1
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
2
|
Bhattacharjee D, Bakar J, Chitnis SP, Sausville EL, Ashtekar KD, Mendelson BE, Long K, Smith JC, Heppner DE, Sheltzer JM. Inhibition of a lower potency target drives the anticancer activity of a clinical p38 inhibitor. Cell Chem Biol 2023; 30:1211-1222.e5. [PMID: 37827156 PMCID: PMC10715717 DOI: 10.1016/j.chembiol.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
The small-molecule drug ralimetinib was developed as an inhibitor of the p38α mitogen-activated protein kinase, and it has advanced to phase 2 clinical trials in oncology. Here, we demonstrate that ralimetinib resembles EGFR-targeting drugs in pharmacogenomic profiling experiments and that ralimetinib inhibits EGFR kinase activity in vitro and in cellulo. While ralimetinib sensitivity is unaffected by deletion of the genes encoding p38α and p38β, its effects are blocked by expression of the EGFR-T790M gatekeeper mutation. Finally, we solved the cocrystal structure of ralimetinib bound to EGFR, providing further evidence that this drug functions as an ATP-competitive EGFR inhibitor. We conclude that, though ralimetinib is >30-fold less potent against EGFR compared to p38α, its ability to inhibit EGFR drives its primary anticancer effects. Our results call into question the value of p38α as an anticancer target, and we describe a multi-modal approach that can be used to uncover a drug's mechanism-of-action.
Collapse
Affiliation(s)
| | - Jaweria Bakar
- Yale University School of Medicine, New Haven, CT 06511, USA
| | - Surbhi P Chitnis
- Department of Chemistry, The University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | - Kumar Dilip Ashtekar
- Yale University School of Medicine, New Haven, CT 06511, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | | | - Kaitlin Long
- Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joan C Smith
- Yale University School of Medicine, New Haven, CT 06511, USA; Meliora Therapeutics, New Haven, CT 06511, USA
| | - David E Heppner
- Department of Chemistry, The University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | | |
Collapse
|
3
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM, Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Adv 2023; 13:18825-18853. [PMID: 37350862 PMCID: PMC10282734 DOI: 10.1039/d3ra02347h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is the second most common cause of morbidity and mortality among cancer types worldwide, with non-small cell lung cancer (NSCLC) representing the majority of most cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are among the most commonly used targeted therapy to treat NSCLC. Recent years have seen the evaluation of many synthetic EGFR TKIs, most of which showed therapeutic activity in pertinent models and were classified as first, second, and third-generation. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are ineffective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism. This review covers the fourth-generation EGFR-TKIs' most recent design with their essential binding interactions, the clinical difficulties, and the potential outcomes of treating patients with EGFR mutation C797S resistant to third-generation EGFR-TKIs was also discussed. Moreover, the utilization of various therapeutic strategies, including multi-targeting drugs and combination therapies, has also been reviewed.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA) Assiut 2014101 Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
4
|
He J, Luo L, Xu S, Yang F, Zhu W. Pyrrole-based EGFR inhibitors for the treatment of NCSLC: Binding modes and SARs investigations. Chem Biol Drug Des 2023; 101:195-217. [PMID: 36394145 DOI: 10.1111/cbdd.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022]
Abstract
The treatment of advanced non-small cell lung cancer (NSCLC) has made substantial progress due to the rapid development of small molecule targeted therapy, with dramatically prolonged survival. As an effective drug for the treatment of NSCLC, epidermal growth factor receptor (EGFR) inhibitors are currently experiencing issues like severe adverse events and drug resistance. It is urgent to develop novel types of EGFR inhibitors to overcome the abovementioned limitations. Pyrrole always works well as a probe for the creation of novel medication candidates for hard-to-treat conditions like lung cancer. Although the design, synthesis, and biological assays of pyrrole derivatives have been reported, their inhibitory actions against the receptor tyrosine kinase (RTK) EGFR have not been in-depthly studied. This review highlights the small molecule EGFR inhibitors containing pyrrole heterocyclic pharmacophores in recent years, and the research on their mechanism, biological activity, and structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Feiyi Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Zhao HY, Xi XX, Xin M, Zhang SQ. Overcoming C797S Mutation: The Challenges and Prospects of the Fourth-Generation EGFR-TKIs. Bioorg Chem 2022; 128:106057. [DOI: 10.1016/j.bioorg.2022.106057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
|
6
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
7
|
The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur J Med Chem 2020; 210:112995. [PMID: 33243531 DOI: 10.1016/j.ejmech.2020.112995] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor for epithelial growth factor (EGF) cell proliferation and signaling, which is related to the inhibition of tumor cell proliferation, angiogenesis, tumor invasion, metastasis, and apoptosis. Thus, it has become an important target for the treatment of non-small cell lung cancer (NSCLC). The first to the third-generation EGFR inhibitors have demonstrated powerful efficacy and brought a prospect to patients. Unfortunately, after 9-15 months of treatment, they all developed resistance without exception. As for the resistance of third-generation inhibitors, no major breakthrough has been made in this field. In this review, we discussed the recent advances in medicinal chemistry of fourth-generation EGFR-TKIs, as well as further discussed the clinical challenges and future prospects of treating patients with EGFR mutations resistant to third-generation EGFR-TKIs.
