1
|
Pan Y, Wu M, Cai H. Role of ABCC5 in cancer drug resistance and its potential as a therapeutic target. Front Cell Dev Biol 2024; 12:1446418. [PMID: 39563862 PMCID: PMC11573773 DOI: 10.3389/fcell.2024.1446418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Over 90% of treatment failures in cancer therapy can be attributed to multidrug resistance (MDR), which can develop intracellularly or through various routes. Numerous pathways contribute to treatment resistance in cancer, but one of the most significant pathways is intracellular drug efflux and reduced drug concentrations within cells, which are controlled by overexpressed drug efflux pumps. As a member of the family of ABC transporter proteins, ABCC5 (ATP Binding Cassette Subfamily C Member 5) reduces the intracellular concentration of a drug and its subsequent effectiveness using an ATP-dependent method to pump the drug out of the cell. Numerous studies have demonstrated that ABCC5 is strongly linked to both poor prognosis and poor treatment response. In addition, elevated ABCC5 expression is noted in a wide variety of malignancies. Given that ABCC5 is regulated by several pathways in a broad range of cancer types, it is a prospective target for cancer treatment. This review examined the expression, structure, function, and role of ABCC5 in various cancer types.
Collapse
Affiliation(s)
- Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengmeng Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
García-de-Diego AM. C-subfamily ATP binding cassette transporters extrude the calcium fluorescent probe fluo-4 from a cone photoreceptor cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1727-1740. [PMID: 36805766 DOI: 10.1007/s00210-023-02422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Whole transcriptome sequencing has revealed the existence of mRNAs for multiple membrane transporters in photoreceptors. Except for ATP binding cassette (ABC) member A4, involved in the retinoid cycle, an understanding of the function of most transport proteins in photoreceptors is lacking. In this research paper, extrusion of fluo-4, a Ca2+ fluorescent probe, from 661W cells, a cone photoreceptor murine cell line was studied with online fluorometry and immunocytochemistry. Fluo-4 efflux was temperature dependent, required ATP but not extracellular Na+, was not affected by pH in the range 5.4-8.4, and followed saturating kinetics with a Km of nearly 4 μM, suggesting it was effected by ABC type transporters. A panel of antagonists showed an inhibitory profile typical of the C subfamily of ABC transporters. Immunofluorescence staining was positive for ABCC3, ABCC4 and ABCC5. These experimental results are compatible with fluo-4 being extruded from 661W cones by one or a combination of C-type ABC transporters. Examination of physicochemical descriptors related to drug membrane permeability and ABC substrate binding region further suggested efflux of fluo-4 by C-type ABC transporters. Possible functions of this transport mechanism in photoreceptors are discussed.
Collapse
Affiliation(s)
- Antonio-Miguel García-de-Diego
- Instituto Teófilo Hernando de I+D del Medicamento, Madrid, Spain.
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
A curated binary pattern multitarget dataset of focused ATP-binding cassette transporter inhibitors. Sci Data 2022; 9:446. [PMID: 35882865 PMCID: PMC9325750 DOI: 10.1038/s41597-022-01506-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural patterns are of the highest importance for the drug discovery process as demonstrated by the novel drug discovery tool ‘computer-aided pattern analysis’ (‘C@PA’). Here, we report a multitarget dataset of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design in general in terms of pharmacokinetics and pharmacodynamics. Measurement(s) | Influx • Efflux • Tracer • Transport velocity | Technology Type(s) | Fluorometry • Radioactivity • Plate reader • Flow cytometer • Tracer distribution | Factor Type(s) | half-maximal inhibition concentration | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Environment | cell culture | Sample Characteristic - Location | Kingdom of Norway • Germany • Australia • Latvia |
Collapse
|
4
|
Kumar D, Sharma P, Mahajan A, Dhawan R, Dua K. Pharmaceutical interest of in-silico approaches. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2018-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The virtual environment within the computer using software performed on the computer is known as in-silico studies. These drugs designing software play a vital task in discovering new drugs in the field of pharmaceuticals. These designing programs and software are employed in gene sequencing, molecular modeling, and in assessing the three-dimensional structure of the molecule, which can further be used in drug designing and development. Drug development and discovery is not only a powerful, extensive, and an interdisciplinary system but also a very complex and time-consuming method. This book chapter mainly focused on different types of in-silico approaches along with their pharmaceutical applications in numerous diseases.
