1
|
Chen L, Tang H, Hu T, Wang J, Ouyang Q, Zhu X, Wang R, Huang W, Huang Z, Chen J. Three Ru(II) complexes modulate the antioxidant transcription factor Nrf2 to overcome cisplatin resistance. J Inorg Biochem 2024; 259:112666. [PMID: 39029397 DOI: 10.1016/j.jinorgbio.2024.112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Here, we designed, synthesized and characterized three new cyclometalated Ru(II) complexes, [Ru(phen)2(1-(4-Ph-Ph)-IQ)]+ (phen = 1,10-phenanthroline, IQ = isoquinoline, RuIQ9), [Ru(phen)2(1-(4-Ph-Ph)-7-OCH3-IQ)]+ (RuIQ10), and [Ru(phen)2(1-(4-Ph-Ph)-6,7-(OCH3)2-IQ)]+ (RuIQ11). The cytotoxicity experiments conducted on both 2D and 3D multicellular tumor spheroids (MCTSs) indicated that complexes RuIQ9-11 exhibited notably higher cytotoxicity against A549 and A549/DDP cells when compared to the ligands and precursor compounds as well as clinical cisplatin. Moreover, the Ru(II) complexes displayed low toxicity when tested on normal HBE cells in vitro and exposed to zebrafish embryos in vivo. In addition, complexes RuIQ9-11 could inhibit A549 and A549/DDP cell migration and proliferation by causing cell cycle arrest, mitochondrial dysfunction, and elevating ROS levels to induce apoptosis in these cells. Mechanistic studies revealed that RuIQ9-11 could suppress the expression of Nrf2 and its downstream antioxidant protein HO-1 by inhibiting Nrf2 gene transcription in drug-resistant A549/DDP cells. Simultaneously, they inhibited the expression of efflux proteins MRP1 and p-gp in drug-resistant cells, ensuring the accumulation of the complexes within the cells. This led to an increase in intracellular ROS levels in drug-resistant cells, ultimately causing damage and cell death, thus overcoming cisplatin resistance. More importantly, RuIQ11 could effectively inhibit the migration and proliferation of drug-resistant cells within zebrafish, addressing the issue of cisplatin resistance. Accordingly, the prepared Ru(II) complexes possess significant potential for development as highly effective and low-toxicity lung cancer therapeutic agents to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Lanmei Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Hong Tang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianling Hu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jie Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Rui Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenyong Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zunnan Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Jincan Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
2
|
Shang K, Montesdeoca N, Zhang H, Efanova E, Liang G, Ochs J, Karges J, Song H, Zhang L. Cobalt(III) prodrug-based nanomedicine for inducing immunogenic cell death and enhancing chemo-immunotherapy. J Control Release 2024; 373:493-506. [PMID: 39033985 DOI: 10.1016/j.jconrel.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Despite impressive advances in immune checkpoint blockade therapy, its efficacy as a standalone treatment remains limited. The influence of chemotherapeutic agents on tumor immunotherapy has progressively come to light in recent years, positioning them as promising contenders in the realm of combination therapy options for tumor immunotherapy. Herein, we present the rational design, synthesis, and biological evaluation of the first example of a Co(III) prodrug (Co2) capable of eliciting a localized cytotoxic effect while simultaneously inducing a systemic immune response via type II immunogenic cell death (ICD). To enhance its pharmacological properties, a glutathione-sensitive polymer was synthesized, and Co2 was encapsulated into polymeric nanoparticles (NP-Co2) to improve efficacy. Furthermore, NP-Co2 activates the GRP78/p-PERK/p-eIF2α/CHOP pathway, thereby inducing ICD in cancer cells. This facilitates the transformation of "cold tumors" into "hot tumors" and augments the effectiveness of the PD-1 monoclonal antibody (αPD-1). In essence, this nanomedicine, utilizing Co(III) prodrugs to induce ICD, provides a promising strategy to enhance chemotherapy and αPD-1 antibody-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Elizaveta Efanova
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jasmine Ochs
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China.
