1
|
Tyagi A, Chandrasekaran B, Shukla V, Tyagi N, Sharma AK, Damodaran C. Nutraceuticals target androgen receptor-splice variants (AR-SV) to manage castration resistant prostate cancer (CRPC). Pharmacol Ther 2024; 264:108743. [PMID: 39491756 DOI: 10.1016/j.pharmthera.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Every year, prostate cancer is diagnosed in millions of men. The androgen receptor's (AR) unchecked activation is crucial in causing the development and progression of prostate cancer. Second-generation anti-androgen therapies, which primarily focus on targeting the Ligand Binding Domain (LBD) of AR, are effective for most patients. However, the adverse effects pose significant challenges in managing the disease. Furthermore, genetic mutations or the emergence of AR splice variants create an even more complex tumor environment, fostering resistance to these treatments. Natural compounds and their analogs, while showing a lower toxicity profile and a potential for selective AR splice variants inhibition, are constrained by their bioavailability and therapeutic efficacy. Nonetheless, recent breakthroughs in using natural derivatives to target AR and its splice variants have shown promise in treating chemoresistant castration-resistant prostate cancer (CRPC). This review will discuss the role of AR variants, particularly androgen receptor splice variant 7 (AR-V7), in CRPC and investigate the latest findings on how natural compounds and their derivatives target AR and AR splice variants.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Balaji Chandrasekaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Vaibhav Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Neha Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, College of Medicine, Penn State University, Hershey, PA 17033, United States
| | - Chendil Damodaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States.
| |
Collapse
|
2
|
Cole RN, Fang Q, Matsuoka K, Wang Z. Androgen receptor inhibitors in treating prostate cancer. Asian J Androl 2024:00129336-990000000-00266. [PMID: 39558858 DOI: 10.4103/aja202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
ABSTRACT Androgens play an important role in prostate cancer development and progression. Androgen action is mediated through the androgen receptor (AR), a ligand-dependent DNA-binding transcription factor. AR is arguably the most important target for prostate cancer treatment. Current USA Food and Drug Administration (FDA)-approved AR inhibitors target the ligand-binding domain (LBD) and have exhibited efficacy in prostate cancer patients, particularly when used in combination with androgen deprivation therapy. Unfortunately, patients treated with the currently approved AR-targeting agents develop resistance and relapse with castration-resistant prostate cancer (CRPC). The major mechanism leading to CRPC involves reactivation of AR signaling mainly through AR gene amplification, mutation, and/or splice variants. To effectively inhibit the reactivated AR signaling, new approaches to target AR are being actively explored. These new approaches include novel small molecule inhibitors targeting various domains of AR and agents that can degrade AR. The present review provides a summary of the existing FDA-approved AR antagonists and the current development of some of the AR targeting agents.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
5
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
7
|
Thathsaranie P Manthrirathna MA, Kodar K, Ishizuka S, Dangerfield EM, Xiuyuan L, Yamasaki S, Stocker BL, S M Timmer M. 6-C-Linked trehalose glycolipids signal through Mincle and exhibit potent adjuvant activity. Bioorg Chem 2023; 133:106345. [PMID: 36764230 DOI: 10.1016/j.bioorg.2023.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Many studies have investigated the Mincle-mediated agonist activity of α,α'-trehalose-6,6́-glycolipids, however, none have considered how the position, or absence, of the ester moiety influences Mincle-mediated agonist activity. We prepared a variety of 6-C-linked α,α'-trehalose glycolipids containing inverted esters, ketone, carboxy or no carbonyl moieties. Modelling studies indicated that these derivatives bind to the CRD of Mincle in a manner similar to that of the prototypical Mincle agonist, trehalose dibehenate (TDB), with NFAT-GFP reporter cell assays confirming that all compounds, apart from derivatives with short alkyl chains, led to robust Mincle signalling. It was also observed that a carbonyl moiety was needed for good Mincle-mediated signalling. The ability of the compounds to induce mIL-1 β and mIL-6 production by bone marrow-derived macrophages (BMDMs) further demonstrated the agonist activity of the compounds, with the presence of a carbonyl moiety and longer lipid chains augmenting cytokine production. Notably, a C20 inverted ester led to levels of mIL-1β that were significantly greater than those induced by TDB. The same C20 inverted ester also led to a significant increase in hIL-1β and hIL-6 by human monocytes, and exhibited no toxicity, as demonstrated using BMDMs in an in vitro Sytox Green assay. The ability of the inverted ester to enhance antigen-mediated immune responses was then determined. In these studies, the inverted ester was found to augment the OVA-specific Th1/Th7 immune response in vitro, and exhibit adjuvanticity that was better than that of TDB in vivo, as evidenced by a significant increase in IgG antibodies for the inverted ester but not TDB when using OVA as a model antigen.