Collapse
Affiliation(s)
- Dinesh Kumar
- Sri Sai College of Pharmacy , Manawala , Amritsar 143001 , Punjab , India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala 147002 , Punjab , India
- Khalsa College of Pharmacy , Amritsar 143001 , Punjab , India
| | - Ayush Mahajan
- Sri Sai College of Pharmacy , Manawala , Amritsar 143001 , Punjab , India
| | - Ravi Dhawan
- Khalsa College of Pharmacy , Amritsar 143001 , Punjab , India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Ultimo 2007 , NSW , Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney , Ultimo 2007 , New South Wales , Australia
| |
Collapse
|
5
|
Odland SU, Ravna AW, Smaglyukova N, Dietrichs ES, Sager G. Inhibition of ABCC5-mediated cGMP transport by progesterone, testosterone and their analogues. J Steroid Biochem Mol Biol 2021; 213:105951. [PMID: 34271023 DOI: 10.1016/j.jsbmb.2021.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/18/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
The biodynamics and biokinetics of sex hormones are complex. In addition to the classical steroid receptors (nuclear receptors), these hormones act through several non-genomic mechanisms. Modulation of ABC-transporters by progesterone represents a non-genomic mechanism. In the present study, we employed inside out vesicles from human erythrocytes to characterize high affinity cGMP transport by ABCC5 (member 5 of the ATP-Binding Cassette subfamily C). Progesterone and testosterone inhibited the transport with respective Ki of 1.2 ± 0.3 and 2.0 ± 0.6 μmol/L. We used virtual ligand screening (VLS) to identify analogues to progesterone and testosterone. A large number of substances were screened in silico and the 19 most promising candidates were screened in vitro. Each substance was tested for a concentration of 10 μmol/L. The range of cGMP transport reduction was 21.5% to 86.2% for progesterone analogues and 8.6% to 93.8 % for testosterone analogues. Three of the most potent test compounds (TC) of each analogue class, in addition to progesterone and testosterone, were characterized for concentrations from 1 nanomol/L to 1 mmol/L. The progesterone analogues showed following Ki-values (μmol/L): TC-08: 0.61, TC-16: 0.66 and TC-15: 9.3. The Ki-values (μmol/L) for the testosterone analogues were: TC-18: 0.10, TC-07: 0.67 andTC-05: 2.0. The present study shows that VLS may be a versatile tool in the development of membrane transport modulating agents (MTMAs).
Collapse
Affiliation(s)
- Sondre Ulstein Odland
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; AJ Vaccines A/S Artillerivej 5, 2300, Copenhagen S, Denmark(1)
| | - Aina Westrheim Ravna
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Sveberg Dietrichs
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Centre for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Georg Sager
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole Story About Fenestrations in LSEC. Front Physiol 2021; 12:735573. [PMID: 34588998 PMCID: PMC8473804 DOI: 10.3389/fphys.2021.735573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.
Collapse
Affiliation(s)
- Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Larissa D Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Christopher Florian Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Namasivayam V, Silbermann K, Pahnke J, Wiese M, Stefan SM. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Comput Struct Biotechnol J 2021; 19:3269-3283. [PMID: 34141145 PMCID: PMC8193046 DOI: 10.1016/j.csbj.2021.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Computer-aided pattern analysis (C@PA) was recently presented as a powerful tool to predict multitarget ABC transporter inhibitors. The backbone of this computational methodology was the statistical analysis of frequently occurring molecular features amongst a fixed set of reported small-molecules that had been evaluated toward ABCB1, ABCC1, and ABCG2. As a result, negative and positive patterns were elucidated, and secondary positive substructures could be suggested that complemented the multitarget fingerprints. Elevating C@PA to a non-statistical and exploratory level, the concluded secondary positive patterns were extended with potential positive substructures to improve C@PA's prediction capabilities and to explore its robustness. A small-set compound library of known ABCC1 inhibitors with a known hit rate for triple ABCB1, ABCC1, and ABCG2 inhibition was taken to virtually screen for the extended positive patterns. In total, 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors resulted, from which 10 have been purchased and biologically evaluated. Our approach revealed 4 novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors with a biological hit rate of 40%, but with a slightly lower inhibitory power than derived from the original C@PA. This is the very first report about discovering novel broad-spectrum inhibitors against the most prominent ABC transporters by improving C@PA.
