1
|
Kim M, Naik SD, Jarhad DB, Aswar VR, Tripathi SK, Aslam MA, Huh JY, Jeong LS. Stereochemical influence of 4'-methyl substitutions on truncated 4'-thioadenosine derivatives: Impact on A 3 adenosine receptor binding and antagonism. Bioorg Chem 2024; 153:107901. [PMID: 39447347 DOI: 10.1016/j.bioorg.2024.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Herein, we investigated the stereochemical effects of 4'-methyl substitution on A3 adenosine receptor (A3AR) ligands by synthesizing and evaluating a series of truncated 4'-thioadenosine derivatives featuring 4'-α-methyl, 4'-β-methyl, and 4',4'-dimethyl substitutions. We successfully synthesized these derivatives, using the stereoselective addition of an organometallic reagent, KSAc-mediated sulfur cyclization, and Vorbrüggen condensation. Binding assays demonstrated that the 4'-β-methyl substitution conferred the highest affinity for A3AR, with compound 1 h exhibiting a Ki = 3.5 nM, followed by the 4',4'-dimethyl and 4'-α-methyl substitutions. Notably, despite the absence of the 5'-OH group, compound 1 h unexpectedly displayed partial agonism. Computational docking studies indicated that compound 1 h, the β-methyl derivative, adopted a South conformation and maintained strong interactions within the receptor, including a critical interaction with Thr94, a residue known to be notable for agonistic effects. Conversely, compound 2 h, the α-methyl derivative, also adopted a South conformation but resulted in a flattened structure that hindered interactions with Thr94 and Asn250. The dimethyl derivative 3 h exhibited steric clashes with Thr94, contributing to a reduction in binding affinity. However, the docking results for 3 h indicated a North conformation, suggesting that the change in sugar conformation due to the additional 4'-methyl group altered the angle between the α-methyl group and the sugar plane, enabling binding despite the increased steric bulk. These findings suggest that not only do the substituents and their stereochemistry influence receptor-ligand interactions, but the conformation and the resulting spatial orientation of the substituents also play a crucial role in modulating receptor-ligand interaction. This stereochemical insight offers a valuable framework for the design of new, selective, and potent A3AR ligands, potentially facilitating the development of novel therapeutics for A3AR-related diseases such as glaucoma, inflammation, and cancer.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Siddhi D Naik
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Government College of Arts Science and Commerce, Khandola Marcela, Goa, India
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Vikas R Aswar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sushil Kumar Tripathi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Kim G, Jarhad DB, Lee G, Kim G, Hou X, Yu J, Lee CS, Warnick E, Gao ZG, Ahn SY, Kwak D, Park K, Lee SD, Park TU, Jung SY, Lee JH, Choi JR, Kim M, Kim D, Kim B, Jacobson KA, Jeong LS. Structural Modification and Biological Evaluation of 2,8-Disubstituted Adenine and Its Nucleosides as A 2A Adenosine Receptor Antagonists: Exploring the Roles of Ribose at Adenosine Receptors. J Med Chem 2024; 67:10490-10507. [PMID: 38845345 PMCID: PMC11302573 DOI: 10.1021/acs.jmedchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Building on the preceding structural analysis and a structure-activity relationship (SAR) of 8-aryl-2-hexynyl nucleoside hA2AAR antagonist 2a, we strategically inverted C2/C8 substituents and eliminated the ribose moiety. These modifications aimed to mitigate potential steric interactions between ribose and adenosine receptors. The SAR findings indicated that such inversions significantly modulated hA3AR binding affinities depending on the type of ribose, whereas removal of ribose altered the functional efficacy via hA2AAR. Among the synthesized derivatives, 2-aryl-8-hexynyl adenine 4a demonstrated the highest selectivity for hA2AAR (Ki,hA2A = 5.0 ± 0.5 nM, Ki,hA3/Ki,hA2A = 86) and effectively blocked cAMP production and restored IL-2 secretion in PBMCs. Favorable pharmacokinetic properties and a notable enhancement of anticancer effects in combination with an mAb immune checkpoint blockade were observed upon oral administration of 4a. These findings establish 4a as a viable immune-oncology therapeutic candidate.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sang Yeop Ahn
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Dongik Kwak
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Kichul Park
- LNPsolution, R&D Laboratory, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Summer Dabin Lee
- LNPsolution, R&D Laboratory, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Tae-Uk Park
