1
|
Mohammed OA, Doghish AS, Saleh LA, Alghamdi M, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Alshahrani AM, Alhalafi AH, BinAfif WF, Rezigalla AA, Abdel-Reheim MA, El-Wakeel HS, Attia MA, Elmorsy EA, Al-Noshokaty TM, Nomier Y, Saber S. Itraconazole halts hepatocellular carcinoma progression by modulating sonic hedgehog signaling in rats: A novel therapeutic approach. Pathol Res Pract 2024; 253:155086. [PMID: 38176308 DOI: 10.1016/j.prp.2023.155086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/β-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah M Alshahrani
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hend S El-Wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Qalubyia 13518, Egypt; Physiology Department, Al-Baha Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia.
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences , College of Medicine Almaarefa University Diriyiah, 13713, Riyadh, Saudi Arabia.
| | - Elsayed A Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Therapeutics Department, Qassim College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
2
|
Harrington S, Pyche J, Burns AR, Spalholz T, Ryan KT, Baker RJ, Ching J, Rufener L, Lautens M, Kulke D, Vernudachi A, Zamanian M, Deuther-Conrad W, Brust P, Roy PJ. Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter with anthelmintic potential. Nat Commun 2023; 14:1816. [PMID: 37002199 PMCID: PMC10066365 DOI: 10.1038/s41467-023-37452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tina Spalholz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Kaetlyn T Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Baker
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Justin Ching
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Lucien Rufener
- INVENesis Sàrl, Route de Neuchâtel 15A, 2072, St Blaise (NE), Switzerland
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
- Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55218, Ingelheim am Rhein, Germany
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562, Lübeck, Germany
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Li CL, Fang ZX, Wu Z, Hou YY, Wu HT, Liu J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed Pharmacother 2022; 154:113616. [PMID: 36055112 DOI: 10.1016/j.biopha.2022.113616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding cancer biology and the development of novel agents for cancer treatment has always been the goal of cancer researchers. However, the research and development of new drugs is hindered by its long development time, exorbitant cost, high regulatory hurdles, and staggering failure rates. Given the challenges involved drug development for cancer therapies, alternative strategies, in particular the repurposing of 'old' drugs that have been approved for other indications, are attractive. Itraconazole is an FDA-approved anti-fungal drug of the triazole class, and has been used clinically for more than 30 years. Recent drug repurposing screens revealed itraconazole exerts anti-cancer activity via inhibiting angiogenesis and multiple oncogenic signaling pathways. To explore the potential utilization of itraconazole in different types of malignancies, we retrieved the published literature relating to itraconazole in cancer and reviewed the mechanisms of itraconazole in preclinical and clinical cancer studies. Current research predicts the hedgehog signaling pathway as the main target by which itraconazole inhibits a variety of solid and hematological cancers. As clinical trial results become available, itraconazole could emerge as a new antitumor drug that can be used in combination with first-line antitumor drugs.
Collapse
Affiliation(s)
- Chun-Lan Li
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Saker Z, Rizk M, Bahmad HF, Nabha SM. Targeting Angiogenic Factors for the Treatment of Medulloblastoma. Curr Treat Options Oncol 2022; 23:864-886. [PMID: 35412196 DOI: 10.1007/s11864-022-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
Abstract
OPINION STATEMENT Medulloblastoma (MB) is the most frequent pediatric brain tumor. Despite conventional therapy, MB patients have high mortality and morbidity rates mainly due to the incomplete understanding of the molecular and cellular processes involved in development of this cancer. Similar to other solid tumors, MB demonstrated high endothelial cell proliferation and angiogenic activity, wherein new blood vessels arise from the pre-existing vasculature, a process named angiogenesis. MB angiogenesis is considered a hallmark for MB development, progression, and metastasis emphasizing its potential target for antitumor therapy. However, angiogenesis is tightly regulated by a set of angiogenic factors making it a complex process to be targeted. Although agents targeting these factors and their receptors are early in development, the potential for their targeting may translate into improvement in the clinical care for MB patients. In this review, we focus on the most potent angiogenic factors and their corresponding receptors, highlighting their basic properties and expression in MB. We describe their contribution to MB tumorigenesis and angiogenesis and the potential therapeutic targeting of these factors.
Collapse
Affiliation(s)
- Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA.
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
5
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
6
|
Kelly RJ, Ansari AM, Miyashita T, Zahurak M, Lay F, Ahmed AK, Born LJ, Pezhouh MK, Salimian KJ, Ng C, Matsangos AE, Stricker-Krongrad AH, Mukaisho KI, Marti GP, Chung CH, Canto MI, Rudek MA, Meltzer SJ, Harmon JW. Targeting the Hedgehog Pathway Using Itraconazole to Prevent Progression of Barrett's Esophagus to Invasive Esophageal Adenocarcinoma. Ann Surg 2021; 273:e206-e213. [PMID: 31290765 PMCID: PMC8147663 DOI: 10.1097/sla.0000000000003455] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of the study was to investigate whether inhibition of Sonic Hedgehog (SHH) pathway would prevent progression of Barrett's Esophagus (BE) to esophageal adenocarcinoma. BACKGROUND The hedgehog signaling pathway is a leading candidate as a molecular mediator of BE and esophageal adenocarcinoma (EAC). Repurposed use of existing off-patent, safe and tolerable drugs that can inhibit hedgehog, such as itraconazole, could prevent progression of BE to EAC. METHODS The efficacy of itraconazole was investigated using a surgical rat reflux model of Barrett's Metaplasia (BM). Weekly intraperitoneal injections of saline (control group) or itraconazole (treatment group; 200 mg/kg) were started at 24 weeks postsurgery. Esophageal tissue was harvested at 40 weeks. The role of the Hh pathway was also evaluated clinically. Esophageal tissue was harvested after 40 weeks for pathological examination and evaluation of the SHH pathway by immunohistochemistry. RESULTS BM was present in control animals 29 of 31 (93%) versus itraconazole 22 of 24 (91%). EAC was significantly lower in itraconazole 2 of 24 (8%) versus control 10 of 31 (32%), respectively (P = 0.033). Esophageal SHH levels were lower in itraconazole vs control (P = 0.12). In esophageal tissue from humans with recurrent or persistent dysplastic BE within 24 months of ablative treatment, strong SHH and Indian Hedgehog expression occurred in distal BE versus proximal squamous epithelium, odds ratio = 6.1 (95% confidence interval: 1.6, 23.4) and odds ratio = 6.4 (95% confidence interval: 1.2, 32.8), respectively. CONCLUSION Itraconazole significantly decreases EAC development and SHH expression in a preclinical animal model of BM. In humans, BE tissue expresses higher SHH, Indian Hedgehog, and bone morphogenic protein levels than normal squamous esophageal epithelium.