Collapse
Key Words
- ABC transporter, ATP-binding cassette transporter
- ABCB1 (P-gp)
- ABCC1 (MRP1)
- ABCG2 (BCRP)
- ATP, adenosine-triphosphate
- Alzheimer's disease (AD)
- BCRP, breast cancer resistance protein (ABCG2)
- C@PA, computer-aided pattern analysis
- F1–5, pharmacophore features 1–5
- IC50, half-maximal inhibition concentration
- MDR, multidrug resistance
- MOE, molecular operating environment
- MRP1, multidrug resistance-associated protein 1 (ABCC1)
- Multidrug resistance (MDR)
- Multitarget fingerprints
- P-gp, P-glycoprotein (ABCB1)
- Pan-ABC inhibition / antagonism / blockage (PANABC)
- Pattern analysis (C@PA)
- SEM, standard error of the mean
- SMILES, simplified molecular input line entry specification
- Tc, Tanimotto coefficient
- Triple / multitarget / broad-spectrum / promiscuous inhibitor / antagonist
- Under-studied ABC transporters (e.g., ABCA7)
- Well-studied ABC transporters
- calcein AM, calcein acetoxymethyl
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Silbermann
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sven Marcel Stefan
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Builging, 10 Westbourne Street, Sydney, New South Wales 2065, Australia
| |
Collapse
|
8
|
Miyagi-Shiohira C, Saitoh I, Watanabe M, Noguchi H. Kyoto probe-1 reveals phenotypic differences between mouse ES cells and iTS-P cells. Sci Rep 2020; 10:18084. [PMID: 33093580 PMCID: PMC7582910 DOI: 10.1038/s41598-020-75016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
Kyoto probe 1 (KP-1) rapidly distinguishes between human ES/iPS (hES/iPS) cells and their differentiated cells. Recently, we generated induced tissue-specific stem cells from pancreas (iTS-P cells) using reprogramming factors and tissue-specific selection. The iTS-P cells have self-renewal potential, and subcutaneously transplanting them into immunodeficient mice did not generate teratomas. In this study, we applied KP-1 to analyze mouse ES (mES) cells and mouse iTS-P (miTS-P) cells. KP-1 completely stained mES cells in colonies, but only miTS-P cells at the edge of a colony. This difference was caused by cell type-specific expression of different ABC transporters. These finding suggest that KP-1 will be useful for distinguishing between iPS and iTS-P cells.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
9
|
Abstract
Active efflux of antibiotics preventing their accumulation to toxic intracellular concentrations contributes to clinically relevant multidrug resistance. Inhibition of active efflux potentiates antibiotic activity, indicating that efflux inhibitors could be used in combination with antibiotics to reverse drug resistance. Expression of ramA by Salmonella enterica serovar Typhimurium increases in response to efflux inhibition, irrespective of the mode of inhibition. We hypothesized that measuring ramA promoter activity could act as a reporter of efflux inhibition. A rapid, inexpensive, and high-throughput green fluorescent protein (GFP) screen to identify efflux inhibitors was developed, validated, and implemented. Two chemical compound libraries were screened for compounds that increased GFP production. Fifty of the compounds in the 1,200-compound Prestwick chemical library were identified as potential efflux inhibitors, including the previously characterized efflux inhibitors mefloquine and thioridazine. There were 107 hits from a library of 47,168 proprietary compounds from L. Hoffmann La Roche; 45 were confirmed hits, and a dose response was determined. Dye efflux and accumulation assays showed that 40 Roche and three Prestwick chemical library compounds were efflux inhibitors. Most compounds had specific efflux-inhibitor-antibiotic combinations and/or species-specific synergy in antibiotic disc diffusion and checkerboard assays performed with Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Salmonella Typhimurium. These data indicate that both narrow-spectrum and broad-spectrum combinations of efflux inhibitors with antibiotics can be found. Eleven novel efflux inhibitor compounds potentiated antibiotic activities against at least one species of Gram-negative bacteria, and data revealing an E. coli mutant with loss of AcrB function suggested that these are AcrB inhibitors.IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a serious threat to human and animal health. Molecules that inhibit multidrug efflux offer an alternative approach to resolving the challenges caused by antibiotic resistance, by potentiating the activity of old, licensed, and new antibiotics. We have developed, validated, and implemented a high-throughput screen and used it to identify efflux inhibitors from two compound libraries selected for their high chemical and pharmacological diversity. We found that the new high-throughput screen is a valuable tool to identify efflux inhibitors, as evidenced by the 43 new efflux inhibitors described in this study.