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - So-Young Jung
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | | | | | | | | | - Bongtae Kim
- HK inno.N Corp., Seoul 04551, Republic of Korea
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| |
Collapse
|
3
|
Kim G, Hou X, Byun WS, Kim G, Jarhad DB, Lee G, Hyun YE, Yu J, Lee CS, Qu S, Warnick E, Gao ZG, Kim JY, Ji S, Shin H, Choi JR, Jacobson KA, Lee HW, Lee SK, Jeong LS. Structure-Activity Relationship of Truncated 2,8-Disubstituted-Adenosine Derivatives as Dual A 2A/A 3 Adenosine Receptor Antagonists and Their Cancer Immunotherapeutic Activity. J Med Chem 2023; 66:12249-12265. [PMID: 37603705 PMCID: PMC10896643 DOI: 10.1021/acs.jmedchem.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Woong Sub Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ji Yong Kim
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Seunghee Ji
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | - Hyunwoo Shin
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | | | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hyuk Woo Lee
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Sang Kook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| |
Collapse
|
4
|
Jacobson KA, Pradhan B, Wen Z, Pramanik A. New paradigms in purinergic receptor ligand discovery. Neuropharmacology 2023; 230:109503. [PMID: 36921890 PMCID: PMC10233512 DOI: 10.1016/j.neuropharm.2023.109503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
The discovery and clinical implementation of modulators of adenosine, P2Y and P2X receptors (comprising nineteen subtypes) have progressed dramatically in ∼50 years since Burnstock's definition of purinergic signaling. Although most clinical trials of selective ligands (agonists and antagonists) of certain purinergic receptors failed, there is a renewed impetus to redirect efforts to new disease conditions and the discovery of more selective or targeted compounds with potentially reduced side effects, such as biased GPCR agonists. The elucidation of new receptor and enzyme structures is steering rational design of potent and selective agonists, antagonists, allosteric modulators and inhibitors. A2A adenosine receptor (AR) antagonists are being applied to neurodegenerative conditions and cancer immunotherapy. A3AR agonists have potential for treating chronic inflammation (e.g. psoriasis), stroke and pain, as well as cancer. P2YR modulators are being considered for treating inflammation, metabolic disorders, acute kidney injury, cancer, pain and other conditions, often with an immune mechanism. ADP-activated P2Y12R antagonists are widely used as antithrombotic drugs, while their repurposing toward neuroinflammation is considered. P2X3 antagonists have been in clinical trials for chronic cough. P2X7 antagonists have been in clinical trials for inflammatory diseases and depression (compounds that penetrate the blood-brain barrier). Thus, purinergic signaling is now recognized as an immense regulatory system in the body for rebalancing tissues and organs under stress, which can be adjusted by drug intervention for therapeutic purposes. The lack of success of many previous clinical trials can be overcome given more advanced pharmacokinetic and pharmacodynamic approaches, including structure-based drug design, prodrugs and biased signaling. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Balaram Pradhan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Wang JN, Fan H, Song JT. Targeting purinergic receptors to attenuate inflammation of dry eye. Purinergic Signal 2023; 19:199-206. [PMID: 35218451 PMCID: PMC9984584 DOI: 10.1007/s11302-022-09851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammation is one of the potential factors to cause the damage of ocular surface in dry eye disease (DED). Increasing evidence indicated that purinergic A1, A2A, A3, P2X4, P2X7, P2Y1, P2Y2, and P2Y4 receptors play an important role in the regulation of inflammation in DED: A1 adenosine receptor (A1R) is a systemic pro-inflammatory factor; A2AR is involved in the activation of the MAPK/NF-kB pathway; A3R combined with inhibition of adenylate cyclase and regulation of the mitogen-activated protein kinase (MAPK) pathway leads to regulation of transcription; P2X4 promotes receptor-associated activation of pro-inflammatory cytokines and inflammatory vesicles; P2X7 promotes inflammasome activation and release of pro-inflammatory cytokines IL-1β and IL-18; P2Y receptors affect the phospholipase C(PLC)/IP3/Ca2+ signaling pathway and mucin secretion. These suggested that purinergic receptors would be promising targets to control the inflammation of DED in the future.