Collapse
Affiliation(s)
- Ronan J Kelly
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX
| | - Amir M Ansari
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tomoharu Miyashita
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marianna Zahurak
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD
| | - Frank Lay
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - A Karim Ahmed
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Louis J Born
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Maryam K Pezhouh
- Department of Pathology, Northwestern University School of Medicine, Chicago, IL
| | - Kevan J Salimian
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - Christopher Ng
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aerielle E Matsangos
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Ken-Ichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Guy P Marti
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL
| | - Marcia I Canto
- Department of Medicine, Division of gastroenterology, The Johns Hopkins University School of Medicine
| | - Michelle A Rudek
- Analytical Pharmacology Core, Department of Oncology, Department of Medicine/Division of Clinical Pharmacology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephen J Meltzer
- Department of Medicine, Division of gastroenterology, The Johns Hopkins University School of Medicine
| | - John W Harmon
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Li Y, Pasunooti KK, Peng H, Li RJ, Shi WQ, Liu W, Cheng Z, Head SA, Liu JO. Design and Synthesis of Tetrazole- and Pyridine-Containing Itraconazole Analogs as Potent Angiogenesis Inhibitors. ACS Med Chem Lett 2020; 11:1111-1117. [PMID: 32550989 DOI: 10.1021/acsmedchemlett.9b00438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/08/2020] [Indexed: 11/28/2022] Open
Abstract
Itraconazole, a widely used antifungal drug, was found to possess antiangiogenic activity and is currently undergoing multiple clinical trials for the treatment of different types of cancer. However, it suffers from extremely low solubility and strong interactions with many drugs through inhibition of CYP3A4, limiting its potential as a new antiangiogenic and anticancer drug. To address these issues, a series of analogs in which the phenyl group is replaced with pyridine or fluorine-substituted benzene was synthesized. Among them the pyridine- and tetrazole-containing compound 24 has significantly improved solubility and reduced CYP3A4 inhibition compared to itraconazole. Similar to itraconazole, compound 24 inhibited the AMPK/mTOR signaling axis and the glycosylation of VEGFR2. It also induced cholesterol accumulation in the endolysosome and demonstrated binding to the sterol-sensing domain of NPC1 in a simulation study. These results suggested that compound 24 may serve as an attractive candidate for the development of a new generation of antiangiogenic drug.
Collapse
Affiliation(s)
- Yingjun Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Kalyan Kumar Pasunooti
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Hanjing Peng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ruo-Jing Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wei Q Shi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wukun Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Wen J, Teske KA, Kyle Hadden M. Inhibition of hedgehog signaling by stereochemically defined des-triazole itraconazole analogues. Bioorg Med Chem Lett 2020; 30:126794. [PMID: 31761657 PMCID: PMC6942223 DOI: 10.1016/j.bmcl.2019.126794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023]
Abstract
Dysregulation of the hedgehog (Hh) signaling pathway is associated with cancer occurrence and development in various malignancies. Previous structure-activity relationships (SAR) studies have provided potent Itraconazole (ITZ) analogues as Hh pathway antagonists. To further expand on our SAR for the ITZ scaffold, we synthesized and evaluated a series of compounds focused on replacing the triazole. Our results demonstrate that the triazole region is amenable to modification to a variety of different moieties; with a single methyl group representing the most favorable substituent. In addition, nonpolar substituents were more active than polar substituents. These SAR results provide valuable insight into the continued exploration of ITZ analogues as Hh pathway antagonists.
Collapse
Affiliation(s)
- Jiachen Wen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Kelly A Teske
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States.
| |
Collapse
|
9
|
Dey K, Gayen S, Ghosh M. Investigation of the Detailed Internal Structure and Dynamics of Itraconazole by Solid-State NMR Measurements. ACS OMEGA 2019; 4:21627-21635. [PMID: 31867560 PMCID: PMC6921643 DOI: 10.1021/acsomega.9b03558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The structure and dynamics of itraconazole were investigated by 13C 2DPASS MAS SSNMR and spin-lattice relaxation time measurement to get an insight into its multiple biological activities, e.g., antifungal, antiviral, anticancer activities, etc. The molecular correlation time at chemically different sites of carbon nuclei was calculated by considering that the spin-lattice relaxation mechanism is mainly dominated by chemical shift anisotropy interaction and heteronuclear dipole-dipole interaction. The spin-lattice relaxation time is long for C35, C6, C5, and C34 carbon nuclei that participated in the 1, 2, 4-triazole ring. On the contrary, it is comparatively shorter for C1, C2, C3, and C4 carbon nuclei associated with the sec-butyl group in the triazolane side-chain region. Chemical shift anisotropy (CSA) parameters of C5, C6, C34, and C35 nuclei are much higher than those of C1, C2, C3, C4 nuclei, indicating that the relaxation mechanism at a high value of magnetic field is predominated by chemical shift anisotropy interaction. The molecular correlation time of carbon nuclei residing at the side-chain region is 2-3 orders of magnitude lesser than that of those participated in the 1,2,4-triazole ring. The spin-lattice relaxation time is very long for carbon nuclei C28 and C30 bonded with chlorine. Asymmetry and anisotropy parameters are also very high for the spinning CSA sideband pattern corresponding to the C28 and C30 nuclei. The molecular correlation time is on the order of 10-3 s for C28 and 10-4 s for C30, whereas for side-chain carbon nuclei, it is on the order of 10-6 s. This suggests that the effective magnetic field experienced by C28 and C30 nuclei is affected by the polarization of the chemical bond. A huge variation in molecular correlation time is observed for chemically different sites of carbon nuclei of the itraconazole molecule. These investigations vividly portrayed how the structure is correlated with the dynamics of a valuable drug, itraconazole, with multiple biological activities. This study will enlighten the way of inventing advance medicine for multiple biological activities in the pharmaceutical industry.