Collapse
Affiliation(s)
| | - Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Lu Xiuyuan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|
8
|
Avgeris I, Pliatsika D, Nikolaropoulos SS, Fousteris MA. Targeting androgen receptor for prostate cancer therapy: From small molecules to PROTACs. Bioorg Chem 2022; 128:106089. [PMID: 35973305 DOI: 10.1016/j.bioorg.2022.106089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) remains a serious type of cancer for men worldwide. The majority of new PCa cases are associated with androgen receptor (AR) hyperactivity. Various AR-targeting molecules that suppress its activity have been discovered. In this review, we present the already marketed antiandrogens and a selection of structurally and chemically interesting AR-targeting compounds, from a pharmacochemical perspective. Focus has been placed on the applied design approaches, structural evolution and structure-activity relationships of the most prominent compound classes. Passing from the traditional steroidal AR antagonists to the modern AR-targeting proteolysis targeting chimeras (PROTACs), we intend to provide a comprehensive overview on AR-targeting molecules for PCa treatment.
Collapse
Affiliation(s)
- Ioannis Avgeris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Dimanthi Pliatsika
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Sotiris S Nikolaropoulos
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece
| | - Manolis A Fousteris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Patras, Patras GR-26500, Greece.
| |
Collapse
|
9
|
Sadar MD. Drugging the Undruggable: Targeting the N-Terminal Domain of Nuclear Hormone Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:311-326. [PMID: 36107327 DOI: 10.1007/978-3-031-11836-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter focuses on the development of drugs targeting the N-terminal domain of nuclear hormone receptors, using progress with the androgen receptor as an example. Historically, development of therapies targeting nuclear hormone receptors has focused on the folded C-terminal ligand-binding domain. Therapies were traditionally not developed to target the intrinsically disordered N-terminal domain as it was considered "undruggable". Recent developments have now shown it is possible to direct therapies to the N-terminal domain. This chapter will provide an introduction of the structure and function of the domains of nuclear hormone receptors, followed by a discussion of the rationale supporting the development of N-terminal domain inhibitors. Chemistry and mechanisms of action of small molecule inhibitors will be described with emphasis on N-terminal domain inhibitors developed to the androgen receptor including those in clinical trials.
Collapse
Affiliation(s)
- Marianne D Sadar
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021; 9:745177. [PMID: 34805155 PMCID: PMC8602797 DOI: 10.3389/fcell.2021.745177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the most common type of cancer among men and the second most frequent cause of cancer-related mortality around the world. The progression of advanced prostate cancer to castration-resistant prostate cancer (CRPC) plays a major role in disease-associated morbidity and mortality, posing a significant therapeutic challenge. Resistance has been associated with the activation of androgen receptors via several mechanisms, including alternative dehydroepiandrosterone biosynthetic pathways, other androgen receptor activator molecules, oncogenes, and carcinogenic signaling pathways. Tumor microenvironment plays a critical role not only in the cancer progression but also in the drug resistance. Numerous natural products have shown major potential against particular or multiple resistance pathways as shown by in vitro and in vivo studies. However, their efficacy in clinical trials has been undermined by their unfavorable pharmacological properties (hydrophobic molecules, instability, low pharmacokinetic profile, poor water solubility, and high excretion rate). Nanoparticle formulations can provide a way out of the stalemate, employing targeted drug delivery, improved pharmacokinetic drug profile, and transportation of diagnostic and therapeutic agents via otherwise impermeable biological barriers. This review compiles the available evidence regarding the use of natural products for the management of CRPC with a focus on nanoparticle formulations. PubMed and Google Scholar search engines were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical studies. The results of our study suggest the efficacy of natural compounds such as curcumin, resveratrol, apigenin, quercetin, fisetin, luteolin, kaempferol, genistein, berberine, ursolic acid, eugenol, gingerol, and ellagic acid against several mechanisms leading to castration resistance in preclinical studies, but fail to set the disease under control in clinical studies. Nanoparticle formulations of curcumin and quercetin seem to increase their potential in clinical settings. Using nanoparticles based on betulinic acid, capsaicin, sintokamide A, niphatenones A and B, as well as atraric acid seems promising but needs to be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rajat Goyal
- MM School of Pharmacy, MM University, Ambala, India
| | | | | | - Shikha Joon
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Sun Z, Wang Z, Zhang L, Wang Y, Xue C. Enrichment of Alkylglycerols and Docosahexaenoic Acid via Enzymatic Ethanolysis of Shark Liver Oil and Short-path Distillation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1894288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhaomin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Research and Development Center, Weihai Boow Foods Co., Ltd, Weihai, Shandong Province, China
| | - Zhaoqi Wang
- Food Department, Qingdao Institute for Food and Drug Control, Qingdao, Shandong Province, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Yan L, Banuelos CA, Mawji NR, Patrick BO, Sadar MD, Andersen RJ. Structure-Activity Relationships for the Marine Natural Product Sintokamides: Androgen Receptor N-Terminus Antagonists of Interest for Treatment of Metastatic Castration-Resistant Prostate Cancer. JOURNAL OF NATURAL PRODUCTS 2021; 84:797-813. [PMID: 33124806 PMCID: PMC8802828 DOI: 10.1021/acs.jnatprod.0c00921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic analogues of the marine natural product sintokamides have been prepared in order to investigate the structure-activity relationships for the androgen receptor N-terminal domain (AR NTD) antagonist activity of the sintokamide scaffold. An in vitro LNCaP cell-based transcriptional activity assay with an androgen-driven luciferase (Luc) reporter was used to monitor the potency of analogues. The data have shown that the chlorine atoms on the leucine side chains are essential for potent activity. Analogues missing the nonchlorinated methyl groups of the leucine side chains (C-1 and C-17) are just as active and in some cases more active than the natural products. Analogues with the natural R configuration at C-10 and the unnatural R configuration at C-4 are most potent. Replacing the natural propionamide N-terminus cap with the more sterically hindered pivaloylamide N-terminus cap leads to enhanced potency. The tetramic acid fragment and the methyl ether on the tetramic acid fragment are essential for activity. The SAR optimized analogue 76 is more selective, easier to synthesize, more potent, and presumed to be more resistant to proteolysis than the natural sintokamides.