Collapse
Affiliation(s)
- Jia-Ning Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Fan
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Kim K, Im H, Son Y, Kim M, Tripathi SK, Jeong LS, Lee YH. Anti-obesity effects of the dual-active adenosine A 2A/A 3 receptor-ligand LJ-4378. Int J Obes (Lond) 2022; 46:2128-2136. [PMID: 36167764 DOI: 10.1038/s41366-022-01224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES A2A adenosine receptor (A2AAR)-mediated signaling in adipose tissues has been investigated as a potential target for obesity-related metabolic diseases. LJ-4378 has been developed as a dual-acting ligand with A2AAR agonist and A3 adenosine receptor (A3AR) antagonist activity. The current study aimed to investigate the anti-obesity effects of LJ-4378 and its underlying molecular mechanisms. METHODS Immortalized brown adipocytes were used for in vitro analysis. A high-fat diet (HFD)-induced obesity and cell death-inducing DFFA-like effector A reporter mouse models were used for in vivo experiments. The effects of LJ-4378 on lipolysis and mitochondrial metabolism were evaluated using immunoblotting, mitochondrial staining, and oxygen consumption rate analyses. The in vivo anti-obesity effects of LJ-4378 were evaluated using indirect calorimetry, body composition analyses, glucose tolerance tests, and histochemical analyses. RESULTS In vitro LJ-4378 treatment increased the levels of brown adipocyte markers and mitochondrial proteins, including uncoupling protein 1. The effects of LJ-4378 on lipolysis of adipocytes were more potent than those of the A2AAR agonist or A3AR antagonist. In vivo, LJ-4378 treatment increased energy expenditure by 17.0% (P value < 0.0001) compared to vehicle controls. LJ-4378 (1 mg/kg, i.p.) treatment for 10 days reduced body weight and fat content by 8.24% (P value < 0.0001) and 24.2% (P value = 0.0044), respectively, and improved glucose tolerance in the HFD-fed mice. LJ-4378 increased the expression levels of brown adipocyte markers and mitochondrial proteins in interscapular brown and inguinal white adipose tissue. CONCLUSION These findings support the in vivo anti-obesity effects of LJ-4378, and suggest a novel therapeutic approach to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Kyungmin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyeonyeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Minjae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sushil Kumar Tripathi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Lak Shin Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Shiriaeva A, Park D, Kim G, Lee Y, Hou X, Jarhad DB, Kim G, Yu J, Hyun YE, Kim W, Gao ZG, Jacobson KA, Han GW, Stevens RC, Jeong LS, Choi S, Cherezov V. GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A 2A Adenosine Receptor. J Med Chem 2022; 65:11648-11657. [PMID: 35977382 PMCID: PMC9469204 DOI: 10.1021/acs.jmedchem.2c00462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 01/03/2023]
Abstract
Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Å resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds.
Collapse
Affiliation(s)
- Anna Shiriaeva
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| | - Daejin Park
- Department
of Pharmacology, Kosin University College
of Medicine, Busan 49267, Republic of Korea
| | - Gyudong Kim
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
- College
of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoonji Lee
- College
of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xiyan Hou
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Dnyandev B. Jarhad
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Gibae Kim
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jinha Yu
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Young Eum Hyun
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Woomi Kim
- Department
of Pharmacology, Kosin University College
of Medicine, Busan 49267, Republic of Korea
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Gye Won Han
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
- Structure
Therapeutics, 701 Gateway
Blvd, South San Francisco, California 94080, United States
| | - Lak Shin Jeong
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Sun Choi
- Global
AI Drug Discovery Center, College of Pharmacy and Graduate School
of Pharmaceutical Sciences, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Vadim Cherezov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Moghimi P, Sabet-Sarvestani H, Kohandel O, Shiri A. Pyrido[1,2- e]purine: Design and Synthesis of Appropriate Inhibitory Candidates against the Main Protease of COVID-19. J Org Chem 2022; 87:3922-3933. [PMID: 35225616 PMCID: PMC8905926 DOI: 10.1021/acs.joc.1c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of tricyclic and polycyclic pyrido[1,2-e]purine derivatives were designed and synthesized via a two-step, one-pot reaction of 2,4-dichloro-5-amino-6-methylpyrimidine with pyridine under reflux conditions. Various derivatives of pyrido[1,2-e]purine were also synthesized by substituting the chlorine atom with secondary amines. After careful physiochemical and pharmacokinetic predictions, the inhibitory effects of the synthesized compounds against the main protease of SARS-CoV-2 have been evaluated by molecular docking and molecular dynamics approaches. The in silico results revealed that among all of the studied compounds, the morpholine/piperidine-substituted pyrido[1,2-e]purine derivatives are the best candidates as effective inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Parvin Moghimi
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | | | - Omid Kohandel
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science,
Ferdowsi University of Mashhad, Mashhad,
Iran
| |
Collapse
|
9
|
Yao WB, Xie XS, Liu JN, Xie JW. Diversity-oriented and diastereoselective synthesis of diverse polycyclic thieno(2,3- b)-quinoline derivatives using a synergistic strategy. Org Biomol Chem 2022; 20:1982-1993. [PMID: 35179157 DOI: 10.1039/d2ob00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cascade spiroannulation of 2-mercaptoquinoline-3-carbaldehydes with α,α-dicyanoalkenes as well as a cascade spiroannulation of 2-mercaptoquinoline-3-carbaldehydes aldehydes with α-bromocarbonyl compounds was investigated based on a synergistic strategy, providing a series of diverse spiro-fused heterocyclic compounds containing more different functional groups. The features of this strategy directed towards molecular complexity and diversity include step economy, mild conditions, and high bond-forming efficiency, but important polycyclic heterocyclic products, which could be transformed into potential biologically interesting heterocyclic structures.