Collapse
Affiliation(s)
- Krishna
Kishor Dey
- Department
of Physics and Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Shovanlal Gayen
- Department
of Physics and Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Manasi Ghosh
- Department
of Physics and Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
10
|
You Y, Chen Y, You C, Wang J, Weng Z. Synthesis of 3-(tri/difluoromethyl)-1H-1,2,4-triazol-5(4H)-ones via the cyclization of hydrazinecarboxamides with tri/difluoroacetic anhydride. Org Biomol Chem 2019; 17:9343-9347. [PMID: 31612898 DOI: 10.1039/c9ob01865d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An efficient method for the synthesis of structurally diverse 4-aryl-3-(tri/difluoromethyl)-1H-1,2,4-triazol-5(4H)-ones through the cyclization of hydrazinecarboxamides with tri/difluoroacetic anhydride is presented. The method is simple and environmentally benign, providing tri/difluoromethylated 1,2,4-triazol-5(4H)-ones in moderate-to-good yields. A mechanism is proposed to proceed via a tandem reaction of tri/difluoroacetylation, nucleophilic addition and water elimination. Some of these compounds exhibit promising insecticidal activities.
Collapse
Affiliation(s)
- Yi You
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | | | | | | | | |
Collapse
|
11
|
Wen J, Chennamadhavuni D, Morel SR, Hadden MK. Truncated Itraconazole Analogues Exhibiting Potent Anti-Hedgehog Activity and Improved Drug-like Properties. ACS Med Chem Lett 2019; 10:1290-1295. [PMID: 31531199 DOI: 10.1021/acsmedchemlett.9b00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
We conducted a structure-activity relationship study to explore simplified analogues of the itraconazole (ITZ) scaffold for their ability to inhibit the hedgehog (Hh) signaling pathway. These analogues were based on exploring the effects of chemical modifications to the linker and triazolone/side chain region of ITZ. Analogue 11 was identified as the most potent compound in our first generation, with an IC50 value of 81 nM in a murine Hh-dependent basal cell carcinoma. Metabolic identification studies led us to identify truncated piperazine (26) as the major metabolite in human liver microsomes (HLMs) and an improved Hh pathway inhibitor (IC50 = 22 nM). This work verifies that continued truncation of the ITZ scaffold is a practical method to maintain potent anti-Hh activity while also reducing the molecular weight for the ITZ scaffold and achieving improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Jiachen Wen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06029-3092, United States
| | - Divya Chennamadhavuni
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06029-3092, United States
| | - Shana R. Morel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06029-3092, United States
| | - M. Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06029-3092, United States
| |
Collapse
|
12
|
Li K, Fang D, Xiong Z, Luo R. Inhibition of the hedgehog pathway for the treatment of cancer using Itraconazole. Onco Targets Ther 2019; 12:6875-6886. [PMID: 31692536 PMCID: PMC6711563 DOI: 10.2147/ott.s223119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/07/2019] [Indexed: 01/16/2023] Open
Abstract
Itraconazole (ITZ) is an anti-fungal drug that has been used in clinical practice for nearly 35 years. Recently, numerous experiments have shown that ITZ possesses anti-cancer properties. The Hedgehog (Hh) pathway plays a pivotal role in fundamental processes, including embryogenesis, structure, morphology and proliferation in various species. This pathway is typically silent in adult cells, and inappropriate activity is linked to various tumor types. The most important mechanism of ITZ in the treatment of cancer is inhibition of the Hh pathway through the inhibition of smoothened receptors (SMO), glioma-associated oncogene homologs (GLI), and their downstream targets. In this review, we discuss the mechanisms of ITZ in the treatment of cancer through inhibition of the Hh pathway, which includes anti-inflammation, prevention of tumor growth, induction of cell cycle arrest, induction of apoptosis and autophagy, prevention of angiogenesis, and drug resistance. We also discuss the clinical use of ITZ in many types of cancers. We hope this review will provide more information to support future studies on ITZ in the treatment of various cancers.
Collapse
Affiliation(s)
- Ke Li
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Zuming Xiong
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, People's Republic of China
| |
Collapse
|
13
|
|
14
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
15
|
Pace JR, Teske KA, Chau LQ, Dash RC, Zaino AM, Wechsler-Reya RJ, Hadden MK. Structure-Activity Relationships for Itraconazole-Based Triazolone Analogues as Hedgehog Pathway Inhibitors. J Med Chem 2019; 62:3873-3885. [PMID: 30896941 PMCID: PMC7450990 DOI: 10.1021/acs.jmedchem.8b01283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Food and Drug Administration-approved antifungal agent, itraconazole (ITZ), has been increasingly studied for its novel biological properties. In particular, ITZ inhibits the hedgehog (Hh) signaling pathway and has the potential to serve as an anticancer chemotherapeutic against several Hh-dependent malignancies. We have extended our studies on ITZ analogues as Hh pathway inhibitors through the design, synthesis, and evaluation of novel des-triazole ITZ analogues that incorporate modifications to the triazolone/side chain region of the scaffold. Our overall results suggest that the triazolone/side chain region can be replaced with various functionalities (hydrazine carboxamides and meta-substituted amides) resulting in improved potency when compared to ITZ. Our studies also indicate that the stereochemical orientation of the dioxolane ring is important for both potent Hh pathway inhibition and compound stability. Finally, our studies suggest that the ITZ scaffold can be successfully modified in terms of functionality and stereochemistry to further improve its anti-Hh potency and physicochemical properties.
