1
|
Dadgar H, Norouzbeigi N, Assadi M, Jafari E, Al-Balooshi B, Al-Ibraheem A, Esmail AA, Marafi F, Haidar M, Al-Alawi HM, Omar Y, Usmani S, Cimini A, Ricci M, Arabi H, Zaidi H. A Prospective Evaluation of Chemokine Receptor-4 (CXCR4) Overexpression in High-grade Glioma Using 68Ga-Pentixafor (Pars-Cixafor™) PET/CT Imaging. Acad Radiol 2024:S1076-6332(24)00939-5. [PMID: 39690071 DOI: 10.1016/j.acra.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND While magnetic resonance imaging (MRI) remains the gold standard for morphological imaging, its ability to differentiate between tumor tissue and treatment-induced changes on the cellular level is insufficient. Notably, glioma cells, particularly glioblastoma multiforme (GBM), demonstrate overexpression of chemokine receptor-4 (CXCR4). This study aims to evaluate the feasibility of non-invasive 68Ga-Cixafor™ PET/CT as a tool to improve diagnostic accuracy in patients with high-grade glioma. METHODS In this retrospective analysis, a database of histopathology-confirmed glioma patients with MRI findings consistent with high-grade gliomas was utilized. Within 2 weeks of their MRI, these patients underwent 68Ga-Cixafor™ PET/CT scans to assess CXCR4 expression. Both visual scoring based on established criteria and semi-quantitative measures including maximum standardized uptake value (SUVmax) and tumor-to-background ratios (TBR) were calculated to analyze the PET/CT data. RESULTS Our retrospective study enrolled 29 histologically confirmed glioma patients with MRI findings consistent with high-grade gliomas. All patients underwent 68Ga-Cixafor™ PET/CT scans within 2 weeks of their MRI, specifically at one-hour post-injection time point. Visual assessment based on a standardized scoring system identified 27 positive scans out of 29 (93.1%). Median SUVmax was 2.31 (range: 0.49-9.96) and median TBR was 20 (range: 6.12-124.5). Pathological analysis revealed 5 grade III (17.24%) and 24 grade IV (82.75%) lesions among the 29 patients. Notably, the median SUVmax of grade IV lesions (2.85) was significantly higher than grade III lesions (1.27) (P=0.02). Conversely, there was no significant difference in median TBR between grade IV (20) and grade III (22.37). These findings support the correlation between high CXCR4 expression, particularly in high-grade gliomas, and elevated uptake of 68Ga-Pentixafor. While areas with high uptake showed CXCR4 expression, areas with low uptake did not exhibit noticeable expression (data not shown). CONCLUSION This study demonstrated that 68Ga-Cixafor™ PET exhibits a TBR with minimal cortical uptake, significantly enhancing glioma detection compared to conventional imaging methods. This, combined with the potential therapeutic capabilities of CXCR4-targeting radiopharmaceuticals, highlights the promise of 68Ga-Cixafor™ as a valuable tool for not only improved glioma diagnosis but also personalized treatment strategies.
Collapse
Affiliation(s)
- Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran (H.D., N.N.)
| | - Nasim Norouzbeigi
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran (H.D., N.N.)
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran (M.A., E.J.)
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran (M.A., E.J.)
| | - Batool Al-Balooshi
- Dubai Nuclear medicine & Molecular imaging Center, Dubai Academic Health corporation, DAHC, United Arab Emirates (B.A.B.)
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan (A.A.I.); Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan (A.A.I.)
| | - Abdulredha A Esmail
- Nuclear Medicine Department, Kuwait Cancer Control Center, Kuwait City, Kuwait (A.A.E.)
| | - Fahad Marafi
- Jaber Alahmad Center of Nuclear Medicine and Molecular Imaging, Kuwait City, Kuwait (F.M.)
| | - Mohamad Haidar
- Diagnostic Clinical Radiology Department, American University of Beirut, Beirut, Lebanon (M.H.)
| | - Haider Muhsin Al-Alawi
- Nuclear Medicine department, Amir Al-momineen Specialty Hospital, Al-Najaf Governorate, Iraq (H.M.A.A.); Middle Euphrates Cancer Hospital, Al-Najaf Governorate, Iraq (H.M.A.A.)
| | - Yehia Omar
- PET-CT department at Misr Radiology Center, Heliopolis, Egypt (Y.O.)
| | - Sharjeel Usmani
- Department of Nuclear Medicine Sultan Qaboos Comprehensive Cancer Care and Research Center (SQCCCRC), Seeb, Oman (S.U.)
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L'Aquila, Italy (A.C.)
| | - Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, 86100 Campobasso, Italy (M.R.)
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland (H.A., H.Z.)
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland (H.A., H.Z.); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, Netherlands (H.Z.); Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark (H.Z.); University Research and Innovation Center, Óbuda University, Budapest, Hungary (H.Z.).
| |
Collapse
|
2
|
Yin X, Ai K, Luo J, Liu W, Ma X, Zhou L, Xiang X, Su X, Wang Y, Li Y. A comparison of the performance of 68Ga-Pentixafor PET/CT versus adrenal vein sampling for subtype diagnosis in primary aldosteronism. Front Endocrinol (Lausanne) 2024; 15:1291775. [PMID: 38419957 PMCID: PMC10899670 DOI: 10.3389/fendo.2024.1291775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Objective To investigate the diagnostic efficiency and prognostic value of 68Ga-Pentixafor PET/CT in comparison with adrenal vein sampling (AVS) for functional lateralization in primary aldosteronism (PA). Histology and long-term clinical follow-up normally serve as the gold standard for such diagnosis. Methods We prospectively recruited 26 patients diagnosed with PA. All patients underwent 68Ga-Pentixafor PET/CT and AVS. Postsurgical biochemical and clinical outcomes of patients with unilateral primary aldosteronism (UPA), as diagnosed by PET/CT or AVS, were assessed by applying standardized Primary Aldosteronism Surgical Outcome (PASO) criteria. Immunohistochemistry (IHC) was performed to detect the expression of aldosterone synthase (CYP11B2) and CXCR4. Results On total, 19 patients were diagnosed with UPA; of these, 13 patients were lateralized by both PET/CT and AVS, four patients were lateralized by PET-only, and two by AVS-only. Seven subjects with no lateralization on AVS and PET received medical therapy. All patients achieved complete biochemical success except one with nodular hyperplasia lateralized by AVS alone. The consistency between PET/CT and AVS outcomes was 77% (20/26). Moreover, CYP11B2-positive nodules were all CXCR4-positive and showed positive findings on PET. Patients who achieved complete biochemical and clinical success had a higher uptake on PET as well as stronger expression levels of CXCR4 and CYP11B2. Conclusion Our analysis showed that 68Ga-Pentixafor PET/CT could enable non-invasive diagnosis in most patients with PA and identify additional cases of unilateral and surgically curable PA which could not be classified by AVS. 68Ga-Pentixafor PET/CT should be considered as a first-line test for the future classification of PA.
Collapse
Affiliation(s)
- Xuan Yin
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Ai
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianguang Luo
- Department of Diagnostic and Interventional Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianbo Zhou
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Su
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Wang
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Lindenberg L, Ahlman M, Lin F, Mena E, Choyke P. Advances in PET Imaging of the CXCR4 Receptor: [ 68Ga]Ga-PentixaFor. Semin Nucl Med 2024; 54:163-170. [PMID: 37923671 PMCID: PMC10792730 DOI: 10.1053/j.semnuclmed.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
[68Ga]Ga-PentixaFor, a PET agent targeting CXCR4 is emerging as a versatile radiotracer with promising applications in oncology, cardiology and inflammatory disease. Preclinical work in various cancer cell lines have demonstrated high specificity and selectivity. In human investigations of several tumors, the most promising applications may be in multiple myeloma, certain lymphomas and myeloproliferative neoplasms. In the nononcologic setting, [68Ga]Ga-PentixaFor could greatly improve detection for primary aldosteronism and other endocrine abnormalities. Similarly, atherosclerotic disease and other inflammatory conditions could also benefit from enhanced identification by CXCR4 targeting. Rapidly cleared from the body with a favorable imaging and radiation dosimetry profile that has been already studied in over 1000 patients, [68Ga]Ga-PentixaFor is a worthy agent for further clinical exploration with potential for theranostic applications in hematologic malignancies.
Collapse
Affiliation(s)
- Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Uniformed Services University of the Health Sciences, Bethesda, MD.
| | - Mark Ahlman
- Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA
| | - Frank Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Esther Mena
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Peter Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
4
|
Hassanzadeh L, Erfani M, Jokar S, Shariatpanahi M. Design of a New 99mTc-radiolabeled Cyclo-peptide as Promising Molecular Imaging Agent of CXCR 4 Receptor: Molecular Docking, Synthesis, Radiolabeling, and Biological Evaluation. Curr Radiopharm 2024; 17:77-90. [PMID: 37921191 DOI: 10.2174/0118744710249305231017073022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION C-X-C Chemokine receptor type 4 (CXCR4) is often overexpressed or overactivated in different types and stages of cancer disease. Therefore, it is considered a promising target for imaging and early detection of primary tumors and metastasis. In the present research, a new cyclo-peptide radiolabelled with 99mTc, 99mTc-Cyclo [D-Phe-D-Tyr-Lys (HYNIC)- D-Arg-2-Nal-Gly-Lys(iPr)], was designed based on the parental LY251029 peptide, as a potential in vivo imaging agent of CXCR4-expressing tumors. METHODS The radioligand was successfully prepared using the method of Fmoc solid-phase peptide synthesis and was evaluated in biological assessment. Molecular docking findings revealed high affinity (binding energy of -9.7 kcal/mol) and effective interaction of Cyclo [D-Phe- D-Tyr-Lys (HYNIC)-D-Arg-2-Nal-Gly-Lys(iPr)] in the binding pocket of CXCR4 receptor (PDB code: 3OE0) as well. RESULT The synthesized peptide and its purity were assessed by both reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectroscopy. High stability (95%, n = 3) in human serum and favorable affinity (Kd = 28.70 ± 13.56 nM and Bmax = 1.896 ± 0.123 fmol/mg protein) in the B16-F10 cell line resulted. Biodistribution evaluation findings and planar image interpretation of mice both showed high affinity and selectivity of the radiotracer to the CXCR4 receptors. CONCLUSION Therefore, the findings indicate this designed radioligand could be used as a potential SPECT imaging agent in highly proliferated CXCR4 receptor tumors.
Collapse
Affiliation(s)
- Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Imaging Technology, Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, (NSTRI), P.O. Box: 14395-836, Tehran, Iran
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Costes J, Casasagrande K, Dubegny C, Castillo J, Kaufman J, Masset J, Vriamont C, Warnier C, Faivre-Chauvet A, Delage JA. [ 68 Ga]Ga-PentixaFor: Development of a fully automated in hospital production on the Trasis miniAllinOne synthesizer. J Labelled Comp Radiopharm 2023; 66:400-410. [PMID: 37679888 DOI: 10.1002/jlcr.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
[68 Ga]Ga-PentixaFor is a frequently used radiotracer to image the CXCR4/CXCL12 axis in various malignancies, infections, and cardiovascular diseases. To answer increasing clinical needs, an automatized synthesis process ensuring efficient and reproducible production and improving operator's radioprotection is needed. [68 Ga]Ga-PentixaFor synthesis has been described on other synthesizers but not on the miniAiO. In this work, we defined automated synthesis process and an analytical method for the quality control of [68 Ga]Ga-PentixaFor. Validation batches were performed under aseptic conditions in a class A hotcell. All the quality controls required by the European Pharmacopea (Eur. Ph) were performed. The analytical methods were validated according to the International Conference Harmonization (ICH) recommendations. Validation batches were performed with a radiochemical yield of 94.8 ± 2.6%. All the quality controls were in conformity with the Eur. Ph, and the validation of the analytical method complied with the ICH. The environmental monitoring performed during the synthesis process showed that the aseptic conditions were ensured. [68 Ga]Ga-PentixaFor was successfully synthesized with the miniAiO by a fully automated process. This robust production mode and the quality control have been validated in this study allowing to increase the access of patients to this new promising radiopharmaceutical.