Collapse
Affiliation(s)
- Luping Yan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Carmen A. Banuelos
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada V5Z 1L3 and Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Nasrin R. Mawji
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada V5Z 1L3 and Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Brian O. Patrick
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Marianne D. Sadar
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada V5Z 1L3 and Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Raymond J. Andersen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
14
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
15
|
Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules 2021; 26:448. [PMID: 33467029 PMCID: PMC7831024 DOI: 10.3390/molecules26020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Michael N. Alexis
- Molecular Endocrinology Team, Inst of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., 11635 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
16
|
Mandai H, Suga S, Ashihara K, Mitsudo K. Acylative Desymmetrization of Glycerol Derivatives by Chiral DMAP Derivatives. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020; 8:biomedicines8100422. [PMID: 33076388 PMCID: PMC7602609 DOI: 10.3390/biomedicines8100422] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development.
Collapse
|
18
|
Yu J, Zhou P, Du W, Xu R, Yan G, Deng Y, Li X, Chen Y. Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer. Biochem Pharmacol 2020; 177:113946. [PMID: 32247852 DOI: 10.1016/j.bcp.2020.113946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Androgen receptor (AR) is a crucial driver of prostate cancer (PC). AR-relevant resistance remains a major challenge in castration-resistant prostate cancer (CRPC). Bromodomain and extra-terminal domain (BET) family are critical AR coregulators. Here, we developed several diphenylamine derivatives and identified compound 7d that disrupted the functions of AR and BET family in prostate cancer and exhibited favorable metabolic stability in vitro and high drug exposure in vivo. We showed 7d not only bound to AR, suppressed transactivation of wild-type AR (wt-AR) and the mutant that mediates Enzalutamide resistance, but also reduced c-Myc protein expression through BET inhibition. In addition, 7d inhibited the proliferation of AR-positive PC cells with favorable selectivity and suppressed AR-V7-expressing VCaP and 22Rv1 xenografts growth in vivo. Collectively, these results indicate the potential of lead compound 7d as an orally available AR and BET inhibitor to treat CRPC and overcome antiandrogen resistance.
Collapse
Affiliation(s)
- Jiang Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peiting Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wu Du
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Ruixue Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People's Hospital, Zhengzhou 450003, China
| | - Yufang Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinghai Li
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China.
| |
Collapse
|
19
|
Lood K, Schmidt B. Stereoselective Synthesis of Conjugated Polyenes Based on Tethered Olefin Metathesis and Carbonyl Olefination: Application to the Total Synthesis of (+)-Bretonin B. J Org Chem 2020; 85:5122-5130. [PMID: 32162517 DOI: 10.1021/acs.joc.0c00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The combination of a highly stereoselective tethered olefin metathesis reaction and a Julia-Kocienski olefination is presented as a strategy for the synthesis of conjugated polyenes with at least one Z-configured C═C bond. The strategy is exemplified by the synthesis of the marine natural product (+)-bretonin B.