Collapse
Affiliation(s)
- Jennifer R Pace
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road, Unit 3092 , Storrs , Connecticut 06269 , United States
| | - Kelly A Teske
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road, Unit 3092 , Storrs , Connecticut 06269 , United States
| | - Lianne Q Chau
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center , Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road, Unit 3092 , Storrs , Connecticut 06269 , United States
| | - Angela M Zaino
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road, Unit 3092 , Storrs , Connecticut 06269 , United States
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center , Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road, Unit 3092 , Storrs , Connecticut 06269 , United States
| |
Collapse
|
16
|
Liu J, Chen C, Kotagiri R, Yang W, Cai Q. A Simple Transformation of 1‐(Isoxazol‐3‐yl)ureas to 5‐(2‐oxoalkyl)‐2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones through Base‐Promoted Boulton‐Katritzky Rearrangement. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jisheng Liu
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development
| | - Chen Chen
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development
| | - Rajendraprasad Kotagiri
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
| | - Wenqiang Yang
- College of PharmacyLinyi University Shuangling Road Linyi 276000 People's Republic of China
| | - Qian Cai
- College of PharmacyJinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development
| |
Collapse
|
17
|
Li Y, Pasunooti KK, Li RJ, Liu W, Head SA, Shi WQ, Liu JO. Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3A4 Inhibition. J Med Chem 2018; 61:11158-11168. [PMID: 30481027 DOI: 10.1021/acs.jmedchem.8b01252] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Itraconazole has been found to possess potent antiangiogenic activity, exhibiting promising antitumor activity in several human clinical studies. The wider use of itraconazole in the treatment of cancer, however, has been limited by its potent inhibition of the drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4). In an effort to eliminate the CYP3A4 inhibition while retaining its antiangiogenic activity, we designed and synthesized a series of derivatives in which the 1,2,4-triazole ring is replaced with various azoles and nonazoles. Among these analogues, 15n with tetrazole in place of 1,2,4-triazole exhibited optimal inhibition of human umbilical vein endothelial cell proliferation with an IC50 of 73 nM without a significant effect on CYP3A4 (EC50 > 20 μM). Similar to itraconazole, 15n induced Niemann-Pick C phenotype (NPC phenotype) and blocked AMPK/mechanistic target of rapamycin signaling. These results suggest that 15n is a promising angiogenesis inhibitor that can be used in combination with most other known anticancer drugs.
Collapse
|
18
|
Bariwal J, Kumar V, Dong Y, Mahato RI. Design of Hedgehog pathway inhibitors for cancer treatment. Med Res Rev 2018; 39:1137-1204. [PMID: 30484872 DOI: 10.1002/med.21555] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling is involved in the initiation and progression of various cancers and is essential for embryonic and postnatal development. This pathway remains in the quiescent state in adult tissues but gets activated upon inflammation and injuries. Inhibition of Hh signaling pathway using natural and synthetic compounds has provided an attractive approach for treating cancer and inflammatory diseases. While the majority of Hh pathway inhibitors target the transmembrane protein Smoothened (SMO), some small molecules that target the signaling cascade downstream of SMO are of particular interest. Substantial efforts are being made to develop new molecules targeting various components of the Hh signaling pathway. Here, we have discussed the discovery of small molecules as Hh inhibitors from the diverse chemical background. Also, some of the recently identified natural products have been included as a separate section. Extensive structure-activity relationship (SAR) of each chemical class is the focus of this review. Also, clinically advanced molecules are discussed from the last 5 to 7 years. Nanomedicine-based delivery approaches for Hh pathway inhibitors are also discussed concisely.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
20
|
Synergistic inhibition of the Hedgehog pathway by newly designed Smo and Gli antagonists bearing the isoflavone scaffold. Eur J Med Chem 2018; 156:554-562. [DOI: 10.1016/j.ejmech.2018.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 07/07/2018] [Indexed: 01/19/2023]
|
21
|
Bauer L, Ferla S, Head SA, Bhat S, Pasunooti KK, Shi WQ, Albulescu L, Liu JO, Brancale A, van Kuppeveld FJM, Strating JRPM. Structure-activity relationship study of itraconazole, a broad-range inhibitor of picornavirus replication that targets oxysterol-binding protein (OSBP). Antiviral Res 2018; 156:55-63. [PMID: 29807040 DOI: 10.1016/j.antiviral.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
Itraconazole (ITZ) is a well-known, FDA-approved antifungal drug that is also in clinical trials for its anticancer activity. ITZ exerts its anticancer activity through several disparate targets and pathways. ITZ inhibits angiogenesis by hampering the functioning of the vascular endothelial growth receptor 2 (VEGFR2) and by indirectly inhibiting mTOR signaling. Furthermore, ITZ directly inhibits the growth of several types of tumor cells by antagonizing Hedgehog signaling. Recently, we reported that ITZ also has broad-spectrum antiviral activity against enteroviruses, cardioviruses and hepatitis C virus, independent of established ITZ-activities but instead via a novel target, oxysterol-binding protein (OSBP), a cellular lipid shuttling protein. In this study, we analyzed which structural features of ITZ are important for the OSBP-mediated antiviral activity. The backbone structure, consisting of five rings, and the sec-butyl chain are important for antiviral activity, whereas the triazole moiety, which is critical for antifungal activity, is not. The features required for OSBP-mediated antiviral activity of ITZ overlap mostly with published features required for inhibition of VEGFR2 trafficking, but not Hh signaling. Furthermore, we use in silico studies to explore how ITZ could bind to OSBP. Our data show that several pharmacological activities of ITZ can be uncoupled, which is a critical step in the development of ITZ-based antiviral compounds with greater specificity and reduced off-target effects.