Collapse
|
8
|
Ahmad I, Shaikh M, Surana S, Ghosh A, Patel H. p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): emergence of fourth-generation EGFR inhibitor. J Biomol Struct Dyn 2020; 40:3046-3059. [DOI: 10.1080/07391102.2020.1844801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Matin Shaikh
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sanjay Surana
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
9
|
Maji A, Singh O, Singh S, Mohanty A, Maji PK, Ghosh K. Palladium‐Based Catalysts Supported by Unsymmetrical XYC
–1
Type Pincer Ligands: C5 Arylation of Imidazoles and Synthesis of Octinoxate Utilizing the Mizoroki–Heck Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ankur Maji
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee Uttarakhand India
| | - Ovender Singh
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee Uttarakhand India
| | - Sain Singh
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee Uttarakhand India
| | - Aurobinda Mohanty
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee Uttarakhand India
| | - Pradip K. Maji
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur Campus 247001 Saharanpur UP India
| | - Kaushik Ghosh
- Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee Uttarakhand India
| |
Collapse
|
10
|
Heppner DE, Günther M, Wittlinger F, Laufer SA, Eck MJ. Structural Basis for EGFR Mutant Inhibition by Trisubstituted Imidazole Inhibitors. J Med Chem 2020; 63:4293-4305. [PMID: 32243152 DOI: 10.1021/acs.jmedchem.0c00200] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acquired drug resistance in epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer is a persistent challenge in cancer therapy. Previous studies of trisubstituted imidazole inhibitors led to the serendipitous discovery of inhibitors that target the drug resistant EGFR(L858R/T790M/C797S) mutant with nanomolar potencies in a reversible binding mechanism. To dissect the molecular basis for their activity, we determined the binding modes of several trisubstituted imidazole inhibitors in complex with the EGFR kinase domain with X-ray crystallography. These structures reveal that the imidazole core acts as an H-bond acceptor for the catalytic lysine (K745) in the "αC-helix out" inactive state. Selective N-methylation of the H-bond accepting nitrogen ablates inhibitor potency, confirming the role of the K745 H-bond in potent, noncovalent inhibition of the C797S variant. Insights from these studies offer new strategies for developing next generation inhibitors targeting EGFR in non-small-cell lung cancer.