Collapse
Affiliation(s)
- Wen-Bo Yao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| | - Xuan-Sheng Xie
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| | - Jun-Nan Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| | - Jian-Wu Xie
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| |
Collapse
|
10
|
Kim G, Lee G, Kim G, Seo Y, Jarhad DB, Jeong LS. Catalyst-controlled regioselective Sonogashira coupling of 9-substituted-6-chloro-2,8-diiodopurines. Org Chem Front 2022. [DOI: 10.1039/d2qo00823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have established a catalyst-dependent regioselective Sonogashira coupling methodology where both regioisomeric products can be obtained independently with remarkably high selectivity.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Yeonseong Seo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Dnyandev B. Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Pak ES, Jeong LS, Hou X, Tripathi SK, Lee J, Ha H. Dual Actions of A 2A and A 3 Adenosine Receptor Ligand Prevents Obstruction-Induced Kidney Fibrosis in Mice. Int J Mol Sci 2021; 22:ijms22115667. [PMID: 34073488 PMCID: PMC8198234 DOI: 10.3390/ijms22115667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Lak Shin Jeong
- Future Medicine Co., Ltd., Seongnam 13449, Korea;
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (X.H.); (S.K.T.)
| | - Xiyan Hou
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (X.H.); (S.K.T.)
| | - Sushil K. Tripathi
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (X.H.); (S.K.T.)
| | - Jiyoun Lee
- Future Medicine Co., Ltd., Seongnam 13449, Korea;
- Correspondence: (J.L.); (H.H.); Tel.: +82-2-2289-8689 (J.L.); +82-2-3277-4075 (H.H.); Fax: +82-31-757-2738 (J.L.); +82-2-3277-2851 (H.H.)
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (J.L.); (H.H.); Tel.: +82-2-2289-8689 (J.L.); +82-2-3277-4075 (H.H.); Fax: +82-31-757-2738 (J.L.); +82-2-3277-2851 (H.H.)
| |
Collapse
|
12
|
Spinozzi E, Baldassarri C, Acquaticci L, Del Bello F, Grifantini M, Cappellacci L, Riccardo P. Adenosine receptors as promising targets for the management of ocular diseases. Med Chem Res 2021; 30:353-370. [PMID: 33519168 PMCID: PMC7829661 DOI: 10.1007/s00044-021-02704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Laura Acquaticci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Petrelli Riccardo
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
13
|
Abdelrahman A, Yerande SG, Namasivayam V, Klapschinski TA, Alnouri MW, El-Tayeb A, Müller CE. Substituted 4-phenylthiazoles: Development of potent and selective A1, A3 and dual A1/A3 adenosine receptor antagonists. Eur J Med Chem 2020; 186:111879. [DOI: 10.1016/j.ejmech.2019.111879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
|
14
|
Al-Attraqchi OH, Attimarad M, Venugopala KN, Nair A, Al-Attraqchi NH. Adenosine A2A Receptor as a Potential Drug Target - Current Status and Future Perspectives. Curr Pharm Des 2019; 25:2716-2740. [DOI: 10.2174/1381612825666190716113444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Adenosine receptors (ARs) are a class of G-protein coupled receptors (GPCRs) that are activated by
the endogenous substance adenosine. ARs are classified into 4 subtype receptors, namely, the A1, A2A, A2B and A3
receptors. The wide distribution and expression of the ARs in various body tissues as well as the roles they have
in controlling different functions in the body make them potential drug targets for the treatment of various pathological
conditions, such as cardiac diseases, cancer, Parkinson’s disease, inflammation and glaucoma. Therefore,
in the past decades, there have been extensive investigations of ARs with a high number of agonists and antagonists
identified that can interact with these receptors. This review shall discuss the A2A receptor (A2AAR) subtype
of the ARs. The structure, properties and the recent advances in the therapeutic potential of the receptor are discussed
with an overview of the recent advances in the methods of studying the receptor. Also, molecular modeling
approaches utilized in the design of A2AAR ligands are highlighted with various recent examples.