Collapse
Affiliation(s)
- Lisa Bauer
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Salvatore Ferla
- Medicinal Chemistry, School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Sarah A Head
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Shridhar Bhat
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kalyan K Pasunooti
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Wei Q Shi
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lucian Albulescu
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Jun O Liu
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Brancale
- Medicinal Chemistry, School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Jeroen R P M Strating
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands.
| |
Collapse
|
22
|
Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nat Commun 2018. [PMID: 29515120 PMCID: PMC5841288 DOI: 10.1038/s41467-018-03339-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis. SuFu is a tumour suppressor in medulloblastoma and regulates Gli proteins in the Sonic Hedgehog pathway; however, the molecular mechanisms behind this regulation are unclear. Here, the authors show that the Itch/β-arrestin2 complex binds and ubiquitylates SuFu, facilitating the interaction with Gli3 and its conversion into the repressive form, thus counteracting medulloblastoma formation.
Collapse
|
23
|
Xin M, Ji X, De La Cruz LK, Thareja S, Wang B. Strategies to target the Hedgehog signaling pathway for cancer therapy. Med Res Rev 2018; 38:870-913. [PMID: 29315702 DOI: 10.1002/med.21482] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 01/10/2023]
Abstract
Hedgehog (Hh) signaling is an essential pathway in the human body, and plays a major role in embryo development and tissue patterning. Constitutive activation of the Hh signaling pathway through sporadic mutations or other mechanisms is explicitly associated with cancer development and progression in various solid malignancies. Therefore, targeted inhibition of the Hh signaling pathway has emerged as an attractive and validated therapeutic strategy for the treatment of a wide range of cancers. Vismodegib, a first-in-class Hh signaling pathway inhibitor was approved by the US Food and Drug Administration in 2012, and sonidegib, another potent Hh pathway inhibitor, received FDA's approval in 2015 as a new treatment of locally advanced or metastatic basal cell carcinoma. The clinical success of vismodegib and sonidegib provided strong support for the development of Hh signaling pathway inhibitors via targeting the smoothened (Smo) receptor. Moreover, Hh signaling pathway inhibitors aimed to target proteins, which are downstream or upstream of Smo, have also been pursued based on the identification of additional therapeutic benefits. Recently, much progress has been made in Hh singling and inhibitors of this pathway. Herein, medicinal chemistry strategies, especially the structural optimization process of different classes of Hh inhibitors, are comprehensively summarized. Further therapeutic potentials and challenges are also discussed.
Collapse
Affiliation(s)
- Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, P.R. China.,Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xinyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Suresh Thareja
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
24
|
Head SA, Shi WQ, Yang EJ, Nacev BA, Hong SY, Pasunooti KK, Li RJ, Shim JS, Liu JO. Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. ACS Chem Biol 2017; 12:174-182. [PMID: 28103683 DOI: 10.1021/acschembio.6b00849] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR. However, VDAC1 could not account for the previously reported inhibition of cholesterol trafficking by itraconazole, which was also demonstrated to lead to mTOR inhibition. In this study, we demonstrate that cholesterol trafficking inhibition by itraconazole is due to direct inhibition of the lysosomal protein NPC1. We further map the binding site of itraconazole to the sterol-sensing domain of NPC1 using mutagenesis, competition with U18666A, and molecular docking. Finally, we demonstrate that simultaneous AMPK activation and cholesterol trafficking inhibition leads to synergistic inhibition of mTOR, endothelial cell proliferation, and angiogenesis.
Collapse
Affiliation(s)
- Sarah A. Head
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- SJ
Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wei Q. Shi
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Eun Ju Yang
- Faculty
of Health Sciences, University of Macau, Taipa, Macau SAR China
| | - Benjamin A. Nacev
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Sam Y. Hong
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- SJ
Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Kalyan K. Pasunooti
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ruo-Jing Li
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- SJ
Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Joong Sup Shim
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Faculty
of Health Sciences, University of Macau, Taipa, Macau SAR China
| | - Jun O. Liu
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- SJ
Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
25
|
Double Intramolecular Transacetalization of Polyhydroxy Acetals: Synthesis of Conformationally-Restricted 1,3-Dioxanes with Axially-Oriented Phenyl Moiety. Molecules 2016; 21:molecules21111503. [PMID: 27834880 PMCID: PMC6274033 DOI: 10.3390/molecules21111503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
The synthesis of conformationally-restricted 1,3-dioxanes with a phenyl moiety fixed in an axial orientation at the acetalic center is described. Starting with diethyl 3-hydroxyglutarate (15), benzaldehyde acetal 12a and acetophenone ketal 12b bearing a protected 1,3,5-trihydroxypentyl side chain in the o-position were prepared. The first acid-catalyzed intramolecular transacetalization gave a mixture of diastereomeric 2-benzofurans 18 (ratio of diastereomers 2:2:1:1). After OH group deprotection, the second intramolecular transacetalization afforded tricyclic alcohol 14a (2-(1,5-epoxy-1,3,4,5-tetrahydro-2-benzoxepin-3-yl]ethan-1-ol). Analogous cyclizations led to the corresponding silyl ether 22a (19%) and azide 23a (13%). Whereas tricyclic alcohol 14a was obtained as a 1:1 mixture of diastereomers, the silyl ether 22a and the azide 23a afforded only one diastereomer. This observation indicates a faster cyclization of the minor diastereomers providing the thermodynamically-favored compounds with equatorially-oriented substituents in the 3-position of the tricyclic 1,5-epoxy-2-benzoxepine system. In general, acetophenone-derived ketalic compounds (b-series) required very mild reaction conditions and gave lower yields than the corresponding acetalic compounds (a-series).