Collapse
Affiliation(s)
- Julien Costes
- Radiopharmacy Unit, Department of Pharmacy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kilian Casasagrande
- Radiopharmacy Unit, Department of Pharmacy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Constance Dubegny
- Radiopharmacy Unit, Department of Pharmacy, Nantes University Hospital, Nantes, France
| | | | | | - Julien Masset
- Department of Research and Development, Trasis Radiopharmacy Instruments, Ans, Belgium
| | - Charles Vriamont
- Department of Research and Development, Trasis Radiopharmacy Instruments, Ans, Belgium
| | - Corentin Warnier
- Department of Research and Development, Trasis Radiopharmacy Instruments, Ans, Belgium
| | - Alain Faivre-Chauvet
- Nantes University, Nantes University Hospital, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Nantes, France
| | - Judith Anna Delage
- Radiopharmacy Unit, Department of Pharmacy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Ren X, Cheng G, Wang Z. Advances in the molecular imaging of primary aldosteronism. Ann Nucl Med 2023:10.1007/s12149-023-01851-y. [PMID: 37393373 DOI: 10.1007/s12149-023-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 07/03/2023]
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension. It predisposes to adverse outcomes such as nephrotoxicity and cardiovascular damage, which are mediated by direct harm from hypertension to the target organs. Accurate subtype diagnosis and localization are crucial elements in choosing the type of treatment for PA in clinical practice since the dominant side of aldosterone secretion in PA affects subsequent treatment options. The gold standard for diagnosing PA subtypes, adrenal venous sampling (AVS), requires specialized expertise, the invasive nature of the procedure and high costs, all of which delay the effective treatment of PA. Nuclide molecular imaging is non-invasive and has wider applications in the diagnosis and treatment of PA. This review aims to provide a summary of the application of radionuclide imaging in the diagnosis, treatment management and prognostic assessment of PA.
Collapse
Affiliation(s)
- Xinyi Ren
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Gang Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.
| | - Zhengjie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
7
|
Gaonkar RH, Schmidt YT, Mansi R, Almeida-Hernanadez Y, Sanchez-Garcia E, Harms M, Münch J, Fani M. Development of a New Class of CXCR4-Targeting Radioligands Based on the Endogenous Antagonist EPI-X4 for Oncological Applications. J Med Chem 2023. [PMID: 37328158 DOI: 10.1021/acs.jmedchem.3c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The peptide fragment of human serum albumin that was identified as an inhibitor of C-X-C motif chemokine receptor 4 (CXCR4), termed EPI-X4, was investigated as a scaffold for the development of CXCR4-targeting radio-theragnostics. Derivatives of its truncated version JM#21 (ILRWSRKLPCVS) were conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and tested in Jurkat and Ghost-CXCR4 cells. Ligand-1, -2, -5, -6, -7, -8, and -9 were selected for radiolabeling. Molecular modeling indicated that 177Lu-DOTA incorporation C-terminally did not interfere with the CXCR4 binding. Lipophilicity, in vitro plasma stability, and cellular uptake hinted 177Lu-7 as superior. In Jurkat xenografts, all radioligands showed >90% washout from the body within an hour, with the exception of 177Lu-7 and 177Lu-9. 177Lu-7 demonstrated best CXCR4-tumor targeting. Ex vivo biodistribution and single-photon emission computed tomography (SPECT)/positron emission tomography (PET)/CT imaging of 177Lu-7/68Ga-7 showed the same distribution profile for both radioligands, characterized by very low uptake in all nontargeted organs except the kidneys. The data support the feasibility of CXCR4-targeting with EPI-X4-based radioligands and designate ligand-7 as a lead candidate for further optimization.
Collapse
Affiliation(s)
- Raghuvir Haridas Gaonkar
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Basel 4031, Switzerland
| | - Yannik Tim Schmidt
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Basel 4031, Switzerland
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Basel 4031, Switzerland
| | - Yasser Almeida-Hernanadez
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45117, Germany
- Computational Bioengineering, Faculty of Bio- and Chemical Engineering, Technical University Dortmund, Dortmund 44227, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen 45117, Germany
- Computational Bioengineering, Faculty of Bio- and Chemical Engineering, Technical University Dortmund, Dortmund 44227, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, Department Theragnostics, University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
8
|
Patamia V, Zagni C, Brullo I, Saccullo E, Coco A, Floresta G, Rescifina A. Computer-Assisted Design of Peptide-Based Radiotracers. Int J Mol Sci 2023; 24:6856. [PMID: 37047831 PMCID: PMC10095039 DOI: 10.3390/ijms24076856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are extensively available and routinely used for disease diagnosis. PET probes with peptide-based targeting are typically composed of small peptides especially developed to have high affinity and specificity for a range of cellular and tissue targets. These probes' key benefits include being less expensive than traditional antibody-based PET tracers and having an effective chemical modification process that allows them to be radiolabeled with almost any radionuclide, making them highly appealing for clinical usage. Currently, as with every pharmaceutical design, the use of in silico strategies is steadily growing in this field, even though it is not part of the standard toolkit used during radiopharmaceutical design. This review describes the recent applications of computational design approaches in the design of novel peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy; (V.P.); (C.Z.)
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy; (V.P.); (C.Z.)
| |
Collapse
|
9
|
Watts A, Singh B, Singh H, Bal A, Kaur H, Dhanota N, Arora SK, Mittal BR, Behera D. [ 68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors' density by immunochemistry techniques. Eur J Nucl Med Mol Imaging 2023; 50:1216-1227. [PMID: 36482077 DOI: 10.1007/s00259-022-06059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE In vivo CXCR4 receptor quantification in different lung cancer (LC) sub-types using [68Ga]Ga-Pentixafor PET/CT and to study correlation with quantitative CXCR4 receptors' tissue density by immunochemistry analyses. METHODS [68Ga]Ga-Pentixafor PET/CT imaging was performed prospectively in 94 (77 M: 17F, mean age 60.1 ± 10.1 years) LC patients. CXCR4 receptors' expression on lung mass in all the patients was estimated by immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS) analyses. SUVmax on PET, intensity score on IHC, and mean fluorescence index (MFI) on FACS analyses were measured. RESULTS A total of 75/94 (79.8%) cases had non-small cell lung cancer (NSCLC), 14 (14.9%) had small cell lung cancer (SCLC), and 5 (5.3%) had lung neuroendocrine neoplasm (NEN). All LC types showed increased CXCR4 expression on PET (SUVmax) and FACS (MFI). However, both these parameters (mean SUVmax = 10.3 ± 5.0; mean MFI = 349.0 ± 99.0) were significantly (p = 0.005) higher in SCLC as compared to those in NSCLC and lung NEN. The mean SUVmax in adenocarcinoma (n = 16) was 8.0 ± 1.9 which was significantly (p = 0.003) higher than in squamous cell carcinoma (n = 54; 6.2 ± 2.1) and in not-otherwise specified (NOS) sub-types (n = 5; 5.8 ± 1.5) of NSCLC. A significant correlation (r = 0.697; p = 001) was seen between SUVmax and MFI values in squamous cell NSCLC as well as in NSCLC adenocarcinoma (r = 0.538, p = 0.031) which supports the specific in vivo uptake of [68Ga]Ga-Pentixafor by CXCR4 receptors. However, this correlation was not significant in SCLC (r = 0.435, p = 0.121) and NEN (r = 0.747, p = 0.147) which may be due to the small sample size. [68Ga]Ga-Pentixafor PET/CT provided good sensitivity (85.7%) and specificity (78.1%) for differentiating SCLC from NSCLC (ROC cutoff SUVmax = 7.2). This technique presented similar sensitivity (87.5%) and specificity (71.4%) (ROC cutoff SUVmax = 6.7) for differentiating adenocarcinoma and squamous cell variants of NSCLC. CONCLUSION The high sensitivity and specificity of [68Ga]Ga-Pentixafor PET/CT for in vivo targeting of CXCR4 receptors in lung cancer can thus be used effectively for the response assessment and development of CXCR4-based radioligand therapies in LC.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Harmandeep Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Harneet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Ninjit Dhanota
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Digambar Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
10
|
Benčurová K, Friske J, Anderla M, Mayrhofer M, Wanek T, Nics L, Egger G, Helbich TH, Hacker M, Haug A, Mitterhauser M, Balber T. CAM-Xenograft Model Provides Preclinical Evidence for the Applicability of [ 68Ga]Ga-Pentixafor in CRC Imaging. Cancers (Basel) 2022; 14:cancers14225549. [PMID: 36428644 PMCID: PMC9688097 DOI: 10.3390/cancers14225549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Increased expression of CXCR4 has been associated with liver metastasis, disease progression, and shortened survival. Using in vitro cell binding studies and the in ovo model, we aimed to investigate the potential of [68Ga]Ga-Pentixafor, a radiotracer specifically targeting human CXCR4, for CRC imaging. Specific membrane binding and internalisation of [68Ga]Ga-Pentixafor was shown for HT29 cells, but not for HCT116 cells. Accordingly, [68Ga]Ga-Pentixafor accumulated specifically in CAM-xenografts derived from HT29 cells, but not in HCT116 xenografts, as determined by µPET/MRI. The CAM-grown xenografts were histologically characterised, demonstrating vascularisation of the graft, preserved expression of human CXCR4, and viability of the tumour cells within the grafts. In vivo viability was further confirmed by µPET/MRI measurements using 2-[18F]FDG as a surrogate for glucose metabolism. [68Ga]Ga-Pentixafor µPET/MRI scans showed distinct radiotracer accumulation in the chick embryonal heart, liver, and kidneys, whereas 2-[18F]FDG uptake was predominantly found in the kidneys and joints of the chick embryos. Our findings suggest that [68Ga]Ga-Pentixafor is an interesting novel radiotracer for CRC imaging that is worth further investigation. Moreover, this study further supports the suitability of the CAM-xenograft model for the initial preclinical evaluation of targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Katarína Benčurová
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maximilian Anderla
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Manuela Mayrhofer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, 4020 Linz, Austria
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Lorusso M, Rufini V, DE Crea C, Pennestrì F, Bellantone R, Raffaelli M. Integration of molecular imaging in the personalized approach of patients with adrenal masses. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:104-115. [PMID: 35343669 DOI: 10.23736/s1824-4785.22.03449-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adrenal masses are a frequent finding in clinical practice. Many of them are incidentally discovered with a prevalence of 4% in patients undergoing abdominal anatomic imaging and require a differential diagnosis. Biochemical tests, evaluating hormonal production of both adrenal cortex and medulla (in particular, mineralocorticoids, glucocorticoids and catecholamines), have a primary importance in distinguishing functional or non-functional lesions. Conventional imaging techniques, in particular computerized tomography (CT) and magnetic resonance imaging (MRI), are required to differentiate between benign and malignant lesions according to their appearance (size stability, contrast enhanced CT and/or chemical shift on MRI). In selected patients, functional imaging is a non-invasive tool able to explore the metabolic pathways involved thus providing additional diagnostic information. Several single photon emission tomography (SPET) and positron emission tomography (PET) radiopharmaceuticals have been developed and are available, each of them suitable for studying specific pathological conditions. In functional masses causing hypersecreting diseases (mainly adrenal hypercortisolism, primary hyperaldosteronism and pheochromocytoma), functional imaging can lateralize the involvement and guide the therapeutic strategy in both unilateral and bilateral lesions. In non-functioning adrenal masses with inconclusive imaging findings at CT/MR, [18F]-FDG evaluation of tumor metabolism can be helpful to characterize them by distinguishing between benign nodules and primary malignant adrenal disease (mainly adrenocortical carcinoma), thus modulating the surgical approach. In oncologic patients, [18F]-FDG uptake can differentiate between benign nodule and adrenal metastasis from extra-adrenal primary malignancies.