| |
Collapse
|
3
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
4
|
Kariyawasam RJ, Zibaseresht R, Polson MIJ, Houlihan JCC, Wikaira JL, Hartshorn RM. Synthesis of nitrogen mustards on cobalt(III). Dalton Trans 2023; 52:16364-16375. [PMID: 37867442 DOI: 10.1039/d3dt01634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Bis(bidentate) and bis(tridentate) Co(III) complexes of N-(2-hydroxyethyl)ethane-1,2-diamine (heen), 2-[(2-aminoethyl)amino]ethan-1-olate (heen-H), or N-(2-chloroethyl)ethane-1,2-diamine (ceen) ligands have been synthesised, and a range of reaction conditions established for their syntheses by different routes. They can all be ultimately derived from (OC-6-12')-[Co(heen)2(NO2)2]NO3 and provide access to the trans amine trans chloride nitrogen mustard complex, (OC-6-12')-[Co(ceen)2(Cl)2]Cl. Although complex isomeric mixtures were obtained from the reaction of (OC-6-12')-[Co(heen)2(NO2)2]NO3 under different reaction conditions, ultimately, the trans amine trans chlorido configuration around the Co(III) metal centre of the (OC-6-12')-[Co(ceen)2(Cl)2]Cl complex was favoured.
Collapse
Affiliation(s)
- Rasika J Kariyawasam
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Ramin Zibaseresht
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Noshahr, Iran
| | - Matthew I J Polson
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Joanna C C Houlihan
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Jan L Wikaira
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Richard M Hartshorn
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
5
|
Wyatt J, Chan YK, Hess M, Tavassoli M, Müller MM. Semisynthesis reveals apoptin as a tumour-selective protein prodrug that causes cytoskeletal collapse. Chem Sci 2023; 14:3881-3892. [PMID: 37035694 PMCID: PMC10074440 DOI: 10.1039/d2sc04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Apoptin is a small viral protein capable of inducing cell death selectively in cancer cells. Despite its potential as an anticancer agent, relatively little is known about its mechanism of toxicity and cancer-selectivity. Previous experiments suggest that cancer-selective phosphorylation modulates apoptin toxicity, although a lack of chemical tools has hampered the dissection of underlying mechanisms. Here, we describe structure-function studies with site-specifically phosphorylated apoptin (apoptin-T108ph) in living cells which revealed that Thr108 phosphorylation is the selectivity switch for apoptin toxicity. Mechanistic investigations link T108ph to actin binding, cytoskeletal disruption and downstream inhibition of anoikis-resistance as well as cancer cell invasion. These results establish apoptin as a protein pro-drug, selectively activated in cancer cells by phosphorylation, which disrupts the cytoskeleton and promotes cell death. We anticipate that this mechanism provides a framework for the design of next generation anticancer proteins with enhanced selectivity and potency.
Collapse
Affiliation(s)
- Jasmine Wyatt
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Yuen Ka Chan
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
| | - Mateusz Hess
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Mahvash Tavassoli
- Department of Molecular Oncology, King's College London Guy's Hospital Campus, Hodgkin Building London SE1 1UL UK
| | - Manuel M Müller
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
6
|
Rahman ML, Sarjadi MS, Sarkar SM, Walsh DJ, Hannan JJ. Poly(hydroxamic acid) resins and their applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
8
|
Amarsy I, Papot S, Gasser G. Stimuli‐Responsive Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202205900. [DOI: 10.1002/anie.202205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ivanna Amarsy
- Chimie ParisTech PSL University, CNRS Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) Université de Poitiers, CNRS Equipe Labellisée Ligue Contre le Cancer 4 rue Michel Brunet, TSA 51106 86073 Poitiers France
| | - Gilles Gasser
- Chimie ParisTech PSL University, CNRS Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
9
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
10
|
Amarsy I, Papot S, Gasser G. Stimuli‐Responsive Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivanna Amarsy
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris PSL University FRANCE
| | - Sébastien Papot
- Université de Poitiers: Universite de Poitiers Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) FRANCE
| | - Gilles Gasser
- Universite PSL Chimie ParisTech 11, rue Pierre et Marie Curie 75005 Paris FRANCE
| |
Collapse
|
11
|
Misawa-Suzuki T, Ikeda R, Komatsu R, Toriba R, Miyamoto R, Nagao H. Geometry and Electronic Structures of Cobalt(II) and Iron(III) Complexes Bearing Bis(2-pyridylmethyl)ether or Alkylbis(2-pyridylmethyl)amine. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Giriraj K, Mohamed Kasim MS, Balasubramaniam K, Thangavel SK, Venkatesan J, Suresh S, Shanmugam P, Karri C. Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: Synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kalaiarasi Giriraj
