1
|
Gross LZF, Winkel AF, Galceran F, Schulze JO, Fröhner W, Cämmerer S, Zeuzem S, Engel M, Leroux AE, Biondi RM. Molecular insights into the regulatory landscape of PKC-related kinase-2 (PRK2/PKN2) using targeted small compounds. J Biol Chem 2024; 300:107550. [PMID: 39002682 PMCID: PMC11357854 DOI: 10.1016/j.jbc.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.
Collapse
Affiliation(s)
| | - Angelika F Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | | | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Wolfgang Fröhner
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Simon Cämmerer
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | | | - Ricardo M Biondi
- IBioBA-CONICET-MPSP, Buenos Aires, Argentina; Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
| |
Collapse
|
2
|
Leroux AE, Biondi RM. The choreography of protein kinase PDK1 and its diverse substrate dance partners. Biochem J 2023; 480:1503-1532. [PMID: 37792325 DOI: 10.1042/bcj20220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
3
|
Sacerdoti M, Gross LZF, Riley AM, Zehnder K, Ghode A, Klinke S, Anand GS, Paris K, Winkel A, Herbrand AK, Godage HY, Cozier GE, Süß E, Schulze JO, Pastor-Flores D, Bollini M, Cappellari MV, Svergun D, Gräwert MA, Aramendia PF, Leroux AE, Potter BVL, Camacho CJ, Biondi RM. Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein. Sci Signal 2023; 16:eadd3184. [PMID: 37311034 DOI: 10.1126/scisignal.add3184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.
Collapse
Affiliation(s)
- Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Karin Zehnder
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Abhijeet Ghode
- Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires C1405BWE, Argentina
| | - Ganesh Srinivasan Anand
- Biological Sciences, National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, Huck Institutes of the Life Sciences, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
| | - Kristina Paris
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Statistics, University of Pittsburgh, WWPH 1821, Pittsburgh, PA 15213, USA
| | - Angelika Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Amanda K Herbrand
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - H Yasmin Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Gyles E Cozier
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Evelyn Süß
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Daniel Pastor-Flores
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- KBI Biopharma, Technologielaan 8, B-3001 Leuven, Belgium
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
| | - María Victoria Cappellari
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Melissa A Gräwert
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Pedro F Aramendia
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
- Departamento de Química Inorgánica, Analítica y Química Física, FCEN, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Turberville A, Semple H, Davies G, Ivanov D, Holdgate GA. A perspective on the discovery of enzyme activators. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:419-427. [PMID: 36089246 DOI: 10.1016/j.slasd.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Enzyme activation remains a largely under-represented and poorly exploited area of drug discovery despite some key literature examples of the successful application of enzyme activators by various mechanisms and their importance in a wide range of therapeutic interventions. Here we describe the background nomenclature, present the current position of this field of drug discovery and discuss the challenges of hit identification for enzyme activation, as well as our perspectives on the approaches needed to overcome these challenges in early drug discovery.
Collapse
Affiliation(s)
- Antonia Turberville
- High-throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Hannah Semple
- High-throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Gareth Davies
- High-throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Delyan Ivanov
- High-throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Geoffrey A Holdgate
- High-throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom.