Collapse
Affiliation(s)
- Omar H.A. Al-Attraqchi
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O BOX (1), Philadelphia University-19392, Amman, Jordan
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
15
|
Yu L, Meng C, Wang J, Gao Z, Xie J. Substrate‐Controlled Diastereoselectivity Switch in the Formation of Dihydrothieno[3,4‐
c
]coumarins via [4+1] Annulations. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li‐Si‐Han Yu
- Department of Chemistry and Life SciencesZhejiang Normal University 321004 Jinhua People's Republic of China
| | - Chang‐Yu Meng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Department of Chemistry and Food ScienceYulin Normal University 537000 Yulin People's Republic of China
| | - Jing Wang
- Department of Chemistry and Life SciencesZhejiang Normal University 321004 Jinhua People's Republic of China
| | - Zhi‐Jian Gao
- Department of Chemistry and Life SciencesZhejiang Normal University 321004 Jinhua People's Republic of China
| | - Jian‐Wu Xie
- Department of Chemistry and Life SciencesZhejiang Normal University 321004 Jinhua People's Republic of China
| |
Collapse
|
16
|
Yu J, Mannes P, Jung YH, Ciancetta A, Bitant A, Lieberman DI, Khaznadar S, Auchampach JA, Gao ZG, Jacobson KA. Structure activity relationship of 2-arylalkynyl-adenine derivatives as human A 3 adenosine receptor antagonists. MEDCHEMCOMM 2018; 9:1920-1932. [PMID: 30568760 DOI: 10.1039/c8md00317c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/23/2018] [Indexed: 11/21/2022]
Abstract
Recognition of nucleosides at adenosine receptors (ARs) is supported by multiple X-ray structures, but the structure of an adenine complex is unknown. We examined the selectivity of predicted A1AR and A3AR adenine antagonists that incorporated known agonist affinity-enhancing N 6 and C2 substituents. Adenines with A1AR-favoring N 6-alkyl, cycloalkyl and arylalkyl substitutions combined with an A3AR-favoring 2-((5-chlorothiophen-2-yl)ethynyl) group were human (h) A3AR-selective, e.g. MRS7497 17 (∼1000-fold over A1AR). In addition, binding selectivity over hA2AAR and hA2BAR and functional A3AR antagonism were demonstrated. 17 was subjected to computational docking and molecular dynamics simulation in a hA3AR homology model to predict interactions. The SAR of nucleoside AR agonists was not recapitulated in adenine AR antagonists, and modeling suggested an alternative, inverted binding mode with the key N2506.55 H-bonding to the adenine N 3 and N 9, instead of N 6 and N 7 as in adenosine agonists.
Collapse
Affiliation(s)
- Jinha Yu
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Philip Mannes
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Young-Hwan Jung
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Antonella Ciancetta
- School of Pharmacy , Queen's University Belfast , 96 Lisburn Rd , Belfast , BT9 7BL , UK
| | - Amelia Bitant
- Department of Pharmacology , Medical College of Wisconsin , 8701 Watertown Plank Road , Milwaukee , Wisconsin 53226 , USA
| | - David I Lieberman
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Sami Khaznadar
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - John A Auchampach
- Department of Pharmacology , Medical College of Wisconsin , 8701 Watertown Plank Road , Milwaukee , Wisconsin 53226 , USA
| | - Zhan-Guo Gao
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Kenneth A Jacobson
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| |
Collapse
|
17
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Rizk SA, Abdelwahab SS, Sallam HA. Regioselective Reactions, Spectroscopic Characterization, and Cytotoxic Evaluation of Spiro-pyrrolidine Thiophene. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sameh A. Rizk
- Department of Chemistry, Faculty of Science; Ain Shams University; Cairo 11566 Egypt
| | - Salwa S. Abdelwahab
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries; Future University in Egypt; Cairo 11835 Egypt
| | - Hanan A. Sallam
- Department of Chemistry, Faculty of Science; Ain Shams University; Cairo 11566 Egypt
| |
Collapse
|
19
|
Valdés FZ, Luna VZ, Arévalo BR, Brown NV, Gutiérrez MC. Adenosine: Synthetic Methods of Its Derivatives and Antitumor Activity. Mini Rev Med Chem 2018; 18:1684-1701. [PMID: 29769005 PMCID: PMC6327119 DOI: 10.2174/1389557518666180516163539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/23/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
Abstract
Since 1929, several researchers have conducted studies in relation to the nucleoside of adenosine (1) mainly distribution identifying, characterizing their biological importance and synthetic chemistry to which this type of molecule has been subjected to obtain multiple of its derivatives. The receptors that interact with adenosine and its derivatives, called purinergic receptors, are classified as A1, A2A, A2B and A3. In the presence of agonists and antagonists, these receptors are involved in various physiological processes and diseases. This review describes and compares some of the synthetic methods that have been developed over the last 30 years for obtaining some adenosine derivatives, classified according to substitution processes, complexation, mating and conjugation. Finally, we mention that although the concentrations of these nucleosides are low in normal tissues, they can increase rapidly in pathophysiological conditions such as hypoxia, ischemia, inflammation, trauma and cancer. In particular, the evaluation of adenosine derivatives as adjunctive therapy promises to have a significant impact on the treatment of certain cancers, although the transfer of these results to clinical practice requires a deeper understanding of how adenosine regulates the process of tumorigenesis.