Collapse
Affiliation(s)
- Kajsa Lood
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Sadar MD. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin Drug Discov 2020; 15:551-560. [PMID: 32100577 DOI: 10.1080/17460441.2020.1732920] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Intrinsically disordered proteins (IDPs) and regions (IDRs) lack stable three-dimensional structure making drug discovery challenging. A validated therapeutic target for diseases such as prostate cancer is the androgen receptor (AR) which has a disordered amino-terminal domain (NTD) that contains all of its transcriptional activity. Drug discovery against the AR-NTD is of intense interest as a potential treatment for disease such as advanced prostate cancer that is driven by truncated constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD).Areas covered: This article presents an overview of the relevance of AR and its intrinsically disordered NTD as a drug target. AR structure and approaches to blocking AR transcriptional activity are discussed. The discovery of small molecules, including the libraries used, proven binders to the AR-NTD, and site of interaction of these small molecules in the AR-NTD are presented along with discussion of the Phase I clinical trial.Expert opinion: The lack of drugs in the clinic that directly bind IDPs/IDRs reflects the difficulty of targeting these proteins and obtaining specificity. However, it may also point to an inappropriateness of too closely borrowing concepts and resources from drug discovery to folded proteins.
Collapse
Affiliation(s)
- Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Saranyutanon S, Srivastava SK, Pai S, Singh S, Singh AP. Therapies Targeted to Androgen Receptor Signaling Axis in Prostate Cancer: Progress, Challenges, and Hope. Cancers (Basel) 2019; 12:cancers12010051. [PMID: 31877956 PMCID: PMC7016833 DOI: 10.3390/cancers12010051] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the mostly commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer-related death affecting men in the United States. Moreover, it disproportionately affects the men of African origin, who exhibit significantly greater incidence and mortality as compared to the men of European origin. Since androgens play an important role in the growth of normal prostate and prostate tumors, targeting of androgen signaling has remained a mainstay for the treatment of aggressive prostate cancer. Over the years, multiple approaches have been evaluated to effectively target the androgen signaling pathway that include direct targeting of the androgens, androgen receptor (AR), AR co-regulators or other alternate mechanisms that impact the outcome of androgen signaling. Several of these approaches are currently in clinical practice, while some are still pending further development and clinical evaluation. This remarkable progress has resulted from extensive laboratory, pre-clinical and clinical efforts, and mechanistic learnings from the therapeutic success and failures. In this review, we describe the importance of androgen signaling in prostate cancer biology and advances made over the years to effectively target this signaling pathway. We also discuss emerging data on the resistance pathways associated with the failure of various androgen signaling- targeted therapies and potential of this knowledge for translation into future therapies for prostate cancer.
Collapse
Affiliation(s)
- Sirin Saranyutanon
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Correspondence: (S.K.S.); (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.)
| | - Sachin Pai
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA;
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA; (S.S.)
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (S.K.S.); (A.P.S.); Tel.: +1-251-445-9874 (S.K.S.); +1-251-445-9843 (A.P.S.)
| |
Collapse
|
22
|
Zamagni A, Cortesi M, Zanoni M, Tesei A. Non-nuclear AR Signaling in Prostate Cancer. Front Chem 2019; 7:651. [PMID: 31616657 PMCID: PMC6775214 DOI: 10.3389/fchem.2019.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the key role played by androgen receptor (AR) in tumor cell aggressiveness and prostate cancer (PCa) progression, its function in the tumor microenvironment (TME) is still controversial. Increasing studies highlight the crucial role played by TME modulation in treatment outcome and tumor cell spreading. In this context, targeting specific constituents of the TME could be considered an alternative approach to classic treatments directed against cancer cells. Currently, androgen deprivation therapy (ADT) is a routinely adopted strategy in the management of PCa, with initial success, and consecutive fail. A possible justification to this is the fact that ADT aims to target all the transcription/translation-related activities of AR, which are typical of tumor epithelial cells. Less is still known about side effects of ADT on TME. Cancer Associated Fibroblasts (CAFs), for example, express a classic AR, mostly confined in the extra-nuclear portion of the cell. In CAFs ADT exerts a plethora of non-transcriptional effects, depending by the protein partner linked to AR, leading to cell migration, proliferation, and differentiation. In recent years, substantial progress in the structure-function relationships of AR, identification of its binding partners and function of protein complexes including AR have improved our knowledge of its signaling axis. Important AR non-genomic effects and lots of its cytoplasmatic binding partners have been described, pointing out a fine control of AR non-genomic pathways. Accordingly, new AR inhibitors have been designed and are currently under investigation. Prompt development of new approaches to target AR or block recruitment of its signaling effectors, or co-activators, is urgently needed. The present review takes an in-depth look at current literature, furnishing an exhaustive state-of-the-art overview of the non-genomic role of AR in PCa, with particular emphasis on its involvement in TME biology.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| |
Collapse
|
23
|
[Inhibitors of the androgen receptor N‑terminal domain : Therapies targeting the Achilles' heel of various androgen receptor molecules in advanced prostate cancer]. Urologe A 2019; 57:148-154. [PMID: 29147733 DOI: 10.1007/s00120-017-0541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although prostate cancer responds well to primary endocrine therapies, tumor progression with castration resistant tumor cells almost invariably occurs within a few years. Unfortunately, some CRPC patients do not respond to second-line therapies with abiraterone or enzalutamide. Moreover, patients who initially responded well to second-line hormone therapy develop resistance to abiraterone and/or enzalutamide within a short period of time. Besides an increase of intracellular androgen receptor (AR) levels, the predominant resistance mechanisms include AR aberrations (point mutations, AR splice variants) occurring predominantly at the androgen or ligand binding domain of the AR. The following review delineates recent progress in the development of AR inhibitors that do not depend on androgen binding and represent a putative third generation of AR inhibitors.