Collapse
Affiliation(s)
- Margherita Lorusso
- PET/CT Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vittoria Rufini
- Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carmela DE Crea
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy - .,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Pennestrì
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rocco Bellantone
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Raffaelli
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Harms M, Hansson RF, Carmali S, Almeida-Hernández Y, Sanchez-Garcia E, Münch J, Zelikin AN. Dimerization of the Peptide CXCR4-Antagonist on Macromolecular and Supramolecular Protraction Arms Affords Increased Potency and Enhanced Plasma Stability. Bioconjug Chem 2022; 33:594-607. [PMID: 35293739 DOI: 10.1021/acs.bioconjchem.2c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are prime drug candidates due to their high specificity of action but are disadvantaged by low proteolytic stability. Here, we focus on the development of stabilized analogues of EPI-X4, an endogenous peptide antagonist of CXCR4. We synthesized macromolecular peptide conjugates and performed side-by-side comparison with their albumin-binding counterparts and considered monovalent conjugates, divalent telechelic conjugates, and Y-shaped peptide dimers. All constructs were tested for competition with the CXCR4 antibody-receptor engagement, inhibition of receptor activation, and inhibition of the CXCR4-tropic human immunodeficiency virus infection. We found that the Y-shaped conjugates were more potent than the parent peptide and at the same time more stable in human plasma, with a favorable outlook for translational studies.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rikke Fabech Hansson
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Sheiliza Carmali
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Yasser Almeida-Hernández
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
13
|
Hess A, Borchert T, Ross TL, Bengel FM, Thackeray JT. Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Res Cardiol 2022; 117:14. [PMID: 35275268 PMCID: PMC8917105 DOI: 10.1007/s00395-022-00922-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
Persistent inflammation following myocardial infarction (MI) precipitates adverse outcome including acute ventricular rupture and chronic heart failure. Molecular imaging allows longitudinal assessment of immune cell activity in the infarct territory and predicts severity of remodeling. We utilized a multiparametric imaging platform to assess the immune response and cardiac healing following MI in mice. Suppression of circulating macrophages prior to MI paradoxically resulted in higher total leukocyte content in the heart, demonstrated by increased CXC motif chemokine receptor 4 (CXCR4) positron emission tomography imaging. This supported the formation of a thrombus overlying the injured region, as identified by magnetic resonance imaging. The injured and thrombotic region in macrophage depeleted mice subsequently showed active calcification, as evidenced by accumulation of 18F-fluoride and by cardiac computed tomography. Importantly, macrophage suppression triggered a prolonged inflammatory response confirmed by post-mortem tissue analysis that was associated with higher mortality from ventricular rupture early after occlusion and with increased infarct size and worse chronic contractile function at 6 weeks after reperfusion. These findings establish a molecular imaging toolbox for monitoring the interplay between adverse immune response and tissue repair after MI. This may serve as a foundation for development and monitoring of novel targeted therapies that may include immune modulation and endogenous healing support.
Collapse
Affiliation(s)
- Annika Hess
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias Borchert
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Present Address: Cardior Pharmaceuticals GmbH, Hannover, Germany
| | - Tobias L. Ross
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Frank M. Bengel
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - James T. Thackeray
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Watts A, Chutani S, Arora D, Madivanane V, Thakur S, Kamboj M, Singh B. Automated Radiosynthesis, Quality Control, and Biodistribution of Ga-68 Pentixafor: First Indian Experience. Indian J Nucl Med 2021; 36:237-244. [PMID: 34658546 PMCID: PMC8481858 DOI: 10.4103/ijnm.ijnm_216_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/29/2021] [Indexed: 01/29/2023] Open
Abstract
Background Chemokine receptor CXCR4 is overexpressed in more than 27 different human tumors that make it a promising target in oncology. Ga-68 Pentixafor is the most promising positron emission tomography tracer for imaging CXCR4 receptors; hence, the present study was carried out to optimize the radiosynthesis of Ga-68-Pentixafor using fully automated method and the quality control (QC) checks were performed before being used as a clinical product. We also studied the normal biodistribution pattern of Ga-68-pentixafor intended for the use in variety of malignancies. Materials and Methods We optimized the automated radio-synthesis of Ga-68 Pentixafor under good manufacturing practice conditions. A total of 62 productions were carried out in a span of 4 years. Extensive QC tests were performed to check for potency, identity, efficacy, and stability of the tracer. Biodistribution of Ga-68 Pentixafor was investigated in a healthy volunteer to determine normal range of standardized uptake valuemaximum (SUVmax) values in various organs. Results The radiotracer was prepared successfully in 57/62 productions with radiochemical purity of >99%. Mean radiolabelling efficiency of 73.1% ± 7.7% (n = 57) was obtained with synthesis time approximatively of 34 min. The radiolabeled complex showed no signs of dissociation up to 4 h at the room temperature. Ga-68 Pentixafor upon incubation with human serum was found to be stable at 37°C for 4 h. The highest normal organ uptake was seen in urinary bladder (SUVmean = 146.0), spleen (SUVmean = 6.80) followed by kidneys (SUVmean = 4.99). Conclusion Using the automated radiosynthesis, Ga-68 Pentixafor exhibited good radiolabelling efficiency with excellent in vitro and in vivo stability and favorable biodistribution showing clinical applicability of the tracer.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Surbhi Chutani
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Diksha Arora
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | | | - Samiksha Thakur
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Monika Kamboj
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Baljinder Singh
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| |
Collapse
|
15
|
Alluri SR, Higashi Y, Kil KE. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021; 26:molecules26175174. [PMID: 34500609 PMCID: PMC8434599 DOI: 10.3390/molecules26175174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.
Collapse
Affiliation(s)
- Santosh R. Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
| | - Yusuke Higashi
- Department of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-884-7885
| |
Collapse
|
16
|
Lewis R, Habringer S, Kircher M, Hefter M, Peuker CA, Werner R, Ademaj-Kospiri V, Gäble A, Weber W, Wester HJ, Buck A, Herhaus P, Lapa C, Keller U. Investigation of spleen CXCR4 expression by [ 68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res 2021; 11:77. [PMID: 34417915 PMCID: PMC8380222 DOI: 10.1186/s13550-021-00822-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background The chemokine receptor CXCR4 is frequently overexpressed and associated with adverse prognosis in most hematopoietic malignancies and solid cancers. Recently, CXCR4 molecular imaging using the CXCR4-specific positron emission tomography (PET) tracer Pentixafor ([68Ga]Pentixafor) has become a well-established method to non-invasively measure CXCR4 expression in vivo. In previous Pentixafor imaging studies, highly variable CXCR4 tracer uptake to the spleen was observed.
Results We investigated the hypothesis that enhanced spleen [68Ga]Pentixafor uptake and thus CXCR4 expression in patients with solid tumors would indicate an activated spleen state and/or an association with clinical and prognostic features and survival parameters. In this retrospective study, [68Ga]Pentixafor-PET images and patient records of 145 solid tumor patients representing 27 cancer entities were investigated for an association of spleen [68Ga]Pentixafor uptake and clinical characteristics and outcome. Based on this assessment, we did not observe differences in clinical outcomes, measured by progression-free survival, overall survival and remission status neither within the entire cohort nor within subgroups of adrenal cancer, desmoplastic small round cell tumor, neuroendocrine tumors, non-small cell lung cancer, small cell lung cancer and pancreatic adenocarcinoma patients. No tumor entity showed especially high levels of spleen [68Ga]Pentixafor uptake compared to others or a control cohort. However, when investigating laboratory parameters, there was a positive correlation of high spleen [68Ga]Pentixafor uptake with leukocyte and/or platelet counts in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer. Conclusion Spleen [68Ga]Pentixafor uptake was not associated with stage of disease and clinical outcomes in solid tumor patients. We identified positively associated platelet and/or leukocyte counts with spleen [68Ga]Pentixafor uptake in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer, suggesting that splenic CXCR4 expression could possibly play a role in systemic immunity/inflammation in some types of solid tumors or a subgroup of patients within solid tumor entities. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00822-6.
Collapse
Affiliation(s)
- Richard Lewis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Malte Kircher
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Maike Hefter
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caroline Anna Peuker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Rudolf Werner
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Valëza Ademaj-Kospiri
- Clinic for Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Gäble
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Wolfgang Weber
- Clinic for Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Chemistry, Technical University of Munich, Garching, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Peter Herhaus
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany. .,German Cancer Consortium (DKTK), Partner Site Berlin; and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
17
|
Wu N, Liu R, Liang S, Gao H, Xu LP, Zhang XH, Liu J, Huang XJ. γδ T Cells May Aggravate Acute Graft-Versus-Host Disease Through CXCR4 Signaling After Allogeneic Hematopoietic Transplantation. Front Immunol 2021; 12:687961. [PMID: 34335589 PMCID: PMC8316995 DOI: 10.3389/fimmu.2021.687961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a pathology in which chemokines and their receptors play essential roles in directing the migration of alloreactive donor T cells into GVHD organs, thereby leading to further target tissue damage. Currently, acute GVHD (aGVHD) remains a major cause of high morbidity and mortality in patients who underwent allogeneic hematopoietic cell transplantation (alloHCT). The identification of immune cells that correlate with aGVHD is important and intriguing. To date, the involvement of innate-like γδ T cells in the pathogenesis of aGVHD is unclear. Herein, we found that primary human γδ T cells did not directly trigger allogeneic reactions. Instead, we revealed that γδ T cells facilitated the migration of CD4 T cells via the SDF-1-CXCR4 axis. These results indicate indirect regulation of γδ T cells in the development of aGVHD rather than a direct mechanism. Furthermore, we showed that the expression of CXCR4 was significantly elevated in γδ T cells and CD4 and CD8 T cells in recipients who experienced grades II-IV aGVHD after alloHCT. Consistently, CXCR4-expressing γδ T cells and CD4 T cells were induced in the target organs of mice suffering aGVHD. The depletion of γδ T cells in transplant grafts and treatment with AMD3100, an inhibitor of CXCR4 signaling, delayed the onset of aGVHD and prolonged survival in mice. Taken together, these findings suggest a role for γδ T cells in recruiting alloreactive CD4 T cells to target tissues through the expression of CXCR4. Our findings may help in understanding the mechanism of aGVHD and provide novel therapeutic targets.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Benzylamines/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Chemokine CXCL12/metabolism
- Chemotaxis, Leukocyte
- Coculture Techniques
- Cyclams/pharmacology
- Disease Models, Animal
- Female
- Graft vs Host Disease/etiology
- Graft vs Host Disease/immunology
- Graft vs Host Disease/metabolism
- Graft vs Host Disease/prevention & control
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Intraepithelial Lymphocytes/drug effects
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Male
- Mice, Inbred NOD
- Middle Aged
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Signal Transduction
- Transplantation, Homologous
- Young Adult
- Mice
Collapse
Affiliation(s)
- Ning Wu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyang Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Liang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haitao Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
18
|
Werner RA, Hess A, Koenig T, Diekmann J, Derlin T, Melk A, Thackeray JT, Bauersachs J, Bengel FM. Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction. Theranostics 2021; 11:7984-7994. [PMID: 34335975 PMCID: PMC8315063 DOI: 10.7150/thno.61423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Rationale: Acute myocardial infarction (MI) triggers a systemic inflammatory response including crosstalk along the heart-kidney axis. We employed radionuclide-based inflammation-targeted whole-body molecular imaging to identify potential cardio-renal crosstalk after MI in a translational setup. Methods: Serial whole-body positron emission tomography (PET) with the specific CXCR4 ligand 68Ga-Pentixafor was performed after MI in mice. Tracer retention in kidneys and heart was compared to hematopoietic organs to evaluate systemic inflammation, validated by ex vivo analysis and correlated with progressive contractile dysfunction. Additionally, 96 patients underwent 68Ga-Pentixafor PET within the first week after MI, for systems-based image analysis and to determine prognostic value for adverse renal outcome. Results: In mice, transient myocardial CXCR4 upregulation occurred early after MI. Cardiac and renal PET signal directly correlated over the time course (r = 0.62, p < 0.0001), suggesting an inflammatory link between organs. Ex-vivo autoradiography (r = 0.9, p < 0.01) and CD68 immunostaining indicated signal localization to inflammatory cell content. Renal signal at 7d was inversely proportional to left ventricular ejection fraction at 6 weeks after MI (r = -0.79, p < 0.01). In patients, renal CXCR4 signal also correlated with signal from infarct (r = 0.25, p < 0.05) and remote myocardium (r = 0.39, p < 0.0001). Glomerular filtration rate (GFR) was available in 48/96 (50%) during follow-up. Worsening of renal function (GFR loss >5 mL/min/1.73m2), occurred a mean 80.5 days after MI in 16/48 (33.3%). Kaplan-Meier analysis revealed adverse renal outcome for patients with elevated remote myocardial CXCR4 signal (p < 0.05). Multivariate Cox analysis confirmed an independent predictive value (relative to baseline GFR, LVEF, infarct size; HR, 5.27). Conclusion: Systems-based CXCR4-targeted molecular imaging identifies inflammatory crosstalk along the cardio-renal axis early after MI.