Collapse
Affiliation(s)
- David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Marcel Günther
- Institute for Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Florian Wittlinger
- Institute for Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Stefan A Laufer
- Institute for Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Lee J, Ghosh D, Kuo Y, Lee HM. Dimetallic Palladium‐NHC Complexes: Synthesis, Characterization, and Catalytic Application for Direct C−H Arylation Reaction of Heteroaromatics with Aryl Chlorides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jhen‐Yi Lee
- Department of Chemistry National Changhua University of Education Changhua 50058 Taiwan
| | - Debalina Ghosh
- Department of Chemistry National Changhua University of Education Changhua 50058 Taiwan
| | - Ya‐Ting Kuo
- Department of Chemistry National Changhua University of Education Changhua 50058 Taiwan
| | - Hon Man Lee
- Department of Chemistry National Changhua University of Education Changhua 50058 Taiwan
| |
Collapse
|
12
|
de Toledo I, Grigolo TA, Bennett JM, Elkins JM, Pilli RA. Modular Synthesis of Di- and Trisubstituted Imidazoles from Ketones and Aldehydes: A Route to Kinase Inhibitors. J Org Chem 2019; 84:14187-14201. [PMID: 31460764 PMCID: PMC6829625 DOI: 10.1021/acs.joc.9b01844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
A one-pot and modular approach to
the synthesis of 2,4(5)-disubstituted
imidazoles was developed based on ketone oxidation, employing catalytic
HBr and DMSO, followed by imidazole condensation with aldehydes. This
methodology afforded twenty-nine disubstituted NH-imidazoles (23%–85% yield). A three-step synthesis of 20
kinase inhibitors was achieved by employing this oxidation–condensation
protocol, followed by bromination and Suzuki coupling in the imidazole
ring to yield trisubstituted NH-imidazoles (23%–69%,
three steps). This approach was also employed in the synthesis of
known inhibitor GSK3037619A.
Collapse
Affiliation(s)
- Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry , University of Campinas, UNICAMP , Campinas , São Paulo 13083-970 , Brazil
| | - Thiago A Grigolo
- Department of Organic Chemistry, Institute of Chemistry , University of Campinas, UNICAMP , Campinas , São Paulo 13083-970 , Brazil
| | - James M Bennett
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , United Kingdom
| | - Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , United Kingdom.,Structural Genomics Consortium, Departamento de Genética e Evolução , Instituto de Biologia, UNICAMP , Campinas , São Paulo 13083-886 , Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry , University of Campinas, UNICAMP , Campinas , São Paulo 13083-970 , Brazil
| |
Collapse
|
13
|
Sun B, Zhang H, Dong Y, Zhao L, Han J, Liu M. Evaluation of the combination mode and features of p38 MAPK inhibitors: construction of different pharmacophore models and molecular docking. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1606426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, People’s Republic of China
| | - Hong Zhang
- Liaocheng People's Hospital, Liaocheng, People’s Republic of China
| | - Yue Dong
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, People’s Republic of China
| | - Liyu Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, People’s Republic of China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, People’s Republic of China
| |
Collapse
|
14
|
Tariq S, Kamboj P, Alam O, Amir M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg Chem 2018; 81:630-641. [DOI: 10.1016/j.bioorg.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
15
|
Medicinal chemistry of vicinal diaryl scaffold: A mini review. Eur J Med Chem 2018; 162:1-17. [PMID: 30396033 DOI: 10.1016/j.ejmech.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
Abstract
The privileged structures have been widely used as a valuable template in new drug discovery. 1,2-Diaryl or vicinal diaryl is a simple scaffold found in many drugs and naturally occurring compounds. From synthetic point of view, the vicinal diaryl derivatives are easily accessible due to their facile and expedient syntheses. These scaffolds have shown numerous interesting pharmacological activities against various diseases with lot of clinical potentials. This review aims to highlight the evidence of vicinal diaryl motif as a privileged scaffold in COX-2 inhibitors and CA-4 analogs.
Collapse
|
16
|
Tariq S, Alam O, Amir M. Synthesis, p38α MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Arch Pharm (Weinheim) 2018; 351:e1700304. [PMID: 29611883 DOI: 10.1002/ardp.201700304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
Recent studies have demonstrated that inhibition of p38α MAP kinase could effectively inhibit pro-inflammatory cytokines including TNF-α and interleukins. Thus, inhibition of this enzyme can prove greatly beneficial in the therapy of chronic inflammatory diseases. A new series of N-[3-(substituted-4H-1,2,4-triazol-4-yl)]-benzo[d]thiazol-2-amines (4a-n) were synthesized and subjected to in vitro evaluation for anti-inflammatory activity (BSA anti-denaturation assay) and p38α MAPK inhibition. Among the compounds selected for in vivo screening of anti-inflammatory activity (4b, 4c, 4f, 4g, 4j, 4m, and 4n), compound 4f was found to be the most active with an in vivo anti-inflammatory efficacy of 85.31% when compared to diclofenac sodium (83.68%). It was also found to have a low ulcerogenic risk and a protective effect on lipid peroxidation. The p38α MAP kinase inhibition of this compound (IC50 = 0.036 ± 0.12 μM) was also found to be superior to the standard SB203580 (IC50 = 0.043 ± 0.27 μM). Furthermore, the in silico binding mode of the compound on docking against p38α MAP kinase exemplified stronger interactions than those of SB203580.