Collapse
|
24
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
25
|
Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds. Mar Drugs 2018; 16:md16050160. [PMID: 29757237 PMCID: PMC5983291 DOI: 10.3390/md16050160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment.
Collapse
|
26
|
Tang WZ, Yang ZZ, Sun F, Wang SP, Yang F, Lin HW. Leucanone A and naamine J, glycerol ether lipid and imidazole alkaloid from the marine sponge Leucandra sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:691-696. [PMID: 27756152 DOI: 10.1080/10286020.2016.1240171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Chemical investigation on CH2Cl2 extract of the marine sponge Leucandra sp. afforded two new compounds named leucanone A (1) and naamine J (2), together with eight known compounds (3-10). Their structures were elucidated on the basis of NMR spectroscopic analyses, and comparing with the literature. The cytotoxic activities of the compounds were evaluated against four cancer cell lines, and compound 2 showed mild cytotoxic activities against MCF-7, A549, HeLa, and PC9 cancer cell lines with IC50 values in the range of 20.1-45.3 μM.
Collapse
Affiliation(s)
- Wei-Zhuo Tang
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Zhong-Zhen Yang
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Fan Sun
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Shu-Ping Wang
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Fan Yang
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Hou-Wen Lin
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| |
Collapse
|
27
|
Andersen RJ. Sponging off nature for new drug leads. Biochem Pharmacol 2017; 139:3-14. [PMID: 28411115 DOI: 10.1016/j.bcp.2017.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Marine sponges have consistently been the richest source of new marine natural products with unprecedented chemical scaffolds and potent biological activities that have been reported in the chemical literature since the early 1970s. During the last 40years, chemists in the Andersen laboratory at UBC, in collaboration with biologists, have discovered many novel bioactive sponge natural products. Four experimental drug candidates for treatment of inflammation and cancer, that were inspired by members of this sponge natural product collection, have progressed to phase I/II/III clinical trials. This review recounts the scientific stories behind the discovery and development of these four drug candidates; IPL576,092, HTI-286 (Taltobulin), EPI-506 (Ralaniten acetate), and AQX-1125.
Collapse
Affiliation(s)
- Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
28
|
Monaghan AE, McEwan IJ. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target. Asian J Androl 2017; 18:687-94. [PMID: 27212126 PMCID: PMC5000789 DOI: 10.4103/1008-682x.181081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.
Collapse
Affiliation(s)
- Amy E Monaghan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
29
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
30
|
Mioso R, Marante FJT, Bezerra RDS, Borges FVP, Santos BVDO, Laguna IHBD. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010-2012). Molecules 2017; 22:E208. [PMID: 28134844 PMCID: PMC6155849 DOI: 10.3390/molecules22020208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Abstract: This extensive review covers research published between 2010 and 2012 regarding new compounds derived from marine sponges, including 62 species from 60 genera belonging to 33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel chemical structures from 337 compounds isolated have been found to support this work. Details on the source and taxonomy of the sponges, their geographical occurrence, and a range of chemical structures are presented. The compounds discovered from the reviewed marine sponges fall into mainly four chemical classes: terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides (6.3%) which, along with polyketides, sterols, and others show a range of biological activities. The key sponge orders studied in the reviewed research were Dictyoceratida, Haplosclerida, Tetractinellida, Poecilosclerida, and Agelasida. Petrosia, Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida), Coscinoderma and Hyppospongia (Dictyioceratida), were found to be the most promising genera because of their capacity for producing new bioactive compounds. Several of the new compounds and their synthetic analogues have shown in vitro cytotoxic and pro-apoptotic activities against various tumor/cancer cell lines, and some of them will undergo further in vivo evaluation.