Collapse
Affiliation(s)
- Rudolf A. Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Koenig
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johanna Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Anette Melk
- Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - James T. Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Trotta AM, Aurilio M, D'Alterio C, Ieranò C, Di Martino D, Barbieri A, Luciano A, Gaballo P, Santagata S, Portella L, Tomassi S, Marinelli L, Sementa D, Novellino E, Lastoria S, Scala S, Schottelius M, Di Maro S. Novel Peptide-Based PET Probe for Non-invasive Imaging of C-X-C Chemokine Receptor Type 4 (CXCR4) in Tumors. J Med Chem 2021; 64:3449-3461. [PMID: 33660512 DOI: 10.1021/acs.jmedchem.1c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recently reported CXCR4 antagonist 3 (Ac-Arg-Ala-[DCys-Arg-2Nal-His-Pen]-CO2H) was investigated as a molecular scaffold for a CXCR4-targeted positron emission tomography (PET) tracer. Toward this end, 3 was functionalized with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7-triazacyclononanetriacetic acid (NOTA). On the basis of convincing affinity data, both tracers, [68Ga]NOTA analogue ([68Ga]-5) and [68Ga]DOTA analogue ([68Ga]-4), were evaluated for PET imaging in "in vivo" models of CHO-hCXCR4 and Daudi lymphoma cells. PET imaging and biodistribution studies revealed higher CXCR4-specific tumor uptake and high tumor/background ratios for the [68Ga]NOTA analogue ([68Ga]-5) than for the [68Ga]DOTA analogue ([68Ga]-4) in both in vivo models. Moreover, [68Ga]-4 and [68Ga]-5 displayed rapid clearance and very low levels of accumulation in all nontarget tissues but the kidney. Although the high tumor/background ratios observed in the mouse xenograft model could partially derive from the hCXCR4 selectivity of [68Ga]-5, our results encourage its translation into a clinical context as a novel peptide-based tracer for imaging of CXCR4-overexpressing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Deborah Sementa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | | | | | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), and Department of Oncology, University of Lausanne (UNIL), Ch. des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Salvatore Di Maro
- DiSTABiF, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
20
|
Wnt/β-Catenin Signaling Regulates CXCR4 Expression and [ 68Ga] Pentixafor Internalization in Neuroendocrine Tumor Cells. Diagnostics (Basel) 2021; 11:diagnostics11020367. [PMID: 33671498 PMCID: PMC7926465 DOI: 10.3390/diagnostics11020367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
Loss of Somatostatin Receptor 2 (SSTR2) expression and rising CXC Chemokine Receptor Type 4 (CXCR4) expression are associated with dedifferentiation in neuroendocrine tumors (NET). In NET, CXCR4 expression is associated with enhanced metastatic and invasive potential and worse prognosis but might be a theragnostic target. Likewise, activation of Wnt/β-catenin signaling may promote a more aggressive phenotype in NET. We hypothesized an interaction of the Wnt/β-catenin pathway with CXCR4 expression and function in NET. The NET cell lines BON-1, QGP-1, and MS-18 were exposed to Wnt inhibitors (5-aza-CdR, quercetin, and niclosamide) or the Wnt activator LiCl. The expressions of Wnt pathway genes and of CXCR4 were studied by qRT-PCR, Western blot, and immunohistochemistry. The effects of Wnt modulators on uptake of the CXCR4 ligand [68Ga] Pentixafor were measured. The Wnt activator LiCl induced upregulation of CXCR4 and Wnt target gene expression. Treatment with the Wnt inhibitors had opposite effects. LiCl significantly increased [68Ga] Pentixafor uptake, while treatment with Wnt inhibitors decreased radiopeptide uptake. Wnt pathway modulation influences CXCR4 expression and function in NET cell lines. Wnt modulation might be a tool to enhance the efficacy of CXCR4-directed therapies in NET or to inhibit CXCR4-dependent proliferative signaling. The underlying mechanisms for the interaction of the Wnt pathway with CXCR4 expression and function have yet to be clarified.
Collapse
|
21
|
Derlin T, Jaeger B, Jonigk D, Apel RM, Freise J, Shin HO, Weiberg D, Warnecke G, Ross TL, Wester HJ, Seeliger B, Welte T, Bengel FM, Prasse A. Clinical Molecular Imaging of Pulmonary CXCR4 Expression to Predict Outcome of Pirfenidone Treatment in Idiopathic Pulmonary Fibrosis. Chest 2020; 159:1094-1106. [PMID: 32822674 DOI: 10.1016/j.chest.2020.08.2043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease for which two antifibrotic drugs recently were approved. However, an unmet need exists to predict responses to antifibrotic treatment, such as pirfenidone. Recent data suggest that upregulated expression of CXCR4 is indicative of outcomes in IPF. RESEARCH QUESTION Can quantitative, molecular imaging of pulmonary CXCR4 expression as a biomarker for disease activity predict response to the targeted treatment pirfenidone and prognosis in patients with IPF? STUDY DESIGN AND METHODS CXCR4 expression was analyzed by immunohistochemistry examination of lung tissues and reverse-transcriptase polymerase chain reaction analysis of BAL. PET-CT scanning with the specific CXCR4 ligand 68Ga-pentixafor was performed in 28 IPF patients and compared with baseline clinical characteristics. In 16 patients, a follow-up scan was obtained 6 to 12 weeks after initiation of treatment with pirfenidone. Patients were followed up in our outpatient clinic for ≥ 12 months. RESULTS Immunohistochemistry analysis showed high CXCR4 staining of epithelial cells and macrophages in areas with vast fibrotic remodeling. Targeted PET scanning revealed CXCR4 upregulation in fibrotic areas of the lungs, particularly in zones with subpleural honeycombing. Baseline CXCR4 signal demonstrated a significant correlation with Gender Age Physiology stage (r = 0.44; P = .02) and with high-resolution CT scan score (r = 0.38; P = .04). Early changes in CXCR4 signal after initiation of pirfenidone treatment correlated with the long-term course of FVC after 12 months (r = -0.75; P = .0008). Moreover, patients with a high pulmonary CXCR4 signal on follow-up PET scan after 6 weeks into treatment demonstrated a statistically significant worse outcome at 12 months (P = .002). In multiple regression analysis, pulmonary CXCR4 signal on follow-up PET scan emerged as the only independent predictor of long-term outcome (P = .0226). INTERPRETATION CXCR4-targeted PET imaging identified disease activity and predicted outcome of IPF patients treated with pirfenidone. It may serve as a future biomarker for personalized guidance of antifibrotic treatment.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Benedikt Jaeger
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Rosa M Apel
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Julia Freise
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Hoen-Oh Shin
- Institute of Radiology, Hannover Medical School, Hannover, Germany
| | - Desiree Weiberg
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Heart, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Hans-Jürgen Wester
- Institute of Radiopharmaceutical Chemistry, Technical University Munich, Garching, Germany
| | - Benjamin Seeliger
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Tobias Welte
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; DZL-BREATH, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; DZL-BREATH, Hannover, Germany.