Collapse
Affiliation(s)
- Sana Tariq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| |
Collapse
|
17
|
Chen L, Fu W, Zheng L, Liu Z, Liang G. Recent Progress of Small-Molecule Epidermal Growth Factor Receptor (EGFR) Inhibitors against C797S Resistance in Non-Small-Cell Lung Cancer. J Med Chem 2017; 61:4290-4300. [PMID: 29136465 DOI: 10.1021/acs.jmedchem.7b01310] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epidermal growth factor receptor (EGFR) has been a particular interest for drug development for treatment of non-small-cell lung cancer (NSCLC). The current third-generation EGFR small-molecule inhibitors, especially osimertinib, are at the forefront clinically for treatment of patients with NSCLC. However, a high percentage of these treated patients developed a tertiary cystein-797 to serine-790 (C797S) mutation in the EGFR kinase domain. This C797S mutation is thought to induce resistance to all current irreversible EGFR TKIs. In this Miniperspective, we present key mechanisms of resistance in response to third-generation EGFR TKIs, and emerging reports on novel EGFR TKIs to combat the resistance. Specifically, we analyze the allosteric and ATP-competitive inhibitors in terms of drug discovery, binding mechanism, and their potency and selectivity against EGFR harboring C797S mutations. Lastly, we provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China.,School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Lulu Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China.,School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , China
| |
Collapse
|
18
|
Juchum M, Günther M, Döring E, Sievers-Engler A, Lämmerhofer M, Laufer S. Trisubstituted Imidazoles with a Rigidized Hinge Binding Motif Act As Single Digit nM Inhibitors of Clinically Relevant EGFR L858R/T790M and L858R/T790M/C797S Mutants: An Example of Target Hopping. J Med Chem 2017; 60:4636-4656. [DOI: 10.1021/acs.jmedchem.7b00178] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Michael Juchum
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marcel Günther
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Eva Döring
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Adrian Sievers-Engler
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department
of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Lung Cancer: EGFR Inhibitors with Low Nanomolar Activity against a Therapy-Resistant L858R/T790M/C797S Mutant. Angew Chem Int Ed Engl 2016; 55:10890-4. [DOI: 10.1002/anie.201603736] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/27/2016] [Indexed: 01/25/2023]
|
20
|
Perego LA, Grimaud L, Bellina F. Mechanistic Studies on the Palladium-Catalyzed Direct C-5 Arylation of Imidazoles: The Fundamental Role of the Azole as a Ligand for Palladium. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Li Q, Chen YM, Hu YG, Luo X, Ko JKS, Cheung CW. Synthesis and biological activity of fused furo[2,3-d]pyrimidinone derivatives as analgesic and antitumor agents. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2064-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Ribeiro AI, Gabriel C, Cerqueira F, Maia M, Pinto E, Sousa JC, Medeiros R, Proença MF, Dias AM. Synthesis and antimicrobial activity of novel 5-aminoimidazole-4-carboxamidrazones. Bioorg Med Chem Lett 2014; 24:4699-4702. [PMID: 25193230 DOI: 10.1016/j.bmcl.2014.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022]
Abstract
A mild and simple method was developed to prepare a series of fifteen 5-aminoimidazole 4-carboxamidrazones, starting from the easily accessible 5-amino-4-cyanoformimidoyl imidazoles. The antimicrobial activity of these novel amidrazones was screened against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and Candida sp. (Candida albicans, Candida krusei, Candida parapsilosis). Only a subset of compounds displayed fair-moderate activity against S. aureus and E. coli but all exhibited activity against Candida sp. The three most potent antifungal compounds were further tested against Cryptococcus neoformans, Aspergillus fumigatus and three dermatophytes (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum). These three hit compounds strongly inhibited C. krusei and C. neoformans growth, although their activity on filamentous fungi was very weak when compared to the activity on yeasts.