Collapse
Affiliation(s)
- Roberto Mioso
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Francisco J Toledo Marante
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain.
| | - Ranilson de Souza Bezerra
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Flávio Valadares Pereira Borges
- Post-Graduation Program in Natural Products and Synthetic Bioactives, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Bárbara V de Oliveira Santos
- Post-Graduation Program in Development and Technological Innovation in Medicines, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Paraíba, Brazil.
| | | |
Collapse
|
31
|
McCrea E, Sissung TM, Price DK, Chau CH, Figg WD. Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol Res 2016; 114:152-162. [PMID: 27725309 PMCID: PMC5154811 DOI: 10.1016/j.phrs.2016.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 01/28/2023]
Abstract
Significant therapeutic progress has been made in treating prostate cancer in recent years. Drugs such as enzalutamide, abiraterone, and cabazitaxel have expanded the treatment armamentarium, although it is not completely clear which of these drugs are the most-effective option for individual patients. Moreover, such advances have been tempered by the development of therapeutic resistance. The purpose of this review is to summarize the current literature pertaining to the biochemical effects of AR variants and their consequences on prostate cancer therapies at both the molecular level and in clinical treatment. We address how these AR splice variants and mutations affect tumor progression and therapeutic resistance and discuss potential novel therapeutic strategies under development. It is hoped that these therapies can be administered with increasing precision as tumor genotyping methods become more sophisticated, thereby lending clinicians a better understanding of the underlying biology of prostate tumors in individual patients.
Collapse
Affiliation(s)
- Edel McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States
| | - Tristan M Sissung
- The Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, United States; The Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
32
|
Biron E, Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J Steroid Biochem Mol Biol 2016. [PMID: 26196120 DOI: 10.1016/j.jsbmb.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Eric Biron
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada.
| | - François Bédard
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada
| |
Collapse
|
33
|
Kallifatidis G, Hoy JJ, Lokeshwar BL. Bioactive natural products for chemoprevention and treatment of castration-resistant prostate cancer. Semin Cancer Biol 2016; 40-41:160-169. [PMID: 27370570 DOI: 10.1016/j.semcancer.2016.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 01/30/2023]
Abstract
Prostate cancer (PCa), a hormonally-driven cancer, ranks first in incidence and second in cancer related mortality in men in most Western industrialized countries. Androgen and androgen receptor (AR) are the dominant modulators of PCa growth. Over the last two decades multiple advancements in screening, treatment, surveillance and palliative care of PCa have significantly increased quality of life and survival following diagnosis. However, over 20% of patients initially diagnosed with PCa still develop an aggressive and treatment-refractory disease. Prevention or treatment for hormone-refractory PCa using bioactive compounds from marine sponges, mushrooms, and edible plants either as single agents or as adjuvants to existing therapy, has not been clinically successful. Major advancements have been made in the identification, testing and modification of the existing molecular structures of natural products. Additionally, conjugation of these compounds to novel matrices has enhanced their bio-availability; a big step towards bringing natural products to clinical trials. Natural products derived from edible plants (nutraceuticals), and common folk-medicines might offer advantages over synthetic compounds due to their broader range of targets, as compared to mostly single target synthetic anticancer compounds; e.g. kinase inhibitors. The use of synthetic inhibitors or antibodies that target a single aberrant molecule in cancer cells might be in part responsible for emergence of treatment refractory cancers. Nutraceuticals that target AR signaling (epigallocatechin gallate [EGCG], curcumin, and 5α-reductase inhibitors), AR synthesis (ericifolin, capsaicin and others) or AR degradation (betulinic acid, di-indolyl diamine, sulphoraphane, silibinin and others) are prime candidates for use as adjuvant or mono-therapies. Nutraceuticals target multiple pathophysiological mechanisms involved during cancer development and progression and thus have potential to simultaneously inhibit both prostate cancer growth and metastatic progression (e.g., inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and proliferation). Given their multi-targeting properties along with relatively lower systemic toxicity, these compounds offer significant therapeutic advantages for prevention and treatment of PCa. This review emphasizes the potential application of some of the well-researched natural compounds that target AR for prevention and therapy of PCa.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Department of Medicine, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - James J Hoy
- Department of Medicine, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bal L Lokeshwar
- Department of Medicine, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Biochemistry and Molecular Biology, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Research Service, Charlie Norwood VA Hospital and Medical Center, Augusta, GA 30912, USA.
| |
Collapse
|
34
|
Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 2016; 28:348-356. [PMID: 26829214 PMCID: PMC4788534 DOI: 10.1016/j.cellsig.2016.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) remains the major oncogenic driver of prostate cancer, as evidenced by the efficacy of androgen deprivation therapy (ADT) in naïve patients, and the continued effectiveness of second generation ADTs in castration resistant disease. However, current ADTs are limited to interfering with AR ligand binding, either through suppression of androgen production or the use of competitive antagonists. Recent studies demonstrate 1) the expression of constitutively active AR splice variants that no longer depend on androgen, and 2) the ability of AR to signal in the cytoplasm independently of its transcriptional activity (non-genomic); thus highlighting the need to consider other ways to target AR. Herein, we review canonical AR signaling, but focus on AR non-genomic signaling, some of its downstream targets and how these effectors contribute to prostate cancer cell behavior. The goals of this review are to 1) re-highlight the continued importance of AR in prostate cancer as the primary driver, 2) discuss the limitations in continuing to use ligand binding as the sole targeting mechanism, 3) discuss the implications of AR non-genomic signaling in cancer progression and therapeutic resistance, and 4) address the need to consider non-genomic AR signaling mechanisms and pathways as a viable targeting strategy in combination with current therapies.