Collapse
Affiliation(s)
- Francisco Z. Valdés
- Laboratory of Synthesis and Biological Activity, Institute of Chemistry of Naturals Resources, University of Talca, Talca, Chile
| | - Víctor Z. Luna
- Center for Bioinformatics and Molecular Simulation, University of Talca, Talca, Chile
| | - Bárbara R. Arévalo
- Laboratory of Synthesis and Biological Activity, Institute of Chemistry of Naturals Resources, University of Talca, Talca, Chile
| | - Nelson V. Brown
- Center for Medical Research, University of Talca School of Medicine, Talca, Chile
- Programa de Investigación Asociativa en cáncer gástrico (PIA-CG)
| | - Margarita C. Gutiérrez
- Laboratory of Synthesis and Biological Activity, Institute of Chemistry of Naturals Resources, University of Talca, Talca, Chile
| |
Collapse
|
20
|
Petrelli R, Scortichini M, Kachler S, Boccella S, Cerchia C, Torquati I, Del Bello F, Salvemini D, Novellino E, Luongo L, Maione S, Jacobson KA, Lavecchia A, Klotz KN, Cappellacci L. Exploring the Role of N 6-Substituents in Potent Dual Acting 5'-C-Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and Antinociceptive Effects in Mice ∇. J Med Chem 2017; 60:4327-4341. [PMID: 28447789 DOI: 10.1021/acs.jmedchem.7b00291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural determinants of affinity of N6-substituted-5'-C-(ethyltetrazol-2-yl)adenosine and 2-chloroadenosine derivatives at adenosine receptor (AR) subtypes were studied with binding and molecular modeling. Small N6-cycloalkyl and 3-halobenzyl groups furnished potent dual acting A1AR agonists and A3AR antagonists. 4 was the most potent dual acting human (h) A1AR agonist (Ki = 0.45 nM) and A3AR antagonist (Ki = 0.31 nM) and highly selective versus A2A; 11 and 26 were most potent at both h and rat (r) A3AR. All N6-substituted-5'-C-(ethyltetrazol-2-yl)adenosine derivatives proved to be antagonists at hA3AR but agonists at the rA3AR. Analgesia of 11, 22, and 26 was evaluated in the mouse formalin test (A3AR antagonist blocked and A3AR agonist strongly potentiated). N6-Methyl-5'-C-(ethyltetrazol-2-yl)adenosine (22) was most potent, inhibiting both phases, as observed combining A1AR and A3AR agonists. This study demonstrated for the first time the advantages of a single molecule activating two AR pathways both leading to benefit in this acute pain model.
Collapse
Affiliation(s)
- Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Mirko Scortichini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Sonja Kachler
- Institut für Pharmakologie and Toxikologie, Universität Würzburg , D-97078 Würzburg, Germany
| | - Serena Boccella
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli" , 80138 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II , 80131 Naples, Italy
| | - Ilaria Torquati
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Ettore Novellino
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II , 80131 Naples, Italy
| | - Livio Luongo
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli" , 80138 Naples, Italy
| | - Sabatino Maione
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli" , 80138 Naples, Italy
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II , 80131 Naples, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie and Toxikologie, Universität Würzburg , D-97078 Würzburg, Germany
| | - Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
21
|
Shimamura S, Takahashi M, Fujimoto T, Yasuoka H, Itou T. Development of Practical Synthetic Method for 1-(2-Deoxy-2-Fluoro-4-Thio-β-D-Arabinofuranosyl) Thymine(S-FMAU) which is a Promising Therapeutic Agent for the Chronic Active Epstein Barr Virus Infection; CAEBV. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Takayuki Itou
- Synthetic Organic Chemistry Laboratories, Research & Development Headquarters, FUJIFILM Corporation
| |
Collapse
|
22
|
Design, synthesis, and anticancer activity of C8-substituted-4′-thionucleosides as potential HSP90 inhibitors. Bioorg Med Chem 2016; 24:3418-28. [DOI: 10.1016/j.bmc.2016.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022]
|
23
|
Synthesis of 8-alkoxy-6-alkylamino-2-alkylthiopurine nucleosides with a straightforward multiple-functionalization strategy. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Chemoenzymatic arabinosylation of 2-aminopurines bearing the chiral fragment of 7,8-difluoro-3-methyl-3,4-dihydro-2H-[1,4]benzoxazines. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Zeng XM, Meng CY, Bao JX, Xu DC, Xie JW, Zhu WD. Enantioselective Construction of Polyfunctionalized Spiroannulated Dihydrothiophenes via a Formal Thio [3+2] Cyclization. J Org Chem 2015; 80:11521-8. [DOI: 10.1021/acs.joc.5b01357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue-Mei Zeng
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Chang-Yu Meng
- Department
of Chemistry and Materials, Yulin Normal University, Yulin 537000, P. R. China
| | - Jia-Xin Bao
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Dong-Cheng Xu
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jian-Wu Xie
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Wei-Dong Zhu
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
26
|
Topiol S, Sabio M. The role of experimental and computational structural approaches in 7TM drug discovery. Expert Opin Drug Discov 2015. [DOI: 10.1517/17460441.2015.1072166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Kotoulas SS, Kojić VV, Bogdanović GM, Koumbis AE. Synthesis of novel pyrimidine apiothionucleosides and in vitro evaluation of their cytotoxicity. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Petrelli R, Torquati I, Kachler S, Luongo L, Maione S, Franchetti P, Grifantini M, Novellino E, Lavecchia A, Klotz KN, Cappellacci L. 5'-C-Ethyl-tetrazolyl-N(6)-substituted adenosine and 2-chloro-adenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists. J Med Chem 2015; 58:2560-6. [PMID: 25699637 DOI: 10.1021/acs.jmedchem.5b00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of N(6)-substituted-5'-C-(2-ethyl-2H-tetrazol-5-yl)-adenosine and 2-chloro-adenosine derivatives was synthesized as novel, highly potent dual acting hA1AR agonists and hA3AR antagonists, potentially useful in the treatment of glaucoma and other diseases. The best affinity and selectivity profiles were achieved by N(6)-substitution with a 2-fluoro-4-chloro-phenyl- or a methyl- group. Through an in silico receptor-driven approach, the molecular bases of the hA1- and hA3AR recognition and activation of this series of 5'-C-ethyl-tetrazolyl derivatives were explained.
