, De Tullio P. Triphenylphosphonium salts of 1,2,4-benzothiadiazine 1,1-dioxides related to diazoxide targeting mitochondrial ATP-sensitive potassium channels. Bioorg Med Chem Lett 2013; 23:5878-81. [DOI: 10.1016/j.bmcl.2013.08.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023]
|
21
|
Pirotte B, de Tullio P, Florence X, Goffin E, Somers F, Boverie S, Lebrun P. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action. J Med Chem 2013; 56:3247-56. [PMID: 23517501 DOI: 10.1021/jm301743b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.
Collapse
Affiliation(s)
- Bernard Pirotte
- Laboratoire de Chimie Pharmaceutique, Centre Interfacultaire de Recherche du Médicament (Drug Research Center), Université de Liège, CHU, 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Majumdar KC, Ganai S. Facile synthesis of benzothiadiazine 1,1-dioxides, a precursor of RSV inhibitors, by tandem amidation/intramolecular aza-Wittig reaction. Beilstein J Org Chem 2013; 9:503-9. [PMID: 23616790 PMCID: PMC3629032 DOI: 10.3762/bjoc.9.54] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/07/2013] [Indexed: 01/22/2023] Open
Abstract
Reaction of o-azidobenzenesulfonamides with ethyl carbonochloridate afforded the corresponding amide derivatives, which gave 3-ethoxy-1,2,4-benzothiadiazine 1,1-dioxides through an intramolecular aza-Wittig reaction. The reaction was found to be general through the synthesis of a number of benzothiadiazine 1,1-dioxides. Acid-catalyzed hydrolysis of 3-ethoxy-1,2,4-benzothiadiazine 1,1-dioxides furnished the 2-substituted benzothiadiazine-3-one 1,1-dioxides in good yields and high purity, which is the core moiety of RSV inhibitors.
Collapse
Affiliation(s)
- Krishna C Majumdar
- Department of Chemistry, University of Kalyani, Kalyani 741235, W.B India
| | | |
Collapse
|
23
|
Kumar SK, Rambabu D, Kumar CHV, Sreenivas BY, Prasad KRS, Rao MVB, Pal M. Catalysis by Amberlyst-15 under ultrasound in water: a green synthesis of 1,2,4-benzothiadiazine-1,1-dioxides and their spiro derivatives. RSC Adv 2013. [DOI: 10.1039/c3ra44703k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|