| |
Collapse
|
22
|
Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester HJ. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Am J Cancer Res 2020; 10:8264-8280. [PMID: 32724470 PMCID: PMC7381729 DOI: 10.7150/thno.45537] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasive PET imaging of CXCR4 expression in cancer and inflammation as well as CXCR4-targeted radioligand therapy (RLT) have recently found their way into clinical research by the development of the theranostic agents [68Ga]PentixaFor (cyclo(D-Tyr1-D-[NMe]Orn2(AMBS-[68Ga]DOTA)-Arg3-Nal4-Gly5) = [68Ga]DOTA-AMBS-CPCR4) and [177Lu/90Y]PentixaTher (cyclo(D-3-iodo-Tyr1-D-[NMe]Orn2(AMBS-[177Lu/90Y]DOTA)-Arg3-Nal4-Gly5) = [177Lu/90Y]DOTA-AMBS-iodoCPCR4). Although convincing clinical results have already been obtained with both agents, this study was designed to further investigate the required structural elements for improved ligand-receptor interaction for both peptide cores (CPCR4 and iodoCPCR4). To this aim, a series of DOTA-conjugated CPCR4- and iodoCPCR4-based ligands with new linker structures, replacing the AMBA-linker in PentixaFor and PentixaTher, were synthesized and evaluated. Methods: The in vitro investigation of the novel compounds alongside with the reference peptides PentixaFor and PentixaTher encompassed the determination of hCXCR4 and mCXCR4 affinity (IC50) of the respective natGa-, natLu-, natY- and natBi-complexes in Jurkat and Eμ-myc 1080 cells using [125I]FC-131 and [125I]CPCR4.3 as radioligands, respectively, as well as the evaluation of the internalization and externalization kinetics of selected 68Ga- and 177Lu-labeled compounds in hCXCR4-transfected Chem-1 cells. Comparative small animal PET imaging studies (1h p.i.) as well as in vivo biodistribution studies (1, 6 and 48h p.i.) were performed in Daudi (human B cell lymphoma) xenograft bearing CB17 SCID mice. Results: Based on the affinity data and cellular uptake studies, [68Ga/177Lu]DOTA-r-a-ABA-CPCR4 and [68Ga/177Lu]DOTA-r-a-ABA-iodoCPCR4 (with r-a-ABA = D-Arg-D-Ala-4-aminobenzoyl-) were selected for further evaluation. Both analogs show app. 10-fold enhanced hCXCR4 affinity compared to the respective references [68Ga]PentixaFor and [177Lu]PentixaTher, four times higher cellular uptake in hCXCR4 expressing cells and improved cellular retention. Unfortunately, the improved in vitro binding and uptake characteristics of [68Ga]DOTA-r-a-ABA-CPCR4 and -iodoCPCR4 could not be recapitulated in initial PET imaging studies; both compounds showed similar uptake in the Daudi xenografts as [68Ga]PentixaFor, alongside with higher background accumulation, especially in the kidneys. However, the subsequent biodistribution studies performed for the corresponding 177Lu-labeled analogs revealed a clear superiority of [177Lu]DOTA-r-a-ABA-CPCR4 and [177Lu]DOTA-r-a-ABA-iodoCPCR4 over [177Lu]PentixaTher with respect to tumor uptake (18.3±3.7 and 17.2±2.0 %iD/g, respectively, at 1h p.i. vs 12.4±3.7%iD/g for [177Lu]PentixaTher) as well as activity retention in tumor up to 48h. Especially for [177Lu]DOTA-r-a-ABA-CPCR4 with its low background accumulation, tumor/organ ratios at 48h were 2- to 4-fold higher than those obtained for [177Lu]PentixaTher (except for kidney). Conclusions: The in-depth evaluation of a series of novel CPCR4- and iodoCPCR4 analogs with modified linker structure has yielded reliable structure-activity relationships. It was generally observed that a) AMBA-by-ABA-substitution leads to enhanced ligand internalization, b) the extension of the ABA-linker by two additional amino acids (DOTA-Xaa2-Xaa1-ABA-) provides sufficient linker length to minimize the interaction of the [M3+]DOTA-chelate with the receptor, and that c) introduction of a cationic side chain (Xaa2) greatly enhances receptor affinity of the constructs, obliterating the necessity for Tyr1-iodination of the pentapeptide core to maintain high receptor affinity (such as in [177Lu]PentixaTher). As a result, [177Lu]DOTA-r-a-ABA-CPCR4 has emerged from this study as a powerful second-generation therapeutic CXCR4 ligand with greatly improved targeting efficiency and tumor retention and will be further evaluated in preclinical and clinical CXCR4-targeted dosimetry and RLT studies.
Collapse
|
23
|
Spreckelmeyer S, Schulze O, Brenner W. Fully-automated production of [ 68Ga]Ga-PentixaFor on the module Modular Lab-PharmTracer. EJNMMI Radiopharm Chem 2020; 5:8. [PMID: 32107654 PMCID: PMC7046903 DOI: 10.1186/s41181-020-0091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background PentixaFor is a promising radiopharmaceutical for positron emission tomography in the detection of different tumor entities and other diseases. Until now, the synthesis of [68Ga]Ga-PentixaFor was reported for the automated synthesis module from Scintomics® only. Our aim was to evaluate the automated synthesis of this radiopharmaceutical on a different module in order to make it available for a broader community. Results The synthesis of [68Ga]Ga-PentixaFor with different amounts of PentixaFor (50 μg, 30 μg and 20 μg) on the Modular Lab PharmTracer (MLPT) from Eckert & Ziegler with the already established synthesis template for [68Ga]Ga-DOTATOC yielded best results with 50 μg PentixaFor for clinical multi-dose application. All different quality control parameters tested (e.g. sterility, stability and radiochemical purity) were in accordance with the European Pharmacopoeia. Conclusions [68Ga]Ga-PentixaFor was successfully synthesized fully-automated on the synthesis module Modular Lab PharmTracer and can be used for multi-dose application in clinical settings.
Collapse
Affiliation(s)
- Sarah Spreckelmeyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Oliver Schulze
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Winfried Brenner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
24
|
Chifu I, Heinze B, Fuss CT, Lang K, Kroiss M, Kircher S, Ronchi CL, Altieri B, Schirbel A, Fassnacht M, Hahner S. Impact of the Chemokine Receptors CXCR4 and CXCR7 on Clinical Outcome in Adrenocortical Carcinoma. Front Endocrinol (Lausanne) 2020; 11:597878. [PMID: 33281749 PMCID: PMC7691376 DOI: 10.3389/fendo.2020.597878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Chemokine receptors have a negative impact on tumor progression in several human cancers and have therefore been of interest for molecular imaging and targeted therapy. However, their clinical and prognostic significance in adrenocortical carcinoma (ACC) is unknown. The aim of this study was to evaluate the chemokine receptor profile in ACC and to analyse its association with clinicopathological characteristics and clinical outcome. A chemokine receptor profile was initially evaluated by quantitative PCR in 4 normal adrenals, 18 ACC samples and human ACC cell line NCI-H295. High expression of CXCR4 and CXCR7 in both healthy and malignant adrenal tissue and ACC cells was confirmed. In the next step, we analyzed the expression and cellular localization of CXCR4 and CXCR7 in ACC by immunohistochemistry in 187 and 84 samples, respectively. These results were correlated with clinicopathological parameters and survival outcome. We detected strong membrane expression of CXCR4 and CXCR7 in 50% of ACC samples. Strong cytoplasmic CXCR4 staining was more frequent among samples derived from metastases compared to primaries (p=0.01) and local recurrences (p=0.04). CXCR4 membrane staining positively correlated with proliferation index Ki67 (r=0.17, p=0.028). CXCR7 membrane staining negatively correlated with Ki67 (r=-0.254, p=0.03) but positively with tumor size (r=0.3, p=0.02). No differences in progression-free or overall survival were observed between patients with strong and weak staining intensities for CXCR4 or CXCR7. Taken together, high expression of CXCR4 and CXCR7 in both local tumors and metastases suggests that some ACC patients might benefit from CXCR4/CXCR7-targeted therapy.
Collapse
Affiliation(s)
- Irina Chifu
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Britta Heinze
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- *Correspondence: Britta Heinze,
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina Lang
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, Interdisciplinary Bank of Biomaterials and Data (ibdw), University of Wuerzburg, Wuerzburg, Germany
| | - Cristina L. Ronchi
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Schirbel
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
- Department of Nuclear Medicine, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019; 96:737-752. [PMID: 31548340 DOI: 10.1124/mol.119.117663] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/14/2019] [Indexed: 02/14/2025] Open
Abstract
The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for human immunodeficiency virus (HIV) infection, cancer, and inflammation diseases. CXCR4 is one of only three chemokine receptors with a US Food and Drug Administration approved therapeutic agent, the small-molecule modulator AMD3100. In this review, known modulators of the two receptors are discussed in detail. Initially, the structural relationship between receptors and ligands is reviewed on the basis of common structural motifs and available crystal structures. To date, no atypical chemokine receptor has been crystallized, which makes ligand design and predictions for these receptors more difficult. Next, the selectivity, receptor activation, and the resulting ligand-induced signaling output of chemokines and other peptide ligands are reviewed. Binding of pepducins, a class of lipid-peptides whose basis is the internal loop of a GPCR, to CXCR4 is also discussed. Finally, small-molecule modulators of CXCR4 and ACKR3 are reviewed. These modulators have led to the development of radio- and fluorescently labeled tool compounds, enabling the visualization of ligand binding and receptor characterization both in vitro and in vivo. SIGNIFICANCE STATEMENT: To investigate the pharmacological modulation of CXCR4 and ACKR3, significant effort has been focused on the discovery and development of a range of ligands, including small-molecule modulators, pepducins, and synthetic peptides. Imaging tools, such as fluorescent probes, also play a pivotal role in the field of drug discovery. This review aims to provide an overview of the aforementioned modulators that facilitate the study of CXCR4 and ACKR3 receptors.
Collapse
Affiliation(s)
- Ilze Adlere
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Birgit Caspar
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Marta Arimont
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Sebastian Dekkers
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Kirsten Visser
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Jeffrey Stuijt
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Chris de Graaf
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Michael Stocks
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Barrie Kellam
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Stephen Briddon
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Maikel Wijtmans
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Iwan de Esch
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Stephen Hill
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Rob Leurs
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| |
Collapse
|
26
|
|
27
|
Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, Keller U, Lapa C. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 2018; 32:503-511. [PMID: 30105558 PMCID: PMC6182637 DOI: 10.1007/s12149-018-1290-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Given its prominent role in inflammation and cancer biology, the C-X-C motif chemokine receptor 4 (CXCR4) has gained a lot of attention in the recent years. This review gives a short overview of the physiology and pathology of chemokines and chemokine receptors and then focuses on the current experience of targeting CXCR4, using radiolabeled receptor ligands suitable for positron emission tomography (PET) imaging, in both hematologic and solid malignancy as well as in inflammatory conditions. Additionally, CXCR4-directed endoradiotherapy (ERT) as a new treatment option is discussed.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Peter Herhaus
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Ulrich Keller
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
28
|
Vag T, Steiger K, Rossmann A, Keller U, Noske A, Herhaus P, Ettl J, Niemeyer M, Wester HJ, Schwaiger M. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Res 2018; 8:90. [PMID: 30191351 PMCID: PMC6127070 DOI: 10.1186/s13550-018-0442-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background CXCR4 is a chemokine receptor frequently overexpressed in invasive breast cancer that has been shown to play a major role in signaling pathways involved in metastasis. The aim of this retrospective analysis was to assess the diagnostic performance of CXCR4-directed PET imaging in patients with breast cancer using the recently introduced CXCR4-targeted PET probe 68Ga-Pentixafor. Results Thirteen patients with first diagnosis of breast cancer, four patients with recurrent disease after primary breast cancer, and one patient with axillary lymph node metastasis of unknown primary underwent CXCR4-targeted PET imaging using 68Ga-Pentixafor. Maximum standardized uptake values (SUVmax) and tumor-to-background (T/B) ratios of tumor lesions were measured and compared with pathological prognostic factors and molecular subtypes. 18F-FDG PET/CT images were available in 8/18 cases and were compared semi-quantitatively. Comparison with CXCR4 expression determined by immunohistochemistry was performed in 7/18 patients. Nine of 13 primary breast cancers were visually detectable on 68Ga-Pentixafor PET images (mean SUVmax of 3.0). The visually undetectable lesions included both cases of invasive lobular carcinoma (ILC) and two cases of invasive carcinoma of no special type (NST) without any hormone receptor and HER2 expression (triple negative). Metastases of recurrent breast cancer and unknown primary cancer were visually detectable in all five cases, exhibiting a mean SUVmax of 3.5. 18F-FDG PET demonstrated higher SUVmax in all patients compared to 68Ga-Pentixafor PET. A correlation between SUVmax obtained from 68Ga-Pentixafor PET and prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, proliferation index, tumor grade, or molecular subtypes was not observed. Conclusions CXCR4-directed PET imaging in patients with primary and recurrent breast cancer is feasible; however, tumor detectability is significantly lower compared to 18F-FDG PET. Moreover, we did not find any correlation between aforementioned prognostic factors of breast cancer and CXCR4-targeted tracer accumulation. Based on these results in a small patient cohort, CXCR4-targeted PET imaging does not seem to be suitable as a general diagnostic tool for imaging of breast cancer. Future CXCR4 imaging studies should investigate whether this modality might be useful in more specific applications, e.g., in therapeutic approaches especially under the view of current developments in targeted immune cell and immune checkpoint inhibitory therapy.