Collapse
Affiliation(s)
- Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu YJ, Wang XB, Li SY, Xie SS, Wang KD, Kong LY. Facile synthesis of spiro chromanone-tetrahydrothiophenes with three contiguous stereocenters via sulfa-Michael/aldol cascade reactions. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Rodríguez A, Guerrero A, Gutierrez-de-Terán H, Rodríguez D, Brea J, Loza MI, Rosell G, Pilar Bosch M. New selective A2A agonists and A3 antagonists for human adenosine receptors: synthesis, biological activity and molecular docking studies. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00086f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and pharmacological characterization of a new series of adenosine derivatives on the four human adenosine receptors are reported.
Collapse
Affiliation(s)
- Anna Rodríguez
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| | - Angel Guerrero
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| | - Hugo Gutierrez-de-Terán
- Department of Cell and Molecular Biology
- Uppsala University
- Biomedical Center
- SE-751 24 Uppsala
- Sweden
| | - David Rodríguez
- Department of Biochemistry and Biophysics and Center for Biomembrane Research
- Stockholm University
- Sweden
| | - José Brea
- Biofarma Research Group, Center of Research in Molecular Medicine and Chronic Diseases (CIMUS)
- 15782 Santiago de Compostela
- Spain
| | - María I. Loza
- Biofarma Research Group, Center of Research in Molecular Medicine and Chronic Diseases (CIMUS)
- 15782 Santiago de Compostela
- Spain
| | - Gloria Rosell
- Department of Pharmacology and Medicinal Chemistry (Unit Associated to CSIC)
- Faculty of Pharmacy
- University of Barcelona
- 08028 Barcelona
- Spain
| | - M. Pilar Bosch
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
31
|
Congreve M, Dias JM, Marshall FH. Structure-based drug design for G protein-coupled receptors. PROGRESS IN MEDICINAL CHEMISTRY 2014; 53:1-63. [PMID: 24418607 DOI: 10.1016/b978-0-444-63380-4.00001-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed.
Collapse
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - João M Dias
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| |
Collapse
|
32
|
Nayak A, Chandra G, Hwang I, Kim K, Hou X, Kim HO, Sahu PK, Roy KK, Yoo J, Lee Y, Cui M, Choi S, Moss SM, Phan K, Gao ZG, Ha H, Jacobson KA, Jeong LS. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem 2014; 57:1344-54. [PMID: 24456490 PMCID: PMC3954500 DOI: 10.1021/jm4015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Truncated N6-substituted-(N)-methanocarba-adenosine derivatives
with 2-hexynyl substitution
were synthesized to examine parallels with corresponding 4′-thioadenosines.
Hydrophobic N6 and/or C2 substituents were tolerated in
A3AR binding, but only an unsubstituted 6-amino group with
a C2-hexynyl group promoted high hA2AAR affinity. A small
hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed
excellent binding affinity at the hA3AR and was better
than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects
in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis
model. Most compounds strongly inhibited TGF-β1-induced collagen
I upregulation, and their A3AR binding affinities were
proportional to antifibrotic effects; 4b was most potent
(IC50 = 0.83 μM), indicating its potential as a good
therapeutic candidate for treating renal fibrosis.