Collapse
|
10
|
Kashgari FK, Ravna A, Sager G, Lyså R, Enyedy I, Dietrichs ES. Identification and experimental confirmation of novel cGMP efflux inhibitors by virtual ligand screening of vardenafil-analogues. Biomed Pharmacother 2020; 126:110109. [PMID: 32229414 DOI: 10.1016/j.biopha.2020.110109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Clinical studies have reported overexpression of PDE5 and elevation of intracellular cyclic GMP in various types of cancer cells. ABCC5 transports cGMP out of the cells with high affinity. PDE5 inhibitors prevent both cellular metabolism and cGMP efflux by inhibiting ABCC5 as well as PDE5. Increasing intracellular cGMP is hypothesized to promote apoptosis and growth restriction in tumor cells and also has potential for clinical use in treatment of cardiovascular disease and erectile dysfunction. Vardenafil is a potent inhibitor of both PDE5 and ABCC5-mediated cGMP cellular efflux. Nineteen novel vardenafil analogs that have been predicted as potent inhibitors by VLS were chosen for tests of their ability to inhibit ATP- dependent transport of cGMP by measuring the accumulation of cyclic GMP in inside-out vesicles. AIM In this study, we investigated the ability of nineteen new compounds to inhibit ABCC5- mediated cGMP transport. We also determined the Ki values of the six most potent compounds. METHODS Preparation of human erythrocyte inside out vesicles and transport assay. RESULTS Ki values for six of nineteen compounds that showed more than 50 % inhibition of cGMP transport in the screening test were determined and ranged from 1.1 to 23.1 μM. One compound was significantly more potent than the positive control, sildenafil. CONCLUSION Our findings show that computational screening correctly identified vardenafil-analogues that potently inhibit cGMP efflux-pumps from cytosol and could have substantial clinical potential in treatment of patients with diverse disorders.
Collapse
Affiliation(s)
- Farzane Kuresh Kashgari
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aina Ravna
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Georg Sager
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; Department of Clinical Pharmacology, Division of Diagnostic Services, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Roy Lyså
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Erik Sveberg Dietrichs
- Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; Department of Clinical Pharmacology, Division of Diagnostic Services, University Hospital of North Norway, 9038 Tromsø, Norway.
| |
Collapse
|
11
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Discovery of novel multidrug resistance protein 4 (MRP4) inhibitors as active agents reducing resistance to anticancer drug 6-Mercaptopurine (6-MP) by structure and ligand-based virtual screening. PLoS One 2018; 13:e0205175. [PMID: 30321196 PMCID: PMC6188748 DOI: 10.1371/journal.pone.0205175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4) is an ATP-binding cassette (ABC) transporter. It is associated with multidrug resistance (MDR), which is becoming a growing challenge to the treatment of cancer and infections. In the context of several types of cancer in which MRP4 is overexpressed, MRP4 inhibition manifests striking effects against cancer progression and drug resistance. In this study, we combined ligand-based and structure-based drug design strategy, by searching the SPECS chemical library to find compounds that are most likely to bind to MRP4. Clustering analysis based on a two-dimensional fingerprint was performed to help with visual selection of potential compounds. Cell viability assays with potential inhibitors and the anticancer drug 6-MP were carried out to identify their bioactivity. As a result, 39 compounds were tested and seven of them reached inhibition above 55% with 6-MP. Then compound Cpd23 was discovered to improve HEK293/MRP4 cell sensibility to 6-MP dramatically, and low concentration Cpd23 (5 μM) achieved the equivalent effect of 50 μM MK571. The accumulation of 6-MP was determined by validated high-performance liquid chromatography methods, and pretreatment of the HEK293/MRP4 cells with 50 μM MK571 or Cpd23 resulted in significantly increased accumulation of 6-MP by approximately 1.5 times. This compound was first reported with a novel scaffold compared with previously known MRP4 inhibitors, which is a hopeful molecular tool that can be used for overcoming multidrug resistance research.