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Mohamed Subarkhan Mohamed Kasim
- The First Affiliated Hospital; Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou PR China
| | - Keerthana Balasubramaniam
- Department of Microbiology Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
| | - Janani Venkatesan
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Sharmila Suresh
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Pritha Shanmugam
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Chiranjeevi Karri
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| |
Collapse
|
13
|
Chen L, Wang J, Cai X, Chen S, Zhang J, Li B, Chen W, Guo X, Luo H, Chen J. Cyclometalated Ru(II)-isoquinoline complexes overcome cisplatin resistance of A549/DDP cells by downregulation of Nrf2 via Akt/GSK-3β/Fyn pathway. Bioorg Chem 2021; 119:105516. [PMID: 34856444 DOI: 10.1016/j.bioorg.2021.105516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/03/2023]
Abstract
Both ruthenium (Ru) and isoquinoline (IQ) compounds are regarded as potential anticancer drug candidates. Here, we report the synthesis and characterization of three novel cyclometalated Ru(II)-isoquinoline complexes: RuIQ-3, RuIQ-4, and RuIQ-5, and evaluation of their in vitro cytotoxicities against a panel of cell lines including A549/DDP, a cisplatin-resistant human lung cancer cell line. A549/DDP 3D multicellular tumor spheroids (MCTSs) were also used to detect the drug resistance reversal effect of Ru(II)-IQ complexes. Our results indicated that the cytotoxic activities against cancer cells of Ru(II)-IQ complexes, especially RuIQ-5, were superior compared with cisplatin. In addition, RuIQ-5 exhibited low toxicity towards both normal HBE cells in vitro and zebrafish embryos in vivo. Further investigation on cellular mechanism of action indicated that after absorption by A549/DDP cells, RuIQ-5 was mainly distributed in the nucleus, which is different from cisplatin. Besides, RuIQ-5 could induce apoptosis through mitochondrial dysfunction, reactive oxygen species (ROS) accumulation, ROS-mediated DNA damage, and cycle arrest at both S and G2/M phases. Moreover, RuIQ-5 could inhibit the overexpression of Nrf2 through regulation of Akt/GSK-3β/Fyn signaling pathway and hindering the nuclear translocation of Nrf2. Based on these findings, we firmly believe that the studied Ru(II)-IQ complexes hold great promise as anticancer therapeutics with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Jie Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Xianhong Cai
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Baojun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Weigang Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| | - Jincan Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
14
|
Mathuber M, Gutmann M, La Franca M, Vician P, Laemmerer A, Moser P, Keppler BK, Berger W, Kowol CR. Development of a cobalt(iii)-based ponatinib prodrug system. Inorg Chem Front 2021; 8:2468-2485. [PMID: 34046181 PMCID: PMC8129988 DOI: 10.1039/d1qi00211b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase inhibitors have become a central part of modern targeted cancer therapy. However, their curative potential is distinctly limited by both rapid resistance development and severe adverse effects. Consequently, tumor-specific drug activation based on prodrug designs, exploiting tumor-specific properties such as hypoxic oxygen conditions, is a feasible strategy to widen the therapeutic window. After proof-of-principal molecular docking studies, we have synthesized two cobalt(iii) complexes using a derivative of the clinically approved Abelson (ABL) kinase and fibroblast growth factor receptor (FGFR) inhibitor ponatinib. Acetylacetone (acac) or methylacetylacetone (Meacac) have been used as ancillary ligands to modulate the reduction potential. The ponatinib derivative, characterized by an ethylenediamine moiety instead of the piperazine ring, exhibited comparable cell-free target kinase inhibition potency. Hypoxia-dependent release of the ligand from the cobalt(iii) complexes was proven by changed fluorescence properties, enhanced downstream signaling inhibition and increased in vitro anticancer activity in BCR-ABL- and FGFR-driven cancer models. Respective tumor-inhibiting in vivo effects in the BCR-ABL-driven K-562 leukemia model were restricted to the cobalt(iii) complex with the higher reduction potential and confirmed in a FGFR-driven urothelial carcinoma xenograft model. Summarizing, we here present for the first time hypoxia-activatable prodrugs of the clinically approved tyrosine kinase inhibitor ponatinib and a correlation of the in vivo activity with their reduction potential.