| |
Collapse
|
5
|
Kato A, Nakagome I, Yoshimura K, Kanekiyo U, Kishida M, Shinzawa K, Lu TT, Li YX, Nash RJ, Fleet GWJ, Tanaka N, Yu CY. Introduction of C-alkyl branches to L-iminosugars changes their active site binding orientation. Org Biomol Chem 2022; 20:7250-7260. [PMID: 35838176 DOI: 10.1039/d2ob01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 μM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Mana Kishida
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Nobutada Tanaka
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kato A, Nakagome I, Kanekiyo U, Lu TT, Li YX, Yoshimura K, Kishida M, Shinzawa K, Yoshida T, Tanaka N, Jia YM, Nash RJ, Fleet GWJ, Yu CY. 5-C-Branched Deoxynojirimycin: Strategy for Designing a 1-Deoxynojirimycin-Based Pharmacological Chaperone with a Nanomolar Affinity for Pompe Disease. J Med Chem 2022; 65:2329-2341. [DOI: 10.1021/acs.jmedchem.1c01673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Izumi Nakagome
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mana Kishida
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tomoki Yoshida
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Nobutada Tanaka
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J. Nash
- Institute of Biological, Environmental and Rural Sciences / Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Reyes-Alcaraz A, Y. Lucero Garcia-Rojas E, A. Bond R, K. McConnell B. Allosteric Modulators for GPCRs as a Therapeutic Alternative with High Potential in Drug Discovery. Mol Pharmacol 2020. [DOI: 10.5772/intechopen.91838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) consists of biological microprocessors that can activate multiple signaling pathways. Most GPCRs have an orthosteric pocket where the endogenous ligand(s) typically binds. Conversely, allosteric ligands bind to GPCRs at sites that are distinct from the orthosteric binding region and they modulate the response elicited by the endogenous ligand. Allosteric ligands can also switch the response of a GPCR after ligand binding to a unique signaling pathway, these ligands are termed biased allosteric modulators. Thus, the development of allosteric ligands opens new and multiple ways in which the signaling pathways of GPCRs can be manipulated for potential therapeutic benefit. Furthermore, the mechanisms by which allosteric ligands modulate the effects of endogenous ligands have provided new insights into the interactions between allosteric ligands and GPCRs. These new findings have a high potential to improve drug discovery and development and, therefore, creating the need for better screening methods for allosteric drugs to increase the chances of success in the development of allosteric modulators as lead clinical compounds.
Collapse
|
8
|
Abstract
:
Many catalysts were tested in asymmetric Michael additions in order to synthesize
enantioenriched products. One of the most common reaction types among the Michael
reactions is the conjugated addition of malonates to enones making it possible to investigate
the structure–activity relationship of the catalysts. The most commonly used Michael
acceptors are chalcone, substituted chalcones, chalcone derivatives, cyclic enones,
while typical donors may be dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, di-tert-butyl
and dibenzyl malonates. This review summarizes the most important enantioselective
catalysts applied in these types of reactions.
Collapse
Affiliation(s)
- Péter Bakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, 1521 Budapest, Hungary
| | - Tamás Nemcsok
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, 1521 Budapest, Hungary
| | - Zsolt Rapi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, 1521 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, 1521 Budapest, Hungary
| |
Collapse
|
9
|
Xu X, Chen Y, Fu Q, Ni D, Zhang J, Li X, Lu S. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem 2019; 34:361-374. [PMID: 30734603 PMCID: PMC6327997 DOI: 10.1080/14756366.2018.1553167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositide-dependent protein kinase-1 (PDK1) is an important protein in mediating the PI3K-AKT pathway and is thus identified as a promising target. The catalytic activity of PDK1 is tightly regulated by allosteric modulators, which bind to the PDK1 Interacting Fragment (PIF) pocket of the kinase domain that is topographically distinct from the orthosteric, ATP binding site. Allosteric modulators by attaching to the less conserved PIF-pocket have remarkable advantages such as higher selectivity, less side effect, and lower toxicity. Targeting allosteric PIF-pocket of PDK1 has become the focus of recent attention. In this review, we summarise the current advances in the structure-based discovery of PDK1 allosteric modulators. We will first present the three-dimensional structure of PDK1 and illustrate the allosteric regulatory mechanism of PDK1 through the modulation of the PIF-pocket. Then, the recent advances of PDK1 allosteric modulators targeting the PIF-pocket will be recapitulated detailly according to the structural similarity of allosteric modulators.
Collapse
Affiliation(s)
- Xinyuan Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Leroux AE, Biondi RM. Renaissance of Allostery to Disrupt Protein Kinase Interactions. Trends Biochem Sci 2019; 45:27-41. [PMID: 31690482 DOI: 10.1016/j.tibs.2019.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions often regulate the activity of protein kinases by allosterically modulating the conformation of the ATP-binding site. Bidirectional allostery implies that reverse modulation (i.e., from the ATP-binding site to the interaction and regulatory sites) must also be possible. Here, we review both the allosteric regulation of protein kinases and recent work describing how compounds binding at the ATP-binding site can promote or inhibit protein kinase interactions at regulatory sites via the reverse mechanism. Notably, the pharmaceutical industry has been developing compounds that bind to the ATP-binding site of protein kinases and potently disrupt protein-protein interactions between target protein kinases and their regulatory interacting partners. Learning to modulate allosteric processes will facilitate the development of protein-protein interaction modulators.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Department of Internal Medicine I, University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; DKTK German Cancer Consortium (DKTK), Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Bestgen B, Kufareva I, Seetoh W, Abell C, Hartmann RW, Abagyan R, Le Borgne M, Filhol O, Cochet C, Lomberget T, Engel M. 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. J Med Chem 2019; 62:1817-1836. [PMID: 30689946 DOI: 10.1021/acs.jmedchem.8b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC50 = 0.6 μM). Furthermore, 27 induced apoptosis and cell death in 786-O renal cell carcinoma cells (EC50 = 5 μM) and inhibited STAT3 activation even more potently than the ATP-competitive drug candidate CX-4945 (EC50 of 1.6 μM vs 5.3 μM). Notably, the potencies of our allosteric ligands to inhibit CK2 varied depending on the individual substrate. Altogether, the novel allosteric pocket was proved a druggable site, offering an excellent perspective to develop efficient and selective allosteric CK2 inhibitors.