Collapse
|
13
|
Iglesias J, Saen‐oon S, Soliva R, Guallar V. Computational structure‐based drug design: Predicting target flexibility. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | - Victor Guallar
- Life Science DepartmentBarcelonaSpain
- ICREA, Passeig Lluís Companys 23BarcelonaSpain
| |
Collapse
|
14
|
Subbotina A, Ravna AW, Lysaa RA, Abagyan R, Bugno R, Sager G. Inhibition of PDE5A1 guanosine cyclic monophosphate (cGMP) hydrolysing activity by sildenafil analogues that inhibit cellular cGMP efflux. ACTA ACUST UNITED AC 2017; 69:675-683. [PMID: 28211580 PMCID: PMC5434896 DOI: 10.1111/jphp.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/18/2016] [Indexed: 12/16/2022]
Abstract
Objectives To determine the ability of 11 sildenafil analogues to discriminate between cyclic nucleotide phosphodiesterases (cnPDEs) and to characterise their inhibitory potencies (Ki values) of PDE5A1‐dependent guanosine cyclic monophosphate (cGMP) hydrolysis. Methods Sildenafil analogues were identified by virtual ligand screening (VLS) and screened for their ability to inhibit adenosine cyclic monophosphate (cAMP) hydrolysis by PDE1A1, PDE1B1, PDE2A1, PDE3A, PDE10A1 and PDE10A2, and cGMP hydrolysis by PDE5A, PDE6C, PDE9A2 for a low (1 nm) and high concentration (10 μm). Complete IC50 plots for all analogues were performed for PDE5A‐dependent cGMP hydrolysis. Docking studies and scoring were made using the ICM molecular modelling software. Key findings The analogues in a low concentration showed no or low inhibition of PDE1A1, PDE1B1, PDE2A1, PDE3A, PDE10A1 and PDE10A2. In contrast, PDE5A and PDE6C were markedly inhibited to a similar extent by the analogues in a low concentration, whereas PDE9A2 was much less inhibited. The analogues showed a relative narrow range of Ki values for PDE5A inhibition (1.2–14 nm). The sildenafil molecule was docked in the structure of PDE5A1 co‐crystallised with sildenafil. All the analogues had similar binding poses as sildenafil. Conclusions Sildenafil analogues that inhibit cellular cGMP efflux are potent inhibitors of PDE5A and PDE6C.
Collapse
Affiliation(s)
- Anna Subbotina
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Aina W Ravna
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Roy A Lysaa
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Georg Sager
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Lacroix C, Fish I, Torosyan H, Parathaman P, Irwin JJ, Shoichet BK, Angers S. Identification of Novel Smoothened Ligands Using Structure-Based Docking. PLoS One 2016; 11:e0160365. [PMID: 27490099 PMCID: PMC4973902 DOI: 10.1371/journal.pone.0160365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The seven transmembrane protein Smoothened is required for Hedgehog signaling during embryonic development and adult tissue homeostasis. Inappropriate activation of the Hedgehog signalling pathway leads to cancers such as basal cell carcinoma and medulloblastoma, and Smoothened inhibitors are now available clinically to treat these diseases. However, resistance to these inhibitors rapidly develops thereby limiting their efficacy. The determination of Smoothened crystal structures enables structure-based discovery of new ligands with new chemotypes that will be critical to combat resistance. In this study, we docked 3.2 million available, lead-like molecules against Smoothened, looking for those with high physical complementarity to its structure; this represents the first such campaign against the class Frizzled G-protein coupled receptor family. Twenty-one high-ranking compounds were selected for experimental testing, and four, representing three different chemotypes, were identified to antagonize Smoothened with IC50 values better than 50 μM. A screen for analogs revealed another six molecules, with IC50 values in the low micromolar range. Importantly, one of the most active of the new antagonists continued to be efficacious at the D473H mutant of Smoothened, which confers clinical resistance to the antagonist vismodegib in cancer treatment.