Collapse
Affiliation(s)
- Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Mery La Franca
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo via Archirafi 32 90123 Palermo Italy
| | - Petra Vician
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Anna Laemmerer
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|
15
|
Glenister A, Chen CKJ, Paterson DJ, Renfrew AK, Simone MI, Hambley TW. Warburg Effect Targeting Co(III) Cytotoxin Chaperone Complexes. J Med Chem 2021; 64:2678-2690. [PMID: 33621096 DOI: 10.1021/acs.jmedchem.0c01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A glucose-based vector for targeting cancer cells conjugated to a tris(methylpyridyl)amine (tpa) ligand to generate targeted chaperone and caging complexes for active anticancer agents is described. The ligand, tpa(CONHPEGglucose)1, inhibits hexokinase, suggesting that it will be phosphorylated in the cell. A Co(III) complex incorporating this ligand and coumarin-343 hydroximate (C343ha), [Co(C343ha){tpa(CONHPEGglucose)1}]Cl, is shown to exhibit glucose-dependent cellular accumulation in DLD-1 colon cancer cells. Cellular accumulation of [Co(C343ha){tpa(CONHPEGglucose)1}]+ is slower than for the glucose null and glucosamine analogues, and the glucose complex also exhibits a lower ability to inhibit antiproliferative activity. Distributions of cobalt (X-ray fluorescence) and C343ha (visible light fluorescence) in DLD-1 cancer cell spheroids are consistent with uptake of [Co(C343ha){tpa(CONHPEGglucose)1}]+ by rapidly dividing cells, followed by release and efflux of C343ha and trapping of the Co{tpa(CONHPEGglucose)1} moiety. The Co{tpa(CONHPEGglucose)1} moiety is shown to have potential for the caged and targeted delivery of highly toxic anticancer agents.
Collapse
Affiliation(s)
| | - Catherine K J Chen
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Anna K Renfrew
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| | - Michela I Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Trevor W Hambley
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
16
|
Bravin C, Badetti E, Licini G, Zonta C. Tris(2-pyridylmethyl)amines as emerging scaffold in supramolecular chemistry. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
A kinetic study and mechanisms of reduction of N, N'-phenylene bis(salicyalideneiminato)cobalt(III) by L-ascorbic acid in DMSO-water medium. Heliyon 2020; 6:e04621. [PMID: 32939409 PMCID: PMC7479326 DOI: 10.1016/j.heliyon.2020.e04621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
The kinetics of reduction of N, N1-phenylenebis-(salicylideneiminato)cobalt (III), referred to as [Co(Salophen)]+ by L-ascorbic acid (H2A) was studied in mixed aqueous medium (DMSO:H2O; 1:4 v/v) under pseudo-first-order conditions at 33 ± 1 °C, μ = 0.1 mol dm−3 (NaCl) and λmax = 470 nm. L-ascorbic acid was oxidized to dehydroascorbic acid with kinetics that was first order in both the [H2A] and [Co(Salophen)+] and second-order overall. The reaction involves two parallel reaction pathways; an acid-dependent and the inverse acid-dependent pathways. The inverse acid pathway shows that there is a pre-equilibrium step before the rate determining-step in which a proton is lost. The kinetics followed negative Brønsted–Debye salt effect. Evidence was obtained for the presence of free radicals but none to support the formation of an intermediate complex of significant stability during the reaction. Overall, the data obtained suggest an outer-sphere mechanism for the reaction. A plausible mechanism is proposed.