Collapse
Affiliation(s)
- Tibor Vag
- Clinic of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany.
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Troger Strasse 18, 81675, Munich, Germany
| | - Andreas Rossmann
- Clinic of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Ulrich Keller
- III Medical Department, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Aurelia Noske
- Institute of Pathology, Technische Universität München, Troger Strasse 18, 81675, Munich, Germany
| | - Peter Herhaus
- III Medical Department, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Johannes Ettl
- Clinic of Gynecology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Markus Niemeyer
- Clinic of Gynecology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner Strasse 3, 85748, Garching, Germany
| | - Markus Schwaiger
- Clinic of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| |
Collapse
|
29
|
Liu G, Chen H, Yu S, Li X, Wang Z. CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Merlino F, Daniele S, La Pietra V, Di Maro S, Di Leva FS, Brancaccio D, Tomassi S, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Reichart F, Cavallini C, Costa B, Piccarducci R, Taliani S, Da Settimo F, Martini C, Kessler H, Novellino E, Marinelli L. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J Med Chem 2018; 61:4791-4809. [PMID: 29775303 DOI: 10.1021/acs.jmedchem.8b00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Collapse
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Simona Daniele
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Salvatore Di Maro
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Stefano Tomassi
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Florian Reichart
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Chiara Cavallini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Barbara Costa
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Rebecca Piccarducci
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Claudia Martini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| |
Collapse
|
31
|
|
32
|
Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018; 104:343-357. [PMID: 29570832 DOI: 10.1002/jlb.3ma0118-007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
The chemokine receptor CXCR4 (C-X-C chemokine receptor type 4 also known as fusin or CD184 (cluster of differentiation 184)) is implicated in various biological and pathological processes of the hematopoietic and immune systems. CXCR4 is also one of the major coreceptors for HIV-1 entry into target cells and is overexpressed in many cancers, supporting cell survival, proliferation, and migration. CXCR4 is thus an extremely relevant drug target. Among the different strategies to block CXCR4, chemokine-derived peptide inhibitors hold great therapeutic potential. In this study, we used the N-terminus of vCCL2/vMIPII, a viral CXCR4 antagonist chemokine, as a scaffold motif to engineer and select CXCR4 peptide inhibitors, called Mimokines, which imitate the chemokine-binding mode but display an enhanced receptor affinity, antiviral properties, and receptor selectivity. We first engineered a Mimokine phage displayed library based on the first 21 residues of vCCL2, in which cysteine 11 and 12 were fully randomized and screened it against purified CXCR4 stabilized in liposomes. We identified Mimokines displaying up to 4-fold higher affinity for CXCR4 when compared to the reference peptide and fully protected MT-4 cells against HIV-1 infection. These selected Mimokines were then subjected to dimerization, D-amino acid, and aza-β3-amino acid substitution to further enhance their potency and selectivity. Optimized Mimokines exhibited up to 120-fold enhanced CXCR4 binding (range of 20 nM) and more than 200-fold improved antiviral properties (≤ 1 μM) compared to the parental Mimokines. Interestingly, these optimized Mimokines also showed up to 25-fold weaker affinity for ACKR3/CXCR7 and may therefore serve as lead compounds for further development of more selective CXCR4 peptide inhibitors and probes.
Collapse
Affiliation(s)
- Virginie Fievez
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Amor Mosbah
- Université de Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| | - Karthik Arumugam
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Julie Mathu
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Nadia Beaupain
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Sabrina Deroo
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | | | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
33
|
Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy. Oncotarget 2018; 7:20033-40. [PMID: 26936994 PMCID: PMC4991436 DOI: 10.18632/oncotarget.7706] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/16/2016] [Indexed: 01/03/2023] Open
Abstract
Despite initial responsiveness to both chemotherapy and radiotherapy, small cell lung cancer (SCLC) commonly relapses within months. Although neuroendocrine characteristics may be difficult to demonstrate in individual cases, a relevant expression of somatostatin receptors (SSTR) on the cell surface has been described. We aimed to evaluate the prognostic value of SSTR-expression in advanced SCLC. We further examined pre-requisites for successful peptide receptor radionuclide therapy (PRRT). 21 patients with extensive stage SCLC were enrolled. All patients underwent positron emission tomography/computed tomography (PET/CT) with 68Ga-DOTATATE to select patients for SSTR-directed therapy. PET scans were visually and semi-quantitatively assessed and compared to SSTR2a and SSTR5 expression in biopsy samples. Peak standardized uptake values (SUVpeak) of tumors as well as tumor-to-liver ratios were correlated to progression-free (PFS) and overall survival (OS). In 4/21 patients all SCLC lesions were PET-positive. 6/21 subjects were rated “intermediate” with the majority of lesions positive, the remaining 11/21 patients were PET-negative. PET-positivity correlated well with histologic SSTR2a, but not with SSTR5 expression. Neither PET-positivity nor SUVpeak were predictors of PFS or OS. In 4 patients with intensive SSTR2a-receptor expression, PRRT was performed with one partial response and one stable disease, respectively. SSTR-expression as detected by 68Ga-DOTATATE-PET and/or histology is not predictive of PFS or OS in patients with advanced SCLC. However, in patients exhibiting sufficient tracer uptake, PRRT might be a treatment option given its low toxicity and the absence of effective alternatives.
Collapse
|
34
|
Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531507 PMCID: PMC5817300 DOI: 10.1155/2018/9713691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management.
Collapse
|
35
|
Heinze B, Fuss CT, Mulatero P, Beuschlein F, Reincke M, Mustafa M, Schirbel A, Deutschbein T, Williams TA, Rhayem Y, Quinkler M, Rayes N, Monticone S, Wild V, Gomez-Sanchez CE, Reis AC, Petersenn S, Wester HJ, Kropf S, Fassnacht M, Lang K, Herrmann K, Buck AK, Bluemel C, Hahner S. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension 2017; 71:317-325. [PMID: 29279316 DOI: 10.1161/hypertensionaha.117.09975] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 07/25/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Primary aldosteronism is the most frequent cause of secondary hypertension and is associated with increased morbidity and mortality compared with hypertensive controls. The central diagnostic challenge is the differentiation between bilateral and unilateral disease, which determines treatment options. Bilateral adrenal venous sampling, currently recommended for differential diagnosis, is an invasive procedure with several drawbacks, making it desirable to develop novel noninvasive diagnostic tools. When investigating the expression pattern of chemokine receptors by quantitative real-time polymerase chain reaction and immunohistochemistry, we observed high expression of CXCR4 (CXC chemokine receptor type 4) in aldosterone-producing tissue in normal adrenals, adjacent adrenal cortex from adrenocortical adenomas, and in aldosterone-producing adenomas (APA), correlating strongly with the expression of CYP11B2 (aldosterone synthase). In contrast, CXCR4 was not detected in the majority of nonfunctioning adenomas that are frequently found coincidently. The specific CXCR4 ligand 68Ga-pentixafor has recently been established as radiotracer for molecular imaging of CXCR4 expression and showed strong and specific binding to cryosections of APAs in our study. We further investigated 9 patients with primary aldosteronism because of APA by 68Ga-pentixafor-positron emission tomography. The tracer uptake was significantly higher on the side of increased adrenocortical aldosterone secretion in patients with APAs compared with patients investigated by 68Ga-pentixafor-positron emission tomography for other causes. Molecular imaging of aldosterone-producing tissue by a CXCR4-specific ligand may, therefore, be a highly promising tool for noninvasive characterization of patients with APAs.
Collapse
Affiliation(s)
- Britta Heinze
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Carmina T Fuss
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Paolo Mulatero
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Felix Beuschlein
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Martin Reincke
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Mona Mustafa
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Andreas Schirbel
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Timo Deutschbein
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Tracy Ann Williams
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Yara Rhayem
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Marcus Quinkler
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Nada Rayes
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Silvia Monticone
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Vanessa Wild
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Celso E Gomez-Sanchez
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Anna-Carinna Reis
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Stephan Petersenn
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Hans-Juergen Wester
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Saskia Kropf
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Martin Fassnacht
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Katharina Lang
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Ken Herrmann
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Andreas K Buck
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Christina Bluemel
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.)
| | - Stefanie Hahner
- From the Department of Internal Medicine I, Endocrinology and Diabetes Unit (B.H., C.T.F., M.F., K.L., S.H.), Department of Nuclear Medicine (A.S., K.H., A.K.B., C.B.), and Comprehensive Cancer Center Wuerzburg (T.D., M.F.), University Hospital of Wuerzburg, University of Wuerzburg, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Italy (P.M., T.A.W., S.M.); Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Germany (F.B., M.R., T.A.W., Y.R.); Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Germany (M.M.); Endocrinology in Charlottenburg, Berlin, Germany (M.Q.); Department of General, Visceral, and Transplant Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Germany (N.R.); Department of Pathology, University of Würzburg, Germany (V.W.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, MS (C.E.G.-S.); Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Germany (A.-C.R.); ENDOC, Center for Endocrine Tumors, Hamburg, Germany (S.P.); Pharmaceutical Radiochemistry, Technische Universität München, Garching bei München, Germany (H.-J.W.); and Scintomics GmbH, Fürstenfeldbruck, Germany (S.K.).