Collapse
Affiliation(s)
- Celine Lacroix
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Inbar Fish
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Hayarpi Torosyan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Pranavan Parathaman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (BS); (SA)
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BS); (SA)
| |
Collapse
|
16
|
Shipp LE, Hill RZ, Moy GW, Gökırmak T, Hamdoun A. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development 2015; 142:3537-48. [PMID: 26395488 DOI: 10.1242/dev.126144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
ATP-binding cassette (ABC) transporters are evolutionarily conserved proteins that pump diverse substrates across membranes. Many are known to efflux signaling molecules and are extensively expressed during development. However, the role of transporters in moving extracellular signals that regulate embryogenesis is largely unexplored. Here, we show that a mesodermal ABCC (MRP) transporter is necessary for endodermal gut morphogenesis in sea urchin embryos. This transporter, Sp-ABCC5a (C5a), is expressed in pigment cells and their precursors, which are a subset of the non-skeletogenic mesoderm (NSM) cells. C5a expression depends on Delta/Notch signaling from skeletogenic mesoderm and is downstream of Gcm in the aboral NSM gene regulatory network. Long-term imaging of development reveals that C5a knockdown embryos gastrulate, but ∼90% develop a prolapse of the hindgut by the late prism stage (∼8 h after C5a protein expression normally peaks). Since C5a orthologs efflux cyclic nucleotides, and cAMP-dependent protein kinase (Sp-CAPK/PKA) is expressed in pigment cells, we examined whether C5a could be involved in gastrulation through cAMP transport. Consistent with this hypothesis, membrane-permeable pCPT-cAMP rescues the prolapse phenotype in C5a knockdown embryos, and causes archenteron hyper-invagination in control embryos. In addition, the cAMP-producing enzyme soluble adenylyl cyclase (sAC) is expressed in pigment cells, and its inhibition impairs gastrulation. Together, our data support a model in which C5a transports sAC-derived cAMP from pigment cells to control late invagination of the hindgut. Little is known about the ancestral functions of ABCC5/MRP5 transporters, and this study reveals a novel role for these proteins in mesoderm-endoderm signaling during embryogenesis.
Collapse
Affiliation(s)
- Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Rose Z Hill
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Tufan Gökırmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
17
|
Tegos GP, Evangelisti AM, Strouse JJ, Ursu O, Bologa C, Sklar LA. A high throughput flow cytometric assay platform targeting transporter inhibition. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 12:e95-103. [PMID: 25027381 DOI: 10.1016/j.ddtec.2014.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review highlights the concepts, recent applications and limitations of High Throughput Screening (HTS) flow cytometry-based efflux inhibitory assays. This platform has been employed in mammalian and yeast efflux systems leading to the identification of small molecules with transporter inhibitory capabilities. This technology offers the possibility of substrate multiplexing and may promote novel strategies targeting microbial efflux systems. This platform can generate a comprehensive dataset that may support efforts to map the interface between chemistry and transporter biology in a variety of pathogenic systems.
Collapse
Affiliation(s)
- George P Tegos
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Annette M Evangelisti
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, United States
| | - J Jacob Strouse
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, United States
| | - Oleg Ursu
- Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Cristian Bologa
- Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Larry A Sklar
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| |
Collapse
|
18
|
Aronsen L, Orvoll E, Lysaa R, Ravna AW, Sager G. Modulation of high affinity ATP-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors. Eur J Pharmacol 2014; 745:249-53. [PMID: 25445042 DOI: 10.1016/j.ejphar.2014.10.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Intracellular cyclic nucleotides are eliminated by phosphodiesterases (PDEs) and by ATP Binding cassette transporters such as ABCC4 and ABCC5. PDE5 and ABCC5 have similar affinity for cGMP whereas ABCC5 has much higher affinity for cGMP compared with cAMP. Since the substrate (cGMP) is identical for these two eliminatory processes it is conceivable that various PDE inhibitors also modulate ABCC5-transport. Cyclic GMP is also transported by ABBC4 but the affinity is much lower with a Km 50-100 times higher than for that of ABBCC5. The present study aimed to determine Ki-values for specific or relative specific PDE5 inhibitors (vardenafil, tadalafil, zaprinast and dipyridamole) and the non-specific PDE inhibitors (IBMX, caffeine and theophylline) for ABCC5 and ABCC4 transport. The transport of [(3)H]-cGMP (2 µM) was concentration-dependently inhibited with the following Ki-values: vardenafil (0.62 µM), tadalafil (14.1 µM), zaprinast (0.68 µM) and dipyridamole (1.2 µM), IBMX (10 µM), caffeine (48 µM) and theophylline (69 µM). The Ki-values for the inhibition of the [(3)H]-cAMP (2 µM) transport were: vardenafil (3.4 µM), tadalafil (194 µM), zaprinast (2.8 µM), dipyridamole (5.5 µM), IBMX (16 µM), caffeine (41 µM) and theophylline (85 µM). The specificity for ABCC5 we defined as ratio between Ki-values for inhibition of [(3)H]-cGMP and [(3)H]-cAMP transport. Tadalafil showed the highest specificity (Ki-ratio: 0.073) and caffeine the lowest (Ki-ratio: 1.2).