Collapse
|
18
|
Yang Y, Wang Y, Xu L, Chen T. Dual-functional Se/Fe complex facilitates TRAIL treatment against resistant tumor cells via modulating cellular endoplasmic reticulum stress. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020; 15:955-967. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Solid tumors are highly influenced by a complex tumor microenvironment (TME) that cannot be modeled with conventional two-dimensional (2D) cell culture. In addition, monolayer culture conditions tend to induce undesirable molecular and phenotypic cellular changes. The discrepancy between in vitro and in vivo is an important factor accounting for the high failure rate in drug development. Three-dimensional (3D) multicellular tumor spheroids (MTS) more closely resemble the in vivo situation in avascularized tumors. AREAS COVERED This review describes the use of MTS for anti-cancer drug discovery, with an emphasis on high-throughput screening (HTS) compatible assays. In particular, we focus on how these assays can be used for target discovery in the context of the TME. EXPERT OPINION Arrayed MTS in microtiter plates are HTS compatible but remain more expensive and time consuming than their 2D culture counterpart. It is therefore imperative to use assays with multiplexed readouts, in order to maximize the information that can be gained with the screen. In this context, high-content screening allowing to uncover microenvironmental dependencies is the true added value of MTS-based screening compared to 2D culture-based screening. Hit translation in animal models will, however, be key to allow a broader use of MTS-based screening in industry.
Collapse
Affiliation(s)
- Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland.,Department of Biology, Debiopharm , Lausanne, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
20
|
Zou BQ, Huang XL, Qin QP, Wang ZF, Wu XY, Tan MX, Liang H. Transition metal complexes with 6,7-dichloro-5,8-quinolinedione as mitochondria-targeted anticancer agents. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Eccles N, della Sala F, Le Bailly BAF, Whitehead GFS, Clayden J, Webb SJ. Molecular Recognition by Zn(II)-Capped Dynamic Foldamers. ChemistryOpen 2020; 9:338-345. [PMID: 32195074 PMCID: PMC7080544 DOI: 10.1002/open.201900362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Indexed: 11/29/2022] Open
Abstract
Two α-aminoisobutyric acid (Aib) foldamers bearing Zn(II)-chelating N-termini have been synthesized and compared with a reported Aib foldamer that has a bis(quinolinyl)/mono(pyridyl) cap (BQPA group). Replacement of the quinolinyl arms of the BQPA-capped foldamer with pyridyl gave a BPPA-capped foldamer, then further replacement of the linking pyridyl with a 1,2,3-triazole gave a BPTA-capped foldamer. Their ability to relay chiral information from carboxylate bound to Zn(II) at the N-terminus to a glycinamide-based NMR reporter of conformational preference at the C-terminus was measured. The importance of the quinolinyl arms became readily apparent, as the foldamers with pyridyl arms were unable to report on the presence of chiral carboxylate in acetonitrile. Low solubility, X-ray crystallography and 1H NMR spectroscopy suggested that interfoldamer interactions inhibited carboxylate binding. However changing solvent to methanol revealed that the end-to-end relay of chiral information could be observed for the Zn(II) complex of the BPTA-capped foldamer at low temperature.