| |
Collapse
|
36
|
Di Maro S, Di Leva FS, Trotta AM, Brancaccio D, Portella L, Aurilio M, Tomassi S, Messere A, Sementa D, Lastoria S, Carotenuto A, Novellino E, Scala S, Marinelli L. Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonist. J Med Chem 2017; 60:9641-9652. [DOI: 10.1021/acs.jmedchem.7b01062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Anna Maria Trotta
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Portella
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Michela Aurilio
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Stefano Tomassi
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Deborah Sementa
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Secondo Lastoria
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
37
|
Li X, Heber D, Leike T, Beitzke D, Lu X, Zhang X, Wei Y, Mitterhauser M, Wadsak W, Kropf S, Wester HJ, Loewe C, Hacker M, Haug AR. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2017; 45:558-566. [PMID: 28932900 PMCID: PMC5829117 DOI: 10.1007/s00259-017-3831-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/04/2017] [Indexed: 11/02/2022]
Abstract
PURPOSE The expression of chemokine receptor type 4 (CXCR4) was found co-localized with macrophages on the atherosclerotic vessel wall and participated in the initial emigration of leukocytes. Gallium-68 [68Ga]Pentixafor has recently been introduced for the imaging of atherosclerosis by targeting CXCR4. We sought to evaluate human atherosclerotic lesions using [68Ga]Pentixafor PET/MRI. METHODS Thirty-eight oncology patients underwent [68Ga]Pentixafor PET/MR imaging at baseline. Maximum standardized uptake values (SUVmax) were derived from hot lesions in seven arterial segments and target-to-blood ratios (TBR) were calculated. ANOVA post-hoc and paired t test were performed for statistical comparison, Spearman's correlation coefficient between uptake ratios and cardiovascular risk factors were assessed. The reproducibility of [68Ga]Pentixafor PET/MRI was assessed in seven patients with a follow-up exanimation by Pearson's regression and Bland-Altman plots analysis. RESULTS Thirty-four of 38 patients showed 611 focal [68Ga]Pentixafor uptake that followed the contours of the large arteries. Both prevalence and mean TBRmax were highest in the descending aorta. There were significantly higher TBR values found in men (1.9 ± 0.3) as compared to women (1.7 ± 0.2; p < 0.05). Patients with mean TBRmax > 1.7 showed a significantly higher incidence of diabetes, hypertension hypercholesterolemia and history of cardiovascular disease than patients with mean TBRmax ≤ 1.7. [68Ga]Pentixafor uptake showed a good reproducibility (r = 0.6, p < 0.01), and there was no difference between the mean TBRmax values of plaque lesions (TBRbaseline1.8 ± 0.3 vs TBRfollow-up1.8 ± 0.3) (p = 0.9). CONCLUSION Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting a potential role of [68Ga]Pentixafor in characterization of atherosclerosis.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Daniel Heber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Tatjana Leike
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | | | - Hans J Wester
- Department of Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
38
|
Schwarzenböck SM, Stenzel J, Otto T, Helldorff HV, Bergner C, Kurth J, Polei S, Lindner T, Rauer R, Hohn A, Hakenberg OW, Wester HJ, Vollmar B, Krause BJ. [ 68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with [ 18F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget 2017; 8:95606-95619. [PMID: 29221153 PMCID: PMC5707047 DOI: 10.18632/oncotarget.21024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim was to characterize the properties of [68Ga]Pentixafor as tracer for prostate cancer imaging in a PC-3 prostate cancer xenograft mouse model and to investigate its correlation with [18F]FDG PET/CT, magnetic resonance imaging (MRI) and ex vivo analyses. Methods Static [68Ga]Pentixafor and [18F]FDG PET as well as morphological/ diffusion weighted MRI and 1H MR spectroscopy was performed. Imaging data were correlated with ex vivo biodistribution and CXCR4 expression in PC-3 tumors (immunohistochemistry (IHC), mRNA analysis). Flow cytometry was performed for evaluation of localization of CXCR4 receptors (in vitro PC-3 cell experiments). Results Tumor uptake of [68Ga]Pentixafor was significantly lower compared to [18F]FDG. Ex vivo CXCR4 mRNA expression of tumors was shown by PCR. Only faint tumor CXCR4 expression was shown by IHC (immuno reactive score of 3). Accordingly, flow cytometry of PC-3 cells revealed only a faint signal, cell membrane permeabilisation showed a slight signal increase. There was no significant correlation of [68Ga]Pentixafor tumor uptake and ex vivo receptor expression. Spectroscopy showed typical spectra of prostate cancer. Conclusion PC-3 tumor uptake of [68Ga]Pentixafor was existent but lower compared to [18F]FDG. No significant correlation of ex vivo tumor CXCR4 receptor expression and [68Ga]Pentixafor tumor uptake was shown. CXCR4 receptor expression on the surface of PC-3 cells was existent but rather low possibly explaining the limited [68Ga]Pentixafor tumor uptake; receptor localization in the interior of PC-3 cells is presumable as shown by cell membrane permeabilisation. Further studies are necessary to define the role of [68Ga]Pentixafor in prostate cancer imaging.
Collapse
Affiliation(s)
- Sarah M Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Thomas Otto
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Heike V Helldorff
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Stefan Polei
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Romina Rauer
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Alexander Hohn
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Oliver W Hakenberg
- Department of Urology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Hans J Wester
- Institute for Radiopharmaceutical Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| |
Collapse
|
39
|
Chemokine receptor - Directed imaging and therapy. Methods 2017; 130:63-71. [PMID: 28916148 DOI: 10.1016/j.ymeth.2017.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/29/2022] Open
Abstract
The C-X-C chemokine receptor 4 (CXCR4) and its natural ligand CXCL12 are key factors in the process of cell migration, homing of hematopoietic stem cells to the bone marrow, and represent important mediators of angiogenesis and cell proliferation. The CXCR4/CXCL12 interplay can be disrupted by CXCR4 antagonists such as Plerixafor which are already in daily clinical use, i.e. for mobilization and subsequent harvesting of hematopoietic progenitor cells and stem cell transplantation. In a pathological condition, involvement in the process of metastasis and homing of cancer cells to a protective niche has been described, making CXCR4 an attractive target for imaging and treatment of malignant diseases. Recently, radiolabeled analogs of CXCR4 antagonists (e.g., [68Ga]Pentixafor) have been introduced which can be used for non-invasive imaging of CXCR4 expression in animal models and humans using positron emission tomography. In addition, beta emitter-labeled antagonists (i.e., [177Lu]/[90Y]Pentixather) have been used in small patient cohorts for treatment of hematological neoplasms such as lymphoma, multiple myeloma and acute myeloid leukemia. This review reports on current imaging protocols for CXCR4-directed positron emission tomography in preclinical models and in humans. Furthermore, a theranostic approach using beta emitter-labeled antagonists is highlighted. Molecular imaging of the CXCR4/CXCL12 axis can contribute to further understand the process of metastatic spread and the intra-/interindividual heterogeneity of tumors. In addition, CXCR4 directed imaging allows tracking of activated, CXCR4+ immune cells. This allows for watching inflammatory processes, thus contributing to enlighten the role of the immune system in a variety of cardiovascular and neurological diseases.
Collapse
|
40
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|
41
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
42
|
Derlin T, Gueler F, Bräsen JH, Schmitz J, Hartung D, Herrmann TR, Ross TL, Wacker F, Wester HJ, Hiss M, Haller H, Bengel FM, Hueper K. Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. J Nucl Med 2017; 58:1831-1837. [PMID: 28450555 DOI: 10.2967/jnumed.117.193037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Complicated urinary tract infections (UTIs) are frequent in immunosuppressed patients after kidney transplantation and may lead to allograft failure or urosepsis. Noninvasive detection of allograft involvement as well as localization of the primary site of infection are challenging. Therefore, we sought to determine whether molecularly targeted PET, combined with diffusion-weighted MRI, enables detection of leukocytes in renal allografts. Methods: Thirteen kidney transplant recipients with complicated UTIs underwent both PET with a specific CXCR4 ligand, 68Ga-pentixafor, and diffusion-weighted MRI. The spatial distribution and intensity of CXCR4 upregulation in renal allografts as determined by SUVs on PET and diffusion restriction as determined by apparent diffusion coefficients (ADCs) on MRI were analyzed and compared with urinalysis, clinical chemistry and bacteriology, and biopsy, if available. Results: Combined PET/MRI detected acute allograft infection in 9 patients and lower UTI/nonurologic infections in the remaining 4 patients. Leukocyte infiltration was identified by areas of CXCR4 upregulation compared with unaffected parenchyma in PET (SUVmean, 4.6 vs. 3.7; P < 0.01), corresponding to areas with increased cell density in MRI (ADCmin, 0.89 vs. 1.59 × 10-3 mm2/s, P < 0.01). Allograft CXCR4 signal was paralleled by CXCR4 upregulation in lymphoid organs. Histopathologic evaluation supported a correlation between CXCR4 signal and presence of leukocytes. Conclusion: Combined CXCR4-targeted PET/MRI with 68Ga-pentixafor may enable the noninvasive detection of leukocytes in renal allografts. This novel methodology may refine the characterization of infectious and inflammatory kidney diseases and may serve as a platform for future clinical studies targeting allograft infection.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Jessica Schmitz
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Dagmar Hartung
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Thomas R Herrmann
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany; and
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Hans-Jürgen Wester
- Radiopharmaceutical Chemistry, Technical University of Munich, Munich, Germany
| | - Marcus Hiss
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Katja Hueper
- Department of Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Werner RA, Weich A, Higuchi T, Schmid JS, Schirbel A, Lassmann M, Wild V, Rudelius M, Kudlich T, Herrmann K, Scheurlen M, Buck AK, Kropf S, Wester HJ, Lapa C. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics 2017; 7:1489-1498. [PMID: 28529632 PMCID: PMC5436508 DOI: 10.7150/thno.18754] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 12/21/2022] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) and somatostatin receptors (SSTR) are overexpressed in gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). In this study, we aimed to elucidate the feasibility of non-invasive CXCR4 positron emission tomography/computed tomography (PET/CT) imaging in GEP-NET patients using [68Ga]Pentixafor in comparison to 68Ga-DOTA-D-Phe-Tyr3-octreotide ([68Ga]DOTATOC) and 18F-fluorodeoxyglucose ([18F]FDG). Twelve patients with histologically proven GEP-NET (3xG1, 4xG2, 5xG3) underwent [68Ga]DOTATOC, [18F]FDG, and [68Ga]Pentixafor PET/CT for staging and planning of the therapeutic management. Scans were analyzed on a patient as well as on a lesion basis and compared to immunohistochemical staining patterns of CXCR4 and somatostatin receptors SSTR2a and SSTR5. [68Ga]Pentixafor visualized tumor lesions in 6/12 subjects, whereas [18F]FDG revealed sites of disease in 10/12 and [68Ga]DOTATOC in 11/12 patients, respectively. Regarding sensitivity, SSTR-directed PET was the superior imaging modality in all G1 and G2 NET. CXCR4-directed PET was negative in all G1 NET. In contrast, 50% of G2 and 80% of G3 patients exhibited [68Ga]Pentixafor-positive tumor lesions. Whereas CXCR4 seems to play only a limited role in detecting well-differentiated NET, increasing receptor expression could be non-invasively observed with increasing tumor grade. Thus, [68Ga]Pentixafor PET/CT might serve as non-invasive read-out for evaluating the possibility of CXCR4-directed endoradiotherapy in advanced dedifferentiated SSTR-negative tumors.
Collapse
|
44
|
Poschenrieder A, Schottelius M, Osl T, Schwaiger M, Wester HJ. [ 64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model. EJNMMI Radiopharm Chem 2017; 2:2. [PMID: 29527563 PMCID: PMC5835975 DOI: 10.1186/s41181-016-0020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/22/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The chemokine receptor 4 (CXCR4) is an important molecular target for both visualization and therapy of tumors. The aim of the present study was the synthesis and preclinical evaluation of a 64Cu-labeled, CXCR4-targeting peptide for positron emission tomography (PET) imaging of CXCR4 expression in vivo. METHODS For this purpose, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), or 1,4,7-triazacyclononane-triacetic acid (NOTA) was conjugated to the highly affine CXCR4-targeting pentixather scaffold. Affinities were determined using Jurkat T-lymphocytes in competitive binding assays employing [125I]FC131 as the radioligand. Internalization and efflux studies of [64Cu]NOTA-pentixather were performed in chem-1 cells, stably transfected with hCXCR4. The stability of the tracer was evaluated in vitro and in vivo. Small-animal PET and biodistribution studies at different time points were performed in Daudi lymphoma-bearing severe combined immunodeficiency (SCID) mice. RESULTS [64Cu]NOTA-pentixather was rapidly radiolabeled at 60 °C with high radiochemical yields ≥90% and purities >99%. [64Cu]NOTA-pentixather offered the highest affinity of the evaluated peptides in this study (IC50 = 14.9 ± 2.1 nM), showed efficient CXCR4-targeting in vitro and was stable in blood and urine with high resistance to transchelation in ethylenediaminetetraacetic acid (EDTA) challenge studies. Due to the enhanced lipophilicity of [64Cu]NOTA-pentixather (logP = -1.2), biodistribution studies showed some nonspecific accumulation in the liver and intestines. However, tumor accumulation (13.1 ± 1.5% ID/g, 1.5 h p.i.) was CXCR4-specific and higher than in all other organs and resulted in high resolution delineation of Daudi tumors in PET/CT images in vivo. CONCLUSIONS [64Cu]NOTA-pentixather was fast and efficiently radiolabeled, showed effective CXCR4-targeting, high stability in vitro and in vivo and resulted in high resolution PET/CT images accompanied with a suitable biodistribution profile, making [64Cu]NOTA-pentixather a promising tracer for future application in humans.