Collapse
|
26
|
Head SA, Liu JO. Identification of Small Molecule-binding Proteins in a Native Cellular Environment by Live-cell Photoaffinity Labeling. J Vis Exp 2016. [PMID: 27684515 DOI: 10.3791/54529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Identifying the molecular target(s) of small molecules is a challenging but necessary step towards understanding their mechanism of action. While several target identification methods have been developed and used to successfully elucidate the binding proteins of a variety of small molecules, these techniques have drawbacks that make them unsuitable for detecting certain types of small molecule-target interactions. In particular, non-covalent interactions that depend on native cellular conditions, such as those of membrane proteins whose structures may be perturbed upon cell lysis, are often not amenable to affinity-based target identification methods. Here, we demonstrate a method wherein a probe containing a photolabile group is used to covalently crosslink to the small molecule binding protein within the environment of the live cell, allowing the detection and isolation of the target protein without the need for maintenance of the interaction after cell lysis. This technique is a valuable tool for studying biologically interesting small molecules with unknown mechanisms, both in the context of basic biology as well as drug discovery.
Collapse
Affiliation(s)
- Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine; Department of Oncology, Johns Hopkins University School of Medicine;
| |
Collapse
|
27
|
Maschinot CA, Pace JR, Hadden MK. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics. Curr Med Chem 2016; 22:4033-57. [PMID: 26310919 DOI: 10.2174/0929867322666150827093904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
Abstract
The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds.
Collapse
Affiliation(s)
| | | | - M K Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA.
| |
Collapse
|
28
|
Pace JR, DeBerardinis AM, Sail V, Tacheva-Grigorova SK, Chan KA, Tran R, Raccuia DS, Wechsler-Reya RJ, Hadden MK. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic. J Med Chem 2016; 59:3635-49. [PMID: 27014922 DOI: 10.1021/acs.jmedchem.5b01718] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.
Collapse
Affiliation(s)
- Jennifer R Pace
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Albert M DeBerardinis
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Vibhavari Sail
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Silvia K Tacheva-Grigorova
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute , 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, United States
| | - Kelly A Chan
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Raymond Tran
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Daniel S Raccuia
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute , 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
29
|
Shim JS, Li RJ, Bumpus NN, Head SA, Kumar Pasunooti K, Yang EJ, Lv J, Shi W, Liu JO. Divergence of Antiangiogenic Activity and Hepatotoxicity of Different Stereoisomers of Itraconazole. Clin Cancer Res 2016; 22:2709-20. [PMID: 26801248 DOI: 10.1158/1078-0432.ccr-15-1888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Itraconazole is a triazole antifungal drug that has recently been found to inhibit angiogenesis. Itraconazole is a relatively well-tolerated drug but shows hepatotoxicity in a small subset of patients. Itraconazole contains three chiral centers and the commercial itraconazole is composed of four cis-stereoisomers (named IT-A, IT-B, IT-C, and IT-D). We sought to determine whether the stereoisomers of itraconazole might differ in their antiangiogenic activity and hepatotoxicity. EXPERIMENTAL DESIGN We assessed in vitro antiangiogenic activity of itraconazole and each stereoisomer using human umbilical vein endothelial cell (HUVEC) proliferation and tube formation assays. We also determined their hepatotoxicity using primary human hepatocytes in vitro and a mouse model in vivo Mouse Matrigel plug and tumor xenograft models were used to evaluate in vivo antiangiogenic and antitumor activities of the stereoisomers. RESULTS Of the four stereoisomers contained in commercial itraconazole, we found that IT-A (2S,4R,2'R) and IT-C (2S,4R,2'S) were more potent for inhibition of angiogenesis than IT-B (2R,4S,2'R) and IT-D (2R,4S,2'S). Interestingly, IT-A and IT-B were more hepatotoxic than IT-C and IT-D. In mouse models, IT-C showed more potent antiangiogenic/antitumor activity with lower hepatotoxicity compared with itraconazole and IT-A. CONCLUSIONS These results demonstrate the segregation of influence of stereochemistry at different positions of itraconazole on its antiangiogenic activity and hepatotoxicity, with the 2 and 4 positions affecting the former and the 2' position affecting the latter. They also suggest that IT-C may be superior to the racemic mixture of itraconazole as an anticancer drug candidate due to its lower hepatotoxicity and improved antiangiogenic activity. Clin Cancer Res; 22(11); 2709-20. ©2016 AACR.