Collapse
Affiliation(s)
- Benoît Bestgen
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France.,Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany.,Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Weiguang Seetoh
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Chris Abell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Rolf W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2.3, 66123 Saarbrücken , Germany
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Thierry Lomberget
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany
| |
Collapse
|
12
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Leroux AE, Gross LZF, Sacerdoti M, Biondi RM. Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:279-311. [PMID: 31707708 DOI: 10.1007/978-981-13-8719-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Wu Y, Zhou G, Meng Q, Tang X, Liu G, Yin H, Zhao J, Yang F, Yu Z, Luo Y. Visible Light-Induced Aerobic Epoxidation of α,β-Unsaturated Ketones Mediated by Amidines. J Org Chem 2018; 83:13051-13062. [PMID: 30285439 DOI: 10.1021/acs.joc.8b01710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An aerobic photoepoxidation of α,β-unsaturated ketones driven by visible light in the presence of tetramethylguanidine (3b), tetraphenylporphine (H2TPP), and molecular oxygen under mild conditions was revealed. The corresponding α,β-epoxy ketones were obtained in yields of up to 94% in 96 h. The reaction time was shortened to 4.6 h by flow synthesis. The mechanism related to singlet oxygen was supported by experiments and density functional theory (DFT) calculations.
Collapse
|
15
|
Fioravanti R, Desideri N, Carta A, Atzori EM, Delogu I, Collu G, Loddo R. Inhibitors of Yellow Fever Virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: Design, synthesis and antiviral evaluation. Eur J Med Chem 2017; 141:15-25. [DOI: 10.1016/j.ejmech.2017.09.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
|
16
|
Leroux AE, Schulze JO, Biondi RM. AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol 2017; 48:1-17. [PMID: 28591657 DOI: 10.1016/j.semcancer.2017.05.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
The group of AGC kinases consists of 63 evolutionarily related serine/threonine protein kinases comprising PDK1, PKB/Akt, SGK, PKC, PRK/PKN, MSK, RSK, S6K, PKA, PKG, DMPK, MRCK, ROCK, NDR, LATS, CRIK, MAST, GRK, Sgk494, and YANK, while two other families, Aurora and PLK, are the most closely related to the group. Eight of these families are physiologically activated downstream of growth factor signalling, while other AGC kinases are downstream effectors of a wide range of signals. The different AGC kinase families share aspects of their mechanisms of inhibition and activation. In the present review, we update the knowledge of the mechanisms of regulation of different AGC kinases. The conformation of the catalytic domain of many AGC kinases is regulated allosterically through the modulation of the conformation of a regulatory site on the small lobe of the kinase domain, the PIF-pocket. The PIF-pocket acts like an ON-OFF switch in AGC kinases with different modes of regulation, i.e. PDK1, PKB/Akt, LATS and Aurora kinases. In this review, we make emphasis on how the knowledge of the molecular mechanisms of regulation can guide the discovery and development of small allosteric modulators. Molecular probes stabilizing the PIF-pocket in the active conformation are activators, while compounds stabilizing the disrupted site are allosteric inhibitors. One challenge for the rational development of allosteric modulators is the lack of complete structural information of the inhibited forms of full-length AGC kinases. On the other hand, we suggest that the available information derived from molecular biology and biochemical studies can already guide screening strategies for the identification of innovative mode of action molecular probes and the development of selective allosteric drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Jörg O Schulze
- Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Arencibia JM, Fröhner W, Krupa M, Pastor-Flores D, Merker P, Oellerich T, Neimanis S, Schmithals C, Köberle V, Süß E, Zeuzem S, Stark H, Piiper A, Odadzic D, Schulze JO, Biondi RM. An Allosteric Inhibitor Scaffold Targeting the PIF-Pocket of Atypical Protein Kinase C Isoforms. ACS Chem Biol 2017; 12:564-573. [PMID: 28045490 DOI: 10.1021/acschembio.6b00827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a current and pressing need for improved cancer therapies. The use of small molecule kinase inhibitors and their application in combinatorial regimens represent an approach to personalized targeted cancer therapy. A number of AGC kinases, including atypical Protein Kinase C enzymes (PKCs), are validated drug targets for cancer treatment. Most drug development programs for protein kinases focus on the development of drugs that bind at the ATP-binding site. Alternatively, allosteric drugs have great potential for the development of future innovative drugs. However, the rational development of allosteric drugs poses important challenges because the compounds not only must bind to a given site but also must stabilize forms of the protein with a desired effect at a distant site. Here we describe the development of a new class of compounds targeting a regulatory site (PIF-pocket) present in the kinase domain and provide biochemical and crystallographic data showing that these compounds allosterically inhibit the activity of atypical PKCs. PS432, a representative compound, decreased the rate of proliferation of non-small cell lung cancer cells more potently than aurothiomalate, an atypical PKCι inhibitor currently under evaluation in clinical trials, and significantly reduced tumor growth without side effects in a mouse xenograft model. The druglike chemical class provides ample possibilities for the synthesis of derivative compounds, with the potential to allosterically modulate the activity of atypical PKCs and other kinases.
Collapse
Affiliation(s)
- Jose M. Arencibia
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Wolfgang Fröhner
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Magdalena Krupa
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Daniel Pastor-Flores
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Piotr Merker
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department
of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt am
Main, Germany
| | - Sonja Neimanis
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Christian Schmithals
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Verena Köberle
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Evelyn Süß
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Holger Stark
- Institut
für Pharmazeutische Chemie, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | - Albrecht Piiper
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dalibor Odadzic
- Institut
für Pharmazeutische Chemie, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | - Jörg O. Schulze
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ricardo M. Biondi
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Rapi Z, Grün A, Nemcsok T, Hessz D, Kállay M, Kubinyi M, Keglevich G, Bakó P. Crown ether derived from d-glucose as an efficient phase-transfer catalyst for the enantioselective Michael addition of malonates to enones. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wucherer-Plietker M, Merkul E, Müller TJ, Esdar C, Knöchel T, Heinrich T, Buchstaller HP, Greiner H, Dorsch D, Finsinger D, Calderini M, Bruge D, Grädler U. Discovery of novel 7-azaindoles as PDK1 inhibitors. Bioorg Med Chem Lett 2016; 26:3073-3080. [DOI: 10.1016/j.bmcl.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
20
|
Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur J Med Chem 2016; 112:48-59. [DOI: 10.1016/j.ejmech.2016.01.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
|
21
|
Kroon E, Schulze JO, Süß E, Camacho CJ, Biondi RM, Dömling A. Discovery of a Potent Allosteric Kinase Modulator by Combining Computational and Synthetic Methods. Angew Chem Int Ed Engl 2015; 54:13933-6. [PMID: 26385475 PMCID: PMC4721676 DOI: 10.1002/anie.201506310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/12/2015] [Indexed: 12/14/2022]
Abstract
The rational design of allosteric kinase modulators is challenging but rewarding. The protein kinase PDK1, which lies at the center of the growth-factor signaling pathway, possesses an allosteric regulatory site previously validated both in vitro and in cells. ANCHOR.QUERY software was used to discover a potent allosteric PDK1 kinase modulator. Using a recently published PDK1 compound as a template, several new scaffolds that bind to the allosteric target site were generated and one example was validated. The inhibitor can be synthesized in one step by multicomponent reaction (MCR) chemistry when using the ANCHOR.QUERY approach. Our results are significant because the outlined approach allows rapid and efficient scaffold hopping from known molecules into new easily accessible and biologically active ones. Based on increasing interest in allosteric-site drug discovery, we foresee many potential applications for this approach.