Collapse
Affiliation(s)
- Andreas Poschenrieder
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| | - Theresa Osl
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| |
Collapse
|
45
|
Yan X, Niu G, Wang Z, Yang X, Kiesewetter DO, Jacobson O, Shen B, Chen X. Al[18F]NOTA-T140 Peptide for Noninvasive Visualization of CXCR4 Expression. Mol Imaging Biol 2016; 18:135-42. [PMID: 26126597 DOI: 10.1007/s11307-015-0872-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Chemokine receptor CXCR4 plays an important role in tumor aggressiveness, invasiveness, and metastasis formation. Quantification of CXCR4 expression by tumors may have an impact on prediction and evaluation of tumor response to therapies. In this study, we developed a robust and straightforward F-18 labeling route of T140, a CXCR4 peptide-based antagonist. PROCEDURES T140 derivative was conjugated to 1,4,7-triazacyclononane-triacetic acid (NOTA) and labeled with Al[(18)F]. Al[(18)F]NOTA-T140 was evaluated in vitro in cell-based assay and stability in mouse serum and in vivo using CXCR4 positive and negative tumor xenograft models. RESULTS Labeling of Al[(18)F]NOTA-T140 was completed within 30 min with a radiochemical yield of 58 ± 5.3 % at the end of synthesis, based on fluoride-18 activity. Al[(18)F]NOTA-T140 accumulated in CHO-CXCR4 positive but not negative tumors. Al[(18)F]NOTA-T140 uptake in the tumors correlated with CXCR4 protein expression. Moreover, Al[(18)F]NOTA-T140 had high accumulation in CXCR4-positive metastatic tumors. CONCLUSIONS The simplicity of Al[(18)F]NOTA-T140 labeling along with its properties to specifically image CXCR4 expression by tumors warrant further clinical application for the diagnosis of CXCR4 clinically.
Collapse
Affiliation(s)
- Xuefeng Yan
- Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.,Molecular Imaging Center of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiangyu Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Baozhong Shen
- Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Molecular Imaging Center of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
46
|
Di Maro S, Trotta AM, Brancaccio D, Di Leva FS, La Pietra V, Ieranò C, Napolitano M, Portella L, D'Alterio C, Siciliano RA, Sementa D, Tomassi S, Carotenuto A, Novellino E, Scala S, Marinelli L. Exploring the N-Terminal Region of C-X-C Motif Chemokine 12 (CXCL12): Identification of Plasma-Stable Cyclic Peptides As Novel, Potent C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonists. J Med Chem 2016; 59:8369-80. [PMID: 27571038 DOI: 10.1021/acs.jmedchem.6b00695] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We previously reported the discovery of a CXCL12-mimetic cyclic peptide (2) as a selective CXCR4 antagonist showing promising in vitro and in vivo anticancer activity. However, further development of this peptide was hampered by its degradation in biological fluids as well as by its low micromolar affinity for the receptor. Herein, extensive chemical modifications led to the development of a new analogue (10) with enhanced potency, specificity, and plasma stability. A combined approach of Ala-amino acid scan, NMR, and molecular modeling unraveled the reasons behind the improved binding properties of 10 vs 2. Biological investigations on leukemia (CEM) and colon (HT29 and HCT116) cancer cell lines showed that 10 is able to impair CXCL12-mediated cell migration, ERK-phosphorylation, and CXCR4 internalization. These outcomes might pave the way for the future preclinical development of 10 in CXCR4 overexpressing leukemia and colon cancer.
Collapse
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, Second University of Naples , Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Maria Trotta
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy.,Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic.A.Tec.), Università Mediterranea di Reggio Calabria , Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Caterina Ieranò
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Maria Napolitano
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Luigi Portella
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Crescenzo D'Alterio
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Rosa Anna Siciliano
- Istituto di Scienze dell'Alimentazione, CNR , Via Roma 64, 83100 Avellino, Italy
| | - Deborah Sementa
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
47
|
Poschenrieder A, Osl T, Schottelius M, Hoffmann F, Wirtz M, Schwaiger M, Wester HJ. First 18F-Labeled Pentixafor-Based Imaging Agent for PET Imaging of CXCR4 Expression In Vivo. ACTA ACUST UNITED AC 2016; 2:85-93. [PMID: 30042959 PMCID: PMC6024415 DOI: 10.18383/j.tom.2016.00130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo quantification of CXCR4 expression using [68Ga]pentixafor for positron emission tomography (PET) imaging has gained significant clinical interest as CXCR4 plays a fundamental role in oncology and possesses potential prognostic value when overexpressed. To combine the excellent CXCR4-targeting properties of pentixafor-based tracers with the favorable radionuclide properties of 18F for high-resolution PET imaging, we developed an Al18F-labeled 1,4,7-triazacyclononane-triacetic acid (NOTA) analog of pentixather. Al18F-labeling of NOTA-pentixather was performed in aqueous dimethyl sulfoxide (DMSO) at pH = 4 (105°C, 15 minutes). CXCR4 affinities were determined in competitive binding assays, and both biodistribution and small-animal PET studies were performed in Daudi lymphoma-bearing mice. Under non-optimized conditions, [18F]AlF-NOTA-pentixather was obtained in radiochemical yields of 45.5% ± 13.3% and specific activities of up to 24.8 GBq/μmol. Compared with [natGa]pentixafor, [natF]AlF-NOTA-pentixather showed 1.4-fold higher CXCR4 affinity. [18F]AlF-NOTA-pentixather displayed high and CXCR4-specific in vivo uptake in Daudi xenografts (13.9% ± 0.8% injected dose per gram [ID/g] at 1 hour post injection [p.i.]). Because of its enhanced lipophilicity (logP = -1.4), [18F]AlF-NOTA-pentixather showed increased accumulation in the gall bladder and intestines. However, tumor/background ratios of 7.0 ± 1.2, 2.0 ± 0.3, 2.2 ± 0.4, 16.5 ± 6.5, and 29.2 ± 4 for blood, liver, small intestine, gut, and muscle, respectively, allowed for high-contrast visualization of Daudi tumors using PET (1 hour p.i.). The relatively straightforward radiosynthesis and efficient CXCR4 targeting of [18F]AlF-NOTA-pentixather demonstrate the successful implementation of 18F-complexation chemistry and pentixather-based CXCR4 targeting. Upon pharmacokinetic optimization, this class of tracers holds great promise for future application in humans.
Collapse
Affiliation(s)
| | - Theresa Osl
- Pharmaceutical Radiochemistry, Technische Universität München, Germany and
| | | | - Frauke Hoffmann
- Pharmaceutical Radiochemistry, Technische Universität München, Germany and
| | - Martina Wirtz
- Pharmaceutical Radiochemistry, Technische Universität München, Germany and
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Ismaningerstr, München, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Germany and
| |
Collapse
|
48
|
Merlino F, Yousif AM, Billard É, Dufour-Gallant J, Turcotte S, Grieco P, Chatenet D, Lubell WD. Urotensin II((4-11)) Azasulfuryl Peptides: Synthesis and Biological Activity. J Med Chem 2016; 59:4740-52. [PMID: 27140209 DOI: 10.1021/acs.jmedchem.6b00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cyclic azasulfuryl (As) peptide analogs of the urotensin II (UII, 1, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) fragment 4-11 were synthesized to explore the influences of backbone structure on biological activity. N-Aminosulfamides were inserted as surrogates of the Trp(7) and Lys(8) residues in the biologically relevant Trp-Lys-Tyr triad. A combination of solution- and solid-phase methods were used to prepare novel UII((4-11)) analogs 6-11 by routes featuring alkylation of azasulfuryl-glycine tripeptide precursors to install various side chains. The pharmacological profiles of derivatives 6-11 were tested in vitro using a competitive binding assay and ex vivo using a rat aortic ring bioassay. Although the analogs exhibited weak affinity for the urotensin II receptor (UT) without agonistic activity, azasulfuryl-UII((4-11)) derivatives 7-9 reduced up to 50% of the effects of UII and urotensin II-related peptide (URP) without affecting their potency.
Collapse
Affiliation(s)
- Francesco Merlino
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ali M Yousif
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Étienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - Julien Dufour-Gallant
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Stéphane Turcotte
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
49
|
Poschenrieder A, Schottelius M, Schwaiger M, Kessler H, Wester HJ. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Res 2016; 6:36. [PMID: 27112767 PMCID: PMC4844575 DOI: 10.1186/s13550-016-0193-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background The overexpression of the chemokine receptor 4 (CXCR4) in different epithelial, mesenchymal, and hematopoietic cancers makes CXCR4 an attractive diagnostic and therapeutic target. However, targeting the CXCR4 receptor with small cyclic pentapeptide-based radiopharmaceuticals remains challenging because minor structural modifications within the ligand-linker-chelate structure often significantly affect the receptor affinity. Based on the excellent in vivo properties of CXCR4-directed pentapeptide [68Ga]pentixafor (cyclo(-d-Tyr-N-Me-d-Orn(AMB-DOTA)-l-Arg-l-2-Nal-Gly-)), this study aims to broaden the spectrum of applicable (radio)metal-labeled pentixafor analogs. Methods Cyclic pentapeptides, based on the pentixafor scaffold, were synthesized by a combined solid- and solution-phase peptide synthesis. The CXCR4 receptor affinities of the cold reference compounds were determined in competitive binding assays using CXCR4-expressing Jurkat T - cell leukemia cells and [125I]FC131 as the radioligand. Results Metalated pentixafor derivatives with cyclic and acyclic chelators were synthesized by solid-phase peptide synthesis and evaluated in vitro. The resulting CXCR4 affinities (IC50) were highly dependent on the chelator and metal used. Two pentapeptides, Ga-NOTA and Bi-DOTA conjugates, offer an improved affinity compared to [68Ga]pentixafor. Conclusions Based on the pentapeptide [68Ga]pentixafor, a broad range of metal-labeled analogs were investigated. The affinities of the new compounds were found to be strongly dependent on both the chelator and the metal used. Bi-labeled pentixafor showed high receptor affinity and seems to be a promising ligand for further preclinical evaluation and future α-emitter-based endoradiotherapy.
Collapse
Affiliation(s)
- Andreas Poschenrieder
- Pharmaceutical Radiochemistry, Technical University Munich, Walther-Meißner-Str.3, 85748, Garching, Germany.
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technical University Munich, Walther-Meißner-Str.3, 85748, Garching, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technical University Munich, Klinikum rechts der Isar, Ismaninger Straße 22, 81675, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie, Technical University Munich, Lichtenbergstr. 2a, 85748, Garching, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University Munich, Walther-Meißner-Str.3, 85748, Garching, Germany
| |
Collapse
|
50
|
Arnatt CK, Zhang Y. Bivalent ligands targeting chemokine receptor dimerization: molecular design and functional studies. Curr Top Med Chem 2016; 14:1606-18. [PMID: 25159160 DOI: 10.2174/1568026614666140827144752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/27/2022]
Abstract
Increasing evidence has shown that chemokine receptors may form functional dimers with unique pharmacological profiles. A common practice to characterize such G protein-coupled receptor dimerization processes is to apply bivalent ligands as chemical probes which can interact with both receptors simultaneously. Currently, two chemokine receptor dimers have been studied by applying bivalent compounds: the CXCR4-CXCR4 homodimer and the CCR5-MOR heterodimer. These bivalent compounds have revealed how dimerization influences receptor function and may lead to novel therapeutics. Future design of bivalent ligands for chemokine receptor dimers may be aided with the recently available CXCR4 homodimer, and CCR5 monomer crystal structures by more accurately simulating chemokine receptors and their dimers.
Collapse
Affiliation(s)
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|