Collapse
Affiliation(s)
- Ana I Ribeiro
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Carla Gabriel
- FP-ENAS/CEBIMED, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Fátima Cerqueira
- FP-ENAS/CEBIMED, University Fernando Pessoa, 4200-150 Porto, Portugal; CEQUIMED/Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal.
| | - Marta Maia
- CEQUIMED/Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, 4050-123 Porto, Portugal
| | - Eugénia Pinto
- CEQUIMED/Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, 4050-123 Porto, Portugal
| | - João Carlos Sousa
- FP-ENAS/CEBIMED, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Rui Medeiros
- FP-ENAS/CEBIMED, University Fernando Pessoa, 4200-150 Porto, Portugal; Molecular Oncology GRP and Molecular Biology Laboratory-Virology Service, Portuguese Institute of Oncology (IPO), 4200-072 Porto, Portugal
| | - M Fernanda Proença
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Alice M Dias
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Gehringer M, Pfaffenrot E, Bauer S, Laufer SA. Design and synthesis of tricyclic JAK3 inhibitors with picomolar affinities as novel molecular probes. ChemMedChem 2014; 9:277-81. [PMID: 24403205 DOI: 10.1002/cmdc.201300520] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 11/10/2022]
Abstract
The Janus kinase (JAK) signaling pathway is of particular importance in the pathology of inflammatory diseases and oncological disorders, and the inhibition of Janus kinase 3 (JAK3) with small molecules has proven to provide therapeutic immunosuppression. A novel class of tricyclic JAK inhibitors derived from the 3-methyl-1,6-dihydrodipyrrolo[2,3-b:2',3'-d]pyridine scaffold was designed based on the tofacitinib-JAK3 crystal structure by applying a rigidization approach. A convenient synthetic strategy to access the scaffold via an intramolecular Heck reaction was developed, and a small library of inhibitors was prepared and characterized using in vitro biochemical as well as cellular assays. IC50 values as low as 220 pM could be achieved with selectivity for JAK3 over other JAK family members. Both activity and selectivity were confirmed in a cellular STAT phosphorylation assay, providing also first-time data for tofacitinib. Our novel inhibitors may serve as tool compounds and useful probes to explore the role of JAK3 inhibition in pharmacodynamics studies.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen (Germany)
| | | | | | | |
Collapse
|
24
|
Gourdain S, Dairou J, Denhez C, Bui LC, Rodrigues-Lima F, Janel N, Delabar JM, Cariou K, Dodd RH. Development of DANDYs, new 3,5-diaryl-7-azaindoles demonstrating potent DYRK1A kinase inhibitory activity. J Med Chem 2013; 56:9569-85. [PMID: 24188002 DOI: 10.1021/jm401049v] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of 3,5-diaryl-1H-pyrrolo[2,3-b]pyridines were synthesized and evaluated for inhibition of DYRKIA kinase in vitro. Derivatives having hydroxy groups on the aryl moieties (2c, 2j-l) demonstrated high inhibitory potencies with Kis in the low nanomolar range. Their methoxy analogues were up to 100 times less active. Docking studies at the ATP binding site suggested that these compounds bind tightly to this site via a network of multiple H-bonds with the peptide backbone. None of the active compounds were cytotoxic to KB cells at 10(-6) M. Kinase profiling revealed that compound 2j showed 2-fold selectivity for DYRK1A with respect to DYRK2 and DYRK3.
Collapse
Affiliation(s)
- Stéphanie Gourdain
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, CNRS , Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bellina F, Lessi M, Manzini C. Mild Palladium-Catalyzed Regioselective Direct Arylation of Azoles Promoted by Tetrabutylammonium Acetate. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300704] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|