Collapse
Affiliation(s)
- Joong Sup Shim
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruo-Jing Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandje N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kalyan Kumar Pasunooti
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eun Ju Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Junfang Lv
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wei Shi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
30
|
Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc Natl Acad Sci U S A 2015; 112:E7276-85. [PMID: 26655341 DOI: 10.1073/pnas.1512867112] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Itraconazole, a clinically used antifungal drug, was found to possess potent antiangiogenic and anticancer activity that is unique among the azole antifungals. Previous mechanistic studies have shown that itraconazole inhibits the mechanistic target of rapamycin (mTOR) signaling pathway, which is known to be a critical regulator of endothelial cell function and angiogenesis. However, the molecular target of itraconazole that mediates this activity has remained unknown. Here we identify the major target of itraconazole in endothelial cells as the mitochondrial protein voltage-dependent anion channel 1 (VDAC1), which regulates mitochondrial metabolism by controlling the passage of ions and small metabolites through the outer mitochondrial membrane. VDAC1 knockdown profoundly inhibits mTOR activity and cell proliferation in human umbilical vein cells (HUVEC), uncovering a previously unknown connection between VDAC1 and mTOR. Inhibition of VDAC1 by itraconazole disrupts mitochondrial metabolism, leading to an increase in the cellular AMP:ATP ratio and activation of the AMP-activated protein kinase (AMPK), an upstream regulator of mTOR. VDAC1-knockout cells are resistant to AMPK activation and mTOR inhibition by itraconazole, demonstrating that VDAC1 is the mediator of this activity. In addition, another known VDAC-targeting compound, erastin, also activates AMPK and inhibits mTOR and proliferation in HUVEC. VDAC1 thus represents a novel upstream regulator of mTOR signaling in endothelial cells and a promising target for the development of angiogenesis inhibitors.
Collapse
|
31
|
Di Magno L, Manzi D, D'Amico D, Coni S, Macone A, Infante P, Di Marcotullio L, De Smaele E, Ferretti E, Screpanti I, Agostinelli E, Gulino A, Canettieri G. Druggable glycolytic requirement for Hedgehog-dependent neuronal and medulloblastoma growth. Cell Cycle 2015; 13:3404-13. [PMID: 25485584 DOI: 10.4161/15384101.2014.952973] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of SHH pathway is a major cause of medulloblastoma (MB), the most frequent brain malignancy of the childhood. A few Hedgehog inhibitors, all antagonizing the membrane transducer Smo, have been approved or are under clinical trials for the treatment of human MB. However, the efficacy of these drugs is limited by the occurrence of novel mutations or by activation of downstream or non-canonical Hedgehog components. Thus, the identification of novel druggable downstream pathways represents a critical step to overcome this problem. In the present work we demonstrate that aerobic glycolysis is a valuable HH-dependent downstream target, since its inhibition significantly counteracts the HH-mediated growth of normal and tumor cells. Hedgehog activation induces transcription of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2), two key gatekeepers of glycolysis. The process is mediated by the canonical activation of the Gli transcription factors and causes a robust increase of extracellular lactate concentration. We show that inhibition of glycolysis at different levels blocks the Hedgehog-induced proliferation of granule cell progenitors (GCPs), the cells from which medulloblastoma arises. Remarkably, we demonstrate that this glycolytic transcriptional program is also upregulated in SHH-dependent tumors and that pharmacological targeting with the pyruvate kinase inhibitor dichloroacetate (DCA) efficiently represses MB growth in vitro and in vivo. Together, these data illustrate a previously uncharacterized pharmacological strategy to target Hedgehog dependent growth, which can be exploited for the treatment of medulloblastoma patients.
Collapse
Key Words
- 2DG, 2-deoxy-D-glucose
- 3-BrPA, 3-Bromopyruvate
- ACC, Acetyl-CoA carboxylase
- ATO, arsenic trioxide
- DCA
- DCA, dichloroacetate
- EGL, external granular layer
- GCPs, granule cells progenitors
- HH, Hedgehog
- HK2, Hexokinase 2
- Hedgehog
- IGL, internal granular layer
- MB, Medulloblastoma
- PARP, poly( ADP-ribose) polymerase
- PKM2, Pyruvate Kinase M2
- Ptch1, Patched1
- ROS, reactive oxygen species
- SHH, Sonic Hedgehog
- Smo, Smoothened
- Sufu, suppressor of fused
- cerebellum
- glycolysis
- medulloblastoma
- metabolism
Collapse
Affiliation(s)
- Laura Di Magno
- a Department of Molecular Medicine ; Sapienza University of Rome
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ran Y, Chen S, Dai Y, Kang D, Lama J, Ran X, Zhuang K. Successful treatment of oral itraconazole for infantile hemangiomas: a case series. J Dermatol 2014; 42:202-6. [PMID: 25512128 DOI: 10.1111/1346-8138.12724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/21/2014] [Indexed: 02/05/2023]
Abstract
Infantile hemangiomas can present a therapeutic challenge to clinicians, especially when associated with severe pain and feeding difficulties. The standard therapeutic management includes corticosteroids and propranolol. However, the clinical response is not always satisfactory. We present six cases of infantile hemangiomas successfully treated with oral itraconazole approximately 5 mg/kg per day. In the first month, the red color of the lesions became a little lighter and the growth of the lesions was controlled in all cases. An obvious clinical improvement was noted in all cases during the 3-month period, with 80-100% improvement in each patient at the end of the treatment, which was judged by both their parents and the dermatologists. Compliance with treatment instructions of oral itraconazole in infants was judged to be very good. Side-effects were mild and limited. Although itraconazole can inhibit angiogenesis and tumor growth in vitro and in vivo associated with some cancers, further research is required to understand the pathogenesis of infantile hemangiomas and the mechanism of itraconazole.
Collapse
Affiliation(s)
- Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Banerjee U, Hadden MK. Recent advances in the design of Hedgehog pathway inhibitors for the treatment of malignancies. Expert Opin Drug Discov 2014; 9:751-71. [PMID: 24850423 DOI: 10.1517/17460441.2014.920817] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The Hedgehog (Hh) signaling pathway is known to be dysregulated in several forms of cancer. Hence, specifically targeting this signaling cascade is a valid and promising strategy for successful therapeutic intervention. Several components within the Hh pathway have been proven to be druggable; however, challenges in the discovery and development process for small molecules targeting this pathway have been identified. AREAS COVERED This review details both the current state and future potential of Hh pathway inhibitors as anticancer chemotherapeutics that target a variety of human malignancies. EXPERT OPINION The initial development of Hh pathway inhibitors focused on small-molecule antagonists of Smoothened, a transmembrane protein that is a key regulator of pathway signaling. More recently, efforts to identify and develop inhibitors of pathway signaling that function through alternate mechanisms have been increasing. However, none of these have advanced into clinical trials. Further, early evidence suggesting the broad application of Hh pathway inhibitors as a monotherapy in a wide range of human cancers has not been validated. The potential for Hh pathway inhibitors as combination therapy has demonstrated promising preclinical results. However, more research to identify rational drug combinations to fully explore the potential of this anticancer drug class is warranted.