Collapse
Affiliation(s)
- Natasha Eccles
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StManchesterM1 7DNUK
| | - Flavio della Sala
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StManchesterM1 7DNUK
| | - Bryden A. F. Le Bailly
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Jonathan Clayden
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Simon J. Webb
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StManchesterM1 7DNUK
| |
Collapse
|
22
|
Śmiłowicz D, Metzler-Nolte N. Bioconjugates of Co(III) complexes with Schiff base ligands and cell penetrating peptides: Solid phase synthesis, characterization and antiproliferative activity. J Inorg Biochem 2020; 206:111041. [PMID: 32120161 DOI: 10.1016/j.jinorgbio.2020.111041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
Abstract
In this work we synthesized a chelating Schiff base by a single condensation of salicylaldehyde with 3,4-diamino benzoic acid (1). This ligand was used further for complexation to CoCl2·6H2O under nitrogen. In the next step, three six-coordinate Co(III) complexes were synthesized by coordinating this complex with imidazole (2), 2-methyimidazole (3) and N-Boc-l-histidine methyl ester (4) (Boc: tert.-butoxycarbonyl) in axial positions with simultaneous oxidation of Co(II) to Co(III) under ambient environment. All Co(III) complexes were characterized by multinuclear NMR spectroscopy (1H, 13C and 59Co NMR), FT-IR, mass spectrometry and HPLC. The Co(III) complexes were conjugated to three different cell penetrating peptides: FFFF (P1), RRRRRRRRRGAL (P2) and FFFFRRRRRRRRRGAL (P3). Standard solid-phase peptide chemistry was used for the synthesis of cell penetrating peptides. Coupling of N-terminal peptides with the cobalt complexes, possessing a carboxylic group on the tetradentate Schiff base ligand, afforded Co(III)-peptide bioconjugates, which were purified by semi-preparative HPLC and characterized by analytical HPLC and mass spectrometry. The antiproliferative activity of the synthesized compounds was studied against different human tumour cell lines: lung cancer A549, liver cancer HepG2 and normal human fibroblasts GM5657T, in comparison with the activity of cisplatin as a reference drug. The bioconjugate 21 containing the Co complex 4 and the combined phenylalanine and polyarginine cell penetrating sequence P3 shows better activity against the liver cancer line HepG2 than the parent Co(III) complex 4.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
23
|
Meng T, Qin QP, Zou HH, Wang K, Liang FP. Eighteen 5,7-Dihalo-8-quinolinol and 2,2'-Bipyridine Co(II) Complexes as a New Class of Promising Anticancer Agents. ACS Med Chem Lett 2019; 10:1603-1608. [PMID: 31857834 PMCID: PMC6912862 DOI: 10.1021/acsmedchemlett.9b00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
![]()
Here
we first report the design of a series of bis-chelate Co(II) 5,7-dihalo-8-quinolinol-phenanthroline
derivative complexes, [Co(py)(QL1)2] (Co1),
[Co(py)(QL2)2] (Co2), [Co(Phen)(QL1)2] (Co3), [Co(Phen)(QL2)2] (Co4), [Co(DPQ)(QL1)2]·(CH3OH)4 (Co5), [Co(DPQ)(QL2)2] (Co6), [Co(DPPZ)(QL1)2]·CH3OH (Co7), [Co(MDP)(QL1)2]·3H2O (Co8), [Co(ODP)(QL1)2]·CH3OH (Co9), [Co(PPT)(QL1)2]·CH3OH (Co10), [Co(ClPT)(QL1)2] (Co11), [Co(dpy)(QL3)2] (Co12), [Co(mpy)(QL1)2] (Co13), [Co(Phen)(QL4)2] (Co14), [Co(ODP)(QL4)2] (Co15), [Co(mpy)(QL4)2]I (Co16), [Co(ClPT)(QL4)2] (Co17), and
[Co(ClPT)(QL5)2] (Co18), with 5,7-dihalo-8-quinolinol
and 2,2′-bipyridine mixed ligands. The antitumor activity of Co1–Co18 has been evaluated against human
HeLa (cervical) cancer cells in vitro (IC50 values = 0.8 nM–11.88 μM), as well as in vivo against HeLa xenograft tumor growth (TIR = 43.7%, p < 0.05). Importantly, Co7 exhibited high safety in vivo and was more effective in inhibiting HeLa tumor
xenograft growth (43.7%) than cisplatin (35.2%) under the same conditions
(2.0 mg/kg). In contrast, the H-QL1 and DPPZ ligands greatly enhanced
the activity and selectivity of Co7 in comparison to Co1–Co6, Co8–Co18, and previously reported cobalt(II) compounds. In addition, Co7 (0.8 nM) inhibited telomerase activity, caused G2/M phase
arrest, and induced mitochondrial dysfunction at a concentration 5662.5
times lower than Co1 (4.53 μM) in related assays.