Collapse
Affiliation(s)
- Edwin Kroon
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl
| | - Jörg O Schulze
- Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
| | - Evelyn Süß
- Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
| | - Carlos J Camacho
- University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261 (USA)
| | - Ricardo M Biondi
- Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl.
| |
Collapse
|
22
|
Kroon E, Schulze JO, Süß E, Camacho CJ, Biondi RM, Dömling A. Discovery of a Potent Allosteric Kinase Modulator by Combining Computational and Synthetic Methods. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Edwin Kroon
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl
| | - Jörg O. Schulze
- Universitätsklinikum Frankfurt, Theodor‐Stern‐Kai 7, 60590 Frankfurt (Germany)
| | - Evelyn Süß
- Universitätsklinikum Frankfurt, Theodor‐Stern‐Kai 7, 60590 Frankfurt (Germany)
| | - Carlos J. Camacho
- University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261 (USA)
| | - Ricardo M. Biondi
- Universitätsklinikum Frankfurt, Theodor‐Stern‐Kai 7, 60590 Frankfurt (Germany)
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen (The Netherlands) http://www.drugdesign.nl
| |
Collapse
|
23
|
Andreotti G, Monticelli M, Cubellis MV. Looking for protein stabilizing drugs with thermal shift assay. Drug Test Anal 2015; 7:831-4. [PMID: 25845367 PMCID: PMC6681132 DOI: 10.1002/dta.1798] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 11/11/2022]
Abstract
Thermal shift assay can be used for the high-throughput screening of pharmacological chaperones. These drugs are small molecules that bind a mutant protein and stabilize it. We demonstrated the robustness, reproducibility and versatility of the method using two molecules that are in clinical trial for Fabry or Pompe disease, Deoxygalactonojirimycin and N-Butyldeoxynojirimycin, and their target enzymes, lysosomal alpha-galactosidaseA and alpha-glucosidase, as test cases. We assessed the influence of solvents and of scanning rate on the measures. We showed that a value that is equivalent to the melting temperature can be obtained by the first derivatives of raw data. We discuss the advantages of the method and the precaution to be taken in running the experiments.
Collapse
Affiliation(s)
| | - Maria Monticelli
- Istituto di Chimica Biomolecolare -CNR, Pozzuoli, Italy.,Dipartimento di Biologia, Università Federico II, Napoli, Italy
| | | |
Collapse
|
24
|
A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc Natl Acad Sci U S A 2014; 111:18590-5. [PMID: 25518860 DOI: 10.1073/pnas.1415365112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is great interest in developing selective protein kinase inhibitors by targeting allosteric sites, but these sites often involve protein-protein or protein-peptide interfaces that are very challenging to target with small molecules. Here we present a systematic approach to targeting a functionally conserved allosteric site on the protein kinase PDK1 called the PDK1-interacting fragment (PIF)tide-binding site, or PIF pocket. More than two dozen prosurvival and progrowth kinases dock a conserved peptide tail into this binding site, which recruits them to PDK1 to become activated. Using a site-directed chemical screen, we identified and chemically optimized ligand-efficient, selective, and cell-penetrant small molecules (molecular weight ∼ 380 Da) that compete with the peptide docking motif for binding to PDK1. We solved the first high-resolution structure of a peptide docking motif (PIFtide) bound to PDK1 and mapped binding energy hot spots using mutational analysis. We then solved structures of PDK1 bound to the allosteric small molecules, which revealed a binding mode that remarkably mimics three of five hot-spot residues in PIFtide. These allosteric small molecules are substrate-selective PDK1 inhibitors when used as single agents, but when combined with an ATP-competitive inhibitor, they completely suppress the activation of the downstream kinases. This work provides a promising new scaffold for the development of high-affinity PIF pocket ligands, which may be used to enhance the anticancer activity of existing PDK1 inhibitors. Moreover, our results provide further impetus for exploring the helix αC patches of other protein kinases as potential therapeutic targets even though they involve protein-protein interfaces.