Collapse
Affiliation(s)
- Upasana Banerjee
- University of Connecticut, Department of Pharmaceutical Sciences , 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092 , USA +1 860 486 8446 ;
| | | |
Collapse
|
34
|
Kim J, Aftab BT, Tang JY, Kim D, Lee AH, Rezaee M, Kim J, Chen B, King EM, Borodovsky A, Riggins GJ, Epstein EH, Beachy PA, Rudin CM. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013; 23:23-34. [PMID: 23291299 PMCID: PMC3548977 DOI: 10.1016/j.ccr.2012.11.017] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/27/2012] [Accepted: 11/28/2012] [Indexed: 01/07/2023]
Abstract
Recognition of the multiple roles of Hedgehog signaling in cancer has prompted intensive efforts to develop targeted pathway inhibitors. Leading inhibitors in clinical development act by binding to a common site within Smoothened, a critical pathway component. Acquired Smoothened mutations, including SMO(D477G), confer resistance to these inhibitors. Here, we report that itraconazole and arsenic trioxide, two agents in clinical use that inhibit Hedgehog signaling by mechanisms distinct from that of current Smoothened antagonists, retain inhibitory activity in vitro in the context of all reported resistance-conferring Smoothened mutants and GLI2 overexpression. Itraconazole and arsenic trioxide, alone or in combination, inhibit the growth of medulloblastoma and basal cell carcinoma in vivo, and prolong survival of mice with intracranial drug-resistant SMO(D477G) medulloblastoma.
Collapse
Affiliation(s)
- James Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake T. Aftab
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jean Y. Tang
- Department of Dermatology, Stanford University, Stanford, CA 94305, USA
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Daniel Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Dermatology, Stanford University, Stanford, CA 94305, USA
| | - Alex H. Lee
- Department of Dermatology, Stanford University, Stanford, CA 94305, USA
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Melika Rezaee
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Jynho Kim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Baozhi Chen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX, 75390-8593
| | - Emily M. King
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alexandra Borodovsky
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Gregory J. Riggins
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ervin H. Epstein
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Philip A. Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Departments of Biochemistry and of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Corresponding authors: Philip A. Beachy, PhD, Professor of Biochemistry Lokey Stem Cell Research Building, Rm G3120a, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5463, Tel: 650-723-4521, . Charles M. Rudin, MD, PhD, Professor of Oncology, The Johns Hopkins University, Cancer Research Building 2, Room 544, 1550 Orleans Street, Baltimore, MD 21231, Tel: 410-502-0678, Fax: 410-502-0677,
| | - Charles M. Rudin
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Corresponding authors: Philip A. Beachy, PhD, Professor of Biochemistry Lokey Stem Cell Research Building, Rm G3120a, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5463, Tel: 650-723-4521, . Charles M. Rudin, MD, PhD, Professor of Oncology, The Johns Hopkins University, Cancer Research Building 2, Room 544, 1550 Orleans Street, Baltimore, MD 21231, Tel: 410-502-0678, Fax: 410-502-0677,
| |
Collapse
|
35
|
Cucchi D, Occhione MA, Gulino A, De Smaele E. Hedgehog signaling pathway and its targets for treatment in basal cell carcinoma. J Exp Pharmacol 2012; 4:173-85. [PMID: 27186130 PMCID: PMC4863577 DOI: 10.2147/jep.s28553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Basal cell carcinoma (BCC) of the skin is the most common type of cancer and accounts for up to 40% of all cancers in the US, with a growing incidence rate over recent decades in all developed countries. Surgery is curative for most patients, although it leaves unaesthetic scars, but those that develop locally advanced or metastatic BCC require different therapeutic approaches. Furthermore, patients with BCC present a high risk of developing additional tumors. The increasing economic burden and the morbidity of BCC render primary interest in the development of targeted treatments for this disease. Among the molecular signals involved in the development of BCC, the critical role of the morphogenetic Hedgehog (Hh) pathway has become evident. This pathway is found altered and activated in almost all BCCs, both sporadic and inherited. Given the centrality of the Hh pathway in the pathophysiology of BCC, the primary efforts to identify molecular targets for the topical or systemic treatment of this cancer have focused on the Hh components. Several Hh inhibitors have been so far identified - from the first identified natural cyclopamine to the recently Food and Drug Administration-approved synthetic vismodegib - most of which target the Hh receptor Smoothened (either its function or its translocation to the primary cilium). Other molecules await further characterization (bisamide compounds), while drugs currently approved for other diseases such as itraconazole (an antimicotic agent) and vitamin D3 have been tested on BCC with encouraging results. The outcomes of the numerous ongoing clinical trials are expected to expand the field in the very near future. Further research is needed to obtain drugs targeting downstream components of the Hh pathway (eg, Gli) or to exploit combinatorial therapies (eg, with phosphatidylinositol 3-kinase inhibitors or retinoids) in order to overcome potential drug resistance.
Collapse
Affiliation(s)
- Danilo Cucchi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Gulino
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Center of Life NanoScience @ La Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Altıntop MD, Özdemir A, Turan-Zitouni G, Ilgın S, Atlı Ö, İşcan G, Kaplancıklı ZA. Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur J Med Chem 2012; 58:299-307. [DOI: 10.1016/j.ejmech.2012.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|