Collapse
Affiliation(s)
- Akshata Nayak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xie MS, Chu ZL, Niu HY, Qu GR, Guo HM. A Copper-Catalyzed Domino Route toward Purine-Fused Tricyclic Derivatives. J Org Chem 2014; 79:1093-9. [DOI: 10.1021/jo4025489] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Sheng Xie
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhi-Liang Chu
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hong-Ying Niu
- School
of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| | - Gui-Rong Qu
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hai-Ming Guo
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
34
|
Paoletta S, Tosh DK, Finley A, Gizewski ET, Moss SM, Gao ZG, Auchampach JA, Salvemini D, Jacobson KA. Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain. J Med Chem 2013; 56:5949-63. [PMID: 23789857 DOI: 10.1021/jm4007966] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
(N)-Methanocarba(bicyclo[3.1.0]hexane)adenosine derivatives were probed for sites of charged sulfonate substitution, which precludes diffusion across biological membranes, e.g., blood-brain barrier. Molecular modeling predicted that sulfonate groups on C2-phenylethynyl substituents would provide high affinity at both mouse (m) and human (h) A3 adenosine receptors (ARs), while a N(6)-p-sulfophenylethyl substituent would determine higher hA3AR vs mA3AR affinity. These modeling predictions, based on steric fitting of the binding cavity and crucial interactions with key residues, were confirmed by binding/efficacy studies of synthesized sulfonates. N(6)-3-Chlorobenzyl-2-(3-sulfophenylethynyl) derivative 7 (MRS5841) bound selectively to h/m A3ARs (Ki(hA3AR) = 1.9 nM) as agonist, while corresponding p-sulfo isomer 6 (MRS5701) displayed mixed A1/A3AR agonism. Both nucleosides administered ip reduced mouse chronic neuropathic pain that was ascribed to either A3AR or A1/A3AR using A3AR genetic deletion. Thus, rational design methods based on A3AR homology models successfully predicted sites for sulfonate incorporation, for delineating adenosine's CNS vs peripheral actions.
Collapse
Affiliation(s)
- Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Topiol S. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go? Expert Opin Drug Discov 2013; 8:607-20. [PMID: 23537065 DOI: 10.1517/17460441.2013.783815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In 2007, the X-ray structural determination of non-rhodopsin G-Protein coupled receptors (GPCRs), considered the most extensively targeted protein class for marketed drugs, commenced. With the relatively rapid availability of additional structures, an assessment of the progression made is needed in addition to the assessment of the understandings gleaned, deployment successes and forthcoming prospects. AREAS COVERED The author reviews the approaches and tools that have made it possible to determine the three dimensional structures of GPCRs using X-ray crystallography. Furthermore, the author describes the methods suited for crystallization of membrane bound GPCR proteins including the lipidic cubic phase and various protein modification approaches. The author also provides highlights, from the literature, of the structures determined to date including targets solved, the nature of the content provided (such as selectivity, activating vs. inactivating determinants) and how these structural features relate to drug design strategies. EXPERT OPINION The GPCR X-ray structures that have been so far determined have yielded significant information. This has presented dramatic evidence concerning their ability to impact the discovery of compounds through their action as traditional, orthosteric modulators. It is, however, noted that more challenging design strategies, such as identifying biased agonists and the use of sites remote from the orthosteric site for allosteric modulation, are still in their infancy.
Collapse
Affiliation(s)
- Sid Topiol
- 3D-2Drug LLC, PO Box 184, Fair Lawn, NJ 07410, USA.
| |
Collapse
|
36
|
Tosh DK, Paoletta S, Phan K, Gao ZG, Jacobson KA. Truncated Nucleosides as A(3) Adenosine Receptor Ligands: Combined 2-Arylethynyl and Bicyclohexane Substitutions. ACS Med Chem Lett 2012; 3:596-601. [PMID: 23145215 DOI: 10.1021/ml300107e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
C2-Arylethynyladenosine-5'-N-methyluronamides containing a bicyclo[3.1.0]hexane ((N)-methanocarba) ring are selective A(3) adenosine receptor (AR) agonists. Similar 4'-truncated C2-arylethynyl-(N)-methanocarba nucleosides containing alkyl or alkylaryl groups at the N(6) position were low-efficacy agonists or antagonists of the human A(3)AR with high selectivity. Higher hA(3)AR affinity was associated with N(6)-methyl and ethyl (K(i) 3-6 nM), than with N(6)-arylalkyl groups. However, combined C2-phenylethynyl and N(6)-2-phenylethyl substitutions in selective antagonist 15 provided a K(i) of 20 nM. Differences between 4'-truncated and nontruncated analogues of extended C2-p-biphenylethynyl substitution suggested a ligand reorientation in AR binding, dominated by bulky N(6) groups in analogues lacking a stabilizing 5'-uronamide moiety. Thus, 4'-truncation of C2-arylethynyl-(N)-methanocarba adenosine derivatives is compatible with general preservation of A(3)AR selectivity, especially with small N(6) groups, but reduced efficacy in A(3)AR-induced inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Silvia Paoletta
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Khai Phan
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
37
|
Baraldi PG, Preti D, Borea PA, Varani K. Medicinal Chemistry of A3 Adenosine Receptor Modulators: Pharmacological Activities and Therapeutic Implications. J Med Chem 2012; 55:5676-703. [DOI: 10.1021/jm300087j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|