Collapse
|
25
|
Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 2014; 6:541-61. [PMID: 24649957 DOI: 10.4155/fmc.13.216] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are involved in many essential cellular processes and their deregulation can lead to a variety of diseases, including cancer. The pharmaceutical industry has invested heavily in the identification of kinase inhibitors to modulate these disease-promoting pathways, resulting in several successful drugs. However, the field is challenging as it is difficult to identify novel selective inhibitors with good pharmacokinetic/pharmacodynamic properties. In addition, resistance to kinase inhibitor treatment frequently arises. The identification of non-ATP site targeting ('allosteric') inhibitors, the identification of kinase activators and the expansion of kinase target space to include the less studied members of the family, including atypical- and pseudo-kinases, are potential avenues to overcome these challenges. In this perspective, the opportunities and challenges of following these approaches and others will be discussed.
Collapse
|
26
|
Abdel-Halim M, Diesel B, Kiemer AK, Abadi AH, Hartmann RW, Engel M. Discovery and optimization of 1,3,5-trisubstituted pyrazolines as potent and highly selective allosteric inhibitors of protein kinase C-ζ. J Med Chem 2014; 57:6513-30. [PMID: 25058929 DOI: 10.1021/jm500521n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is increasing evidence that the atypical protein kinase C, PKCζ, might be a therapeutic target in pulmonary and hepatic inflammatory diseases. However, targeting the highly conserved ATP-binding pocket in the catalytic domain held little promise to achieve selective inhibition. In the present study, we introduce 1,3,5-trisubstituted pyrazolines as potent and selective allosteric PKCζ inhibitors. The rigid scaffold offered many sites for modification, all acting as hot spots for improving activity, and gave rise to sharp structure-activity relationships. Targeting of PKCζ in cells was confirmed by reporter gene assay, transfection assays, and Western blotting. The strongly reduced cell-free and cellular activities toward a PIF-pocket mutant of PKCζ suggested that the inhibitors most likely bound to the PIF-pocket on the kinase catalytic domain. Thus, using a rigidification strategy and by establishing and optimizing multiple molecular interactions with the binding site, we were able to significantly improve the potency of the previously reported PKCζ inhibitors.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, D-66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Zhang H, Neimanis S, Lopez-Garcia LA, Arencibia JM, Amon S, Stroba A, Zeuzem S, Proschak E, Stark H, Bauer AF, Busschots K, Jørgensen TJD, Engel M, Schulze JO, Biondi RM. Molecular mechanism of regulation of the atypical protein kinase C by N-terminal domains and an allosteric small compound. ACTA ACUST UNITED AC 2014; 21:754-65. [PMID: 24836908 DOI: 10.1016/j.chembiol.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/15/2014] [Accepted: 04/04/2014] [Indexed: 11/30/2022]
Abstract
Protein kinases play important regulatory roles in cells and organisms. Therefore, they are subject to specific and tight mechanisms of regulation that ultimately converge on the catalytic domain and allow the kinases to be activated or inhibited only upon the appropriate stimuli. AGC protein kinases have a pocket in the catalytic domain, the PDK1-interacting fragment (PIF)-pocket, which is a key mediator of the activation. We show here that helix αC within the PIF-pocket of atypical protein kinase C (aPKC) is the target of the interaction with its inhibitory N-terminal domains. We also provide structural evidence that the small compound PS315 is an allosteric inhibitor that binds to the PIF-pocket of aPKC. PS315 exploits the physiological dynamics of helix αC for its binding and allosteric inhibition. The results will support research on allosteric mechanisms and selective drug development efforts against PKC isoforms.