Collapse
Affiliation(s)
- Jelani C Zarif
- The James Buchanan Brady Urological Institute at The Johns Hopkins University School of Medicine Baltimore, MD 21287, United States
| | - Cindy K Miranti
- Lab of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
35
|
(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Recent advances in allosteric androgen receptor inhibitors for the potential treatment of castration-resistant prostate cancer. Pharm Pat Anal 2015; 4:387-402. [DOI: 10.4155/ppa.15.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PC) is the second most frequent cause of male cancer death in the USA. As such, the androgen receptor (AR) plays a crucial role in PC, making AR the major therapeutic target for PC. Current antiandrogen chemotherapy prevents androgen binding to the ligand-binding pocket (LBP) of AR. However, PC frequently recurs despite treatment and it progresses to castration-resistant prostate cancer. Behind this regression is renewed AR signaling initiated via mutations in the LBP. Hence, there is a critical need to improve the therapeutic options to regulate AR activity in sites other than the LBP. Herein, recently disclosed (2010–2015) allosteric AR inhibitors are summarized and a perspective on the potential pharmaceutical intervention at these sites is provided.
Collapse
|
37
|
Li M, Xiong J, Huang Y, Wang LJ, Tang Y, Yang GX, Liu XH, Wei BG, Fan H, Zhao Y, Zhai WZ, Hu JF. Xylapyrrosides A and B, two rare sugar-morpholine spiroketal pyrrole-derived alkaloids from Xylaria nigripes: isolation, complete structure elucidation, and total syntheses. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Xu LW, Chen Y, Lu Y. Catalytic Silylations of Alcohols: Turning Simple Protecting-Group Strategies into Powerful Enantioselective Synthetic Methods. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201504127] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Xu LW, Chen Y, Lu Y. Katalytische Silylierung von Alkoholen: von einfachen Schutzgruppenstrategien zu leistungsfähigen enantioselektiven Synthesemethoden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36:3-23. [PMID: 24909511 PMCID: PMC4571323 DOI: 10.1038/aps.2014.18] [Citation(s) in RCA: 572] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022] Open
Abstract
Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.
Collapse
|
41
|
Souto JA, Stockman RA, Ley SV. Development of a flow method for the hydroboration/oxidation of olefins. Org Biomol Chem 2015; 13:3871-7. [DOI: 10.1039/c5ob00170f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the continuous preparation of alcohols by hydroboration/oxidation of olefins using flow techniques is described.
Collapse
Affiliation(s)
- José A. Souto
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
- Departamento de Química Orgánica
| | | | - Steven V. Ley
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
42
|
Banuelos CA, Lal A, Tien AH, Shah N, Yang YC, Mawji NR, Meimetis LG, Park J, Kunzhong J, Andersen RJ, Sadar MD. Characterization of niphatenones that inhibit androgen receptor N-terminal domain. PLoS One 2014; 9:e107991. [PMID: 25268119 PMCID: PMC4182434 DOI: 10.1371/journal.pone.0107991] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023] Open
Abstract
Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC). The androgen receptor (AR) remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD). Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD). Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S)-niphatenone had significantly better activity against the AR NTD compared to (R)-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR) activity and covalently bound to GR activation function-1 (AF-1) region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.
Collapse
Affiliation(s)
- Carmen A. Banuelos
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Aaron Lal
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Amy H. Tien
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Neel Shah
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yu Chi Yang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nasrin R. Mawji
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Labros G. Meimetis
- Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacob Park
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jian Kunzhong
- Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond J. Andersen
- Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marianne D. Sadar
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
43
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
44
|
Levine PM, Garabedian MJ, Kirshenbaum K. Targeting the androgen receptor with steroid conjugates. J Med Chem 2014; 57:8224-37. [PMID: 24936953 PMCID: PMC4207530 DOI: 10.1021/jm500101h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting systemic toxicities associated with nonspecific chemotherapies. In this review, we describe various strategies to generate steroid conjugates that can selectively engage AR with high potency. Analogies to recent developments in nonsteroidal conjugates targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates with a description of future prospects for targeting AR.
Collapse
Affiliation(s)
- Paul M Levine
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | |
Collapse
|
45
|
Stilbene induced inhibition of androgen receptor dimerization: implications for AR and ARΔLBD-signalling in human prostate cancer cells. PLoS One 2014; 9:e98566. [PMID: 24887556 PMCID: PMC4041728 DOI: 10.1371/journal.pone.0098566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background Advanced castration resistant prostate cancer (CRPC) is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR) variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD) are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. Methodology In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV) and (E)-4-(2, 6-Difluorostyryl)-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS) on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. Results The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. Conclusion RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors.