Collapse
Affiliation(s)
- Lena Aronsen
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health sciences, University of Tromsø, The Arctic University of Norway, Norway; Clinical pharmacology, Department of Laboratory Medicine, Division of Diagnostic services, University Hospital of North Norway, Tromsø, Norway
| | - Elin Orvoll
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health sciences, University of Tromsø, The Arctic University of Norway, Norway
| | - Roy Lysaa
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health sciences, University of Tromsø, The Arctic University of Norway, Norway
| | - Aina W Ravna
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health sciences, University of Tromsø, The Arctic University of Norway, Norway
| | - Georg Sager
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health sciences, University of Tromsø, The Arctic University of Norway, Norway; Clinical pharmacology, Department of Laboratory Medicine, Division of Diagnostic services, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
19
|
Mustazza C, Borioni A, Rodomonte AL, Bartolomei M, Antoniella E, Di Martino P, Valvo L, Sestili I, Costantini E, Gaudiano MC. Characterization of Sildenafil analogs by MS/MS and NMR: A guidance for detection and structure elucidation of phosphodiesterase-5 inhibitors. J Pharm Biomed Anal 2014; 96:170-86. [DOI: 10.1016/j.jpba.2014.03.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
20
|
Prehm P. Curcumin analogue identified as hyaluronan export inhibitor by virtual docking to the ABC transporter MRP5. Food Chem Toxicol 2013; 62:76-81. [PMID: 23978416 DOI: 10.1016/j.fct.2013.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022]
Abstract
Hyaluronan is overproduced in many diseases including metastasis, inflammation or ischemia, but there is no drug to attenuate hyaluronan production. Hyaluronan is exported from fibroblasts by the multidrug resistance associated protein 5 (MRP5) which is inhibited by the plant phenols curcumin or xanthohumol. We performed virtual docking and chemical synthesis of analogues to optimize the inhibitors. The AutoDock software was used to identify the binding cavity within the open conformation of MRP5. Inhibitory plant phenols bound to the ATP binding site between the two nucleotide binding domains NBD1 and NBD2. This binding cavity was chosen to screen about 120 derivatives and analogues. The superior hyaluronan export inhibitor was 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one (hylin). It inhibited hyaluronan export from fibroblasts with an IC50 of 4.9 μM. Hylin is a minor component in natural curcumin preparations and has previously been described as anti-metastatic and anti-inflammatory. Since curcumin itself is unstable under physiological conditions, the active component for many cell biological and pharmaceutical effects of natural curcumin preparations could be hylin that acts by hyaluronan export inhibition.
Collapse
Affiliation(s)
- Peter Prehm
- Muenster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstrasse 15, D-48149 Muenster, Germany.
| |
Collapse
|
21
|
Barelier S, Boyce SE, Fish I, Fischer M, Goodin DB, Shoichet BK. Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities. PLoS One 2013; 8:e69153. [PMID: 23874896 PMCID: PMC3715451 DOI: 10.1371/journal.pone.0069153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/30/2013] [Indexed: 12/29/2022] Open
Abstract
A key challenge in structure-based discovery is accounting for modulation of protein-ligand interactions by ordered and bulk solvent. To investigate this, we compared ligand binding to a buried cavity in Cytochrome c Peroxidase (CcP), where affinity is dominated by a single ionic interaction, versus a cavity variant partly opened to solvent by loop deletion. This opening had unexpected effects on ligand orientation, affinity, and ordered water structure. Some ligands lost over ten-fold in affinity and reoriented in the cavity, while others retained their geometries, formed new interactions with water networks, and improved affinity. To test our ability to discover new ligands against this opened site prospectively, a 534,000 fragment library was docked against the open cavity using two models of ligand solvation. Using an older solvation model that prioritized many neutral molecules, three such uncharged docking hits were tested, none of which was observed to bind; these molecules were not highly ranked by the new, context-dependent solvation score. Using this new method, another 15 highly-ranked molecules were tested for binding. In contrast to the previous result, 14 of these bound detectably, with affinities ranging from 8 µM to 2 mM. In crystal structures, four of these new ligands superposed well with the docking predictions but two did not, reflecting unanticipated interactions with newly ordered waters molecules. Comparing recognition between this open cavity and its buried analog begins to isolate the roles of ordered solvent in a system that lends itself readily to prospective testing and that may be broadly useful to the community.
Collapse
Affiliation(s)
- Sarah Barelier
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ørvoll E, Lysaa RA, Ravna AW, Sager G. Misoprostol and the Sildenafil analog (PHAR-0099048) Modulate Cellular Efflux of cAMP and cGMP Differently. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.41015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|