Collapse
Affiliation(s)
- Hua Zhang
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Sonja Neimanis
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Laura A Lopez-Garcia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Sabine Amon
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Adriana Stroba
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, 66041 Saarbrücken, Germany
| | - Stefan Zeuzem
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ewgen Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Holger Stark
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Angelika F Bauer
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Katrien Busschots
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, 66041 Saarbrücken, Germany
| | - Jörg O Schulze
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ricardo M Biondi
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
28
|
Abstract
Allostery is the most direct and efficient way for regulation of biological macromolecule function, ranging from the control of metabolic mechanisms to signal transduction pathways. Allosteric modulators target to allosteric sites, offering distinct advantages compared to orthosteric ligands that target to active sites, such as greater specificity, reduced side effects, and lower toxicity. Allosteric modulators have therefore drawn increasing attention as potential therapeutic drugs in the design and development of new drugs. In recent years, advancements in our understanding of the fundamental principles underlying allostery, coupled with the exploitation of powerful techniques and methods in the field of allostery, provide unprecedented opportunities to discover allosteric proteins, detect and characterize allosteric sites, design and develop novel efficient allosteric drugs, and recapitulate the universal features of allosteric proteins and allosteric modulators. In the present review, we summarize the recent advances in the repertoire of allostery, with a particular focus on the aforementioned allosteric compounds.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | |
Collapse
|
29
|
Ma X, Li Z, Liu F, Cao S, Rao H. Tetra-n-butylammonium Bromide: A Simple but Efficient Organocatalyst for Alcohol Oxidation under Mild Conditions. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1007-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Liu Y, Wang X, Wang X, He W. Highly enantioselective Michael addition of diethyl malonate to chalcones catalyzed by cinchona alkaloids-derivatived bifunctional tertiary amine-thioureas bearing multiple hydrogen-bonding donors. Org Biomol Chem 2014; 12:3163-6. [DOI: 10.1039/c4ob00203b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both enantiomers of diethyl 2-(3-oxo-1,3-arylpropyl)malonate are easily prepared by a highly enantioselective Michael addition of diethyl malonate with chalcones catalyzed by cinchona alkaloids-derivatived organocatalysts.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032, P. R. China
| | - Xie Wang
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032, P. R. China
| | - Xiaoyun Wang
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032, P. R. China
| | - Wei He
- Department of Chemistry
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032, P. R. China
| |
Collapse
|
32
|
Pastor-Flores D, Schulze JO, Bahí A, Giacometti R, Ferrer-Dalmau J, Passeron S, Engel M, Süß E, Casamayor A, Biondi RM. PIF-pocket as a target for C. albicans Pkh selective inhibitors. ACS Chem Biol 2013; 8:2283-92. [PMID: 23911092 DOI: 10.1021/cb400452z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases (e.g., Ypk, Tpk, Pkc1, and Sch9). Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals.
Collapse
Affiliation(s)
- Daniel Pastor-Flores
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Jörg O. Schulze
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Anna Bahí
- Departament de Bioquímica
i Biologia Molecular, Facultat de Veterinària, Universitat
Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina,
Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona,
Spain
| | - Romina Giacometti
- Cátedra de
Bioquímica,
Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE
Buenos Aires, Argentina
| | - Jofre Ferrer-Dalmau
- Departament de Bioquímica
i Biologia Molecular, Facultat de Veterinària, Universitat
Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina,
Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona,
Spain
| | - Susana Passeron
- Cátedra de
Bioquímica,
Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE
Buenos Aires, Argentina
| | - Matthias Engel
- Pharmaceutical and Medicinal
Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken,
Germany
| | - Evelyn Süß
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| | - Antonio Casamayor
- Departament de Bioquímica
i Biologia Molecular, Facultat de Veterinària, Universitat
Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina,
Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona,
Spain
| | - Ricardo M. Biondi
- Research Group PhosphoSites,
Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai
7, 60590 Frankfurt, Germany
| |
Collapse
|
33
|
Granchi C, Calvaresi EC, Tuccinardi T, Paterni I, Macchia M, Martinelli A, Hergenrother PJ, Minutolo F. Assessing the differential action on cancer cells of LDH-A inhibitors based on the N-hydroxyindole-2-carboxylate (NHI) and malonic (Mal) scaffolds. Org Biomol Chem 2013; 11:6588-96. [PMID: 23986182 DOI: 10.1039/c3ob40870a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A head-to-head study of representative examples of N-hydroxyindole-2-carboxylates (NHI) and malonic derivatives (Mal) as LDH-A inhibitors was conducted, comparing the enzyme inhibition potency, cellular uptake, reduction of lactate production in cancer cells and anti-proliferative activity. Among the compounds tested, methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (2, NHI-2), a methyl ester belonging to the NHI class, displayed optimal properties in the cell-based assays, proving to be an efficient anti-glycolytic agent against cancer cells.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca²⁺ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects.
Collapse
Affiliation(s)
- Ashok Kumar Grover
- Departments of Medicine and Biology, McMaster University, Hamilton, Ont., Canada
| |
Collapse
|
35
|
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
36
|
Medina JR. Selective 3-Phosphoinositide-Dependent Kinase 1 (PDK1) Inhibitors: Dissecting the Function and Pharmacology of PDK1. J Med Chem 2013; 56:2726-37. [DOI: 10.1021/jm4000227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús R. Medina
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|