Collapse
|
46
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
47
|
Brand LJ, Dehm SM. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Curr Drug Targets 2014; 14:441-9. [PMID: 23410127 DOI: 10.2174/1389450111314040005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/14/2012] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
The androgen receptor (AR) is a master regulator transcription factor in normal and cancerous prostate cells. Canonical AR activation requires binding of androgen ligand to the AR ligand binding domain, translocation to the nucleus, and transcriptional activation of AR target genes. This regulatory axis is targeted for systemic therapy of advanced prostate cancer. However, a new paradigm for AR activation in castration-resistant prostate cancer (CRPC) has emerged wherein alternative splicing of AR mRNA promotes synthesis of constitutively active AR variants that lack the AR ligand binding domain (LBD). Recent work has indicated that structural alteration of the AR gene locus represents a key mechanism by which alterations in AR mRNA splicing arise. In this review, we examine the role of truncated AR variants (ARVs) and their corresponding genomic origins in models of prostate cancer progression, as well as the challenges they pose to the current standard of prostate cancer therapies targeting the AR ligand binding domain. Since ARVs lack the COOH-terminal LBD, the genesis of these AR gene rearrangements and their resulting ARVs provides strong rationale for the pursuit of new avenues of therapeutic intervention targeted at the AR NH2-terminal domain. We further suggest that genomic events leading to ARV expression could act as novel biomarkers of disease progression that may guide the optimal use of current and next-generation AR-targeted therapy.
Collapse
Affiliation(s)
- Lucas J Brand
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
48
|
Yang C, Li Q, Li Y. Targeting nuclear receptors with marine natural products. Mar Drugs 2014; 12:601-35. [PMID: 24473166 PMCID: PMC3944506 DOI: 10.3390/md12020601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qianrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
49
|
Fung SY, Sofiyev V, Schneiderman J, Hirschfeld AF, Victor RE, Woods K, Piotrowski JS, Deshpande R, Li SC, de Voogd NJ, Myers CL, Boone C, Andersen RJ, Turvey SE. Unbiased screening of marine sponge extracts for anti-inflammatory agents combined with chemical genomics identifies girolline as an inhibitor of protein synthesis. ACS Chem Biol 2014; 9:247-57. [PMID: 24117378 DOI: 10.1021/cb400740c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) play a critical role in innate immunity, but activation of TLR signaling pathways is also associated with many harmful inflammatory diseases. Identification of novel anti-inflammatory molecules targeting TLR signaling pathways is central to the development of new treatment approaches for acute and chronic inflammation. We performed high-throughput screening from crude marine sponge extracts on TLR5 signaling and identified girolline. We demonstrated that girolline inhibits signaling through both MyD88-dependent and -independent TLRs (i.e., TLR2, 3, 4, 5, and 7) and reduces cytokine (IL-6 and IL-8) production in human peripheral blood mononuclear cells and macrophages. Using a chemical genomics approach, we identified Elongation Factor 2 as the molecular target of girolline, which inhibits protein synthesis at the elongation step. Together these data identify the sponge natural product girolline as a potential anti-inflammatory agent acting through inhibition of protein synthesis.
Collapse
Affiliation(s)
- Shan-Yu Fung
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Vladimir Sofiyev
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Julia Schneiderman
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Aaron F. Hirschfeld
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rachel E. Victor
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kate Woods
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jeff S. Piotrowski
- Great
Lakes Bioenergy Research Center, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Raamesh Deshpande
- Department
of Computer Science and Engineering, University of Minnesota−Twin Cities, Mineapolis, Minnesota 55455, United States
| | - Sheena C. Li
- Department
of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Nicole J. de Voogd
- Netherlands
Centre for Biodiversity Naturalis, P.O.
Box 9517, 2300 RA, Leiden, The Netherlands
| | - Chad L. Myers
- Department
of Computer Science and Engineering, University of Minnesota−Twin Cities, Mineapolis, Minnesota 55455, United States
| | - Charlie Boone
- Department
of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Raymond J. Andersen
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
50
|
Cutignano A, Nuzzo G, D'Angelo D, Borbone E, Fusco A, Fontana A. Mycalol: A Natural Lipid with Promising Cytotoxic Properties against Human Anaplastic Thyroid Carcinoma Cells. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adele Cutignano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy) http://www.icb.cnr.it
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy) http://www.icb.cnr.it
| | - Daniela D'Angelo
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Via Pansini 5, 80131, Napoli (Italy)
| | - Eleonora Borbone
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Via Pansini 5, 80131, Napoli (Italy)
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Via Pansini 5, 80131, Napoli (Italy)
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy) http://www.icb.cnr.it
| |
Collapse
|