Taken together, Co7 showed low toxicity, and the combination
could be a novel Co(II) antitumor compound candidate.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
24
|
Zarei L, Asadi Z, Samolova E, Dusek M. Preparation of a dimer from self-complementary of cobalt(III) complex with dissymmetric compartmental ligand and study of the interaction of the complex with DNA and BSA. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1694148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Leila Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Asadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Erika Samolova
- Institute of Physics, ASCR, Prague, Czech Republic
- Department of Inorganic Chemistry, Pavol Jozef Šafárik University in Košice, Slovak Republic Košice
| | - Michal Dusek
- Institute of Physics, ASCR, Prague, Czech Republic
| |
Collapse
|
25
|
Zheng P, Eskandari A, Lu C, Laws K, Aldous L, Suntharalingam K. Biophysical analysis of cancer stem cell-potent copper(ii) coordination complexes. Dalton Trans 2019; 48:5892-5896. [PMID: 30632590 DOI: 10.1039/c8dt04706e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copper(ii) coordination complexes, 1 and 2, containing nonsteroidal anti-inflammatory drugs (NSAIDs) potently kill breast cancer stem cells (CSCs) and bulk breast cancer cells. Although detailed biological studies have been conducted to shed light on their mechanism of cytotoxicity, little is known about their molecular level mechanism of action. This biophysical study, aided by the preparation of a fluorophore-containing analogue, 3, reveals that the complexes operate by undergoing reduction to a copper(i) form and releasing the associated NSAIDs.
Collapse
Affiliation(s)
- Puyi Zheng
- Department of Chemistry, King's College London, London, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Areas ES, de Assunção Paiva JL, Ribeiro FV, Pereira TM, Kummerle AE, Silva H, Guedes GP, Cellis do Nascimento AC, da Silva Miranda F, Neves AP. Redox-Activated Drug Delivery Properties and Cytotoxicity of Cobalt Complexes Based on a Fluorescent Coumarin-β-Keto Ester Hybrid. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Esther Saraiva Areas
- Instituto de Química; Universidade Federal Rural do Rio de Janeiro; BR-465, Km 7 Seropédica CEP 23890-000 Rio de Janeiro Brasil
| | | | - Felipe Vitório Ribeiro
- Instituto de Química; Universidade Federal Rural do Rio de Janeiro; BR-465, Km 7 Seropédica CEP 23890-000 Rio de Janeiro Brasil
| | - Thiago Moreira Pereira
- Instituto de Química; Universidade Federal Rural do Rio de Janeiro; BR-465, Km 7 Seropédica CEP 23890-000 Rio de Janeiro Brasil
| | - Arthur Eugen Kummerle
- Instituto de Química; Universidade Federal Rural do Rio de Janeiro; BR-465, Km 7 Seropédica CEP 23890-000 Rio de Janeiro Brasil
| | - Heveline Silva
- Departamento de Química; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 - Pampulha Belo Horizonte Minas Gerais CEP 31270-901 Brasil
| | - Guilherme Pereira Guedes
- Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho, Centro, Niterói Rio de Janeiro CEP 24020-150 Brasil
| | | | - Fabio da Silva Miranda
- Instituto de Química; Universidade Federal Fluminense; Campus do Valonguinho, Centro, Niterói Rio de Janeiro CEP 24020-150 Brasil
| | - Amanda Porto Neves
- Instituto de Química; Universidade Federal Rural do Rio de Janeiro; BR-465, Km 7 Seropédica CEP 23890-000 Rio de Janeiro Brasil
| |
Collapse
|
27
|
Wang Y, Shang W, Niu M, Tian J, Xu K. Hypoxia-active nanoparticles used in tumor theranostic. Int J Nanomedicine 2019; 14:3705-3722. [PMID: 31190820 PMCID: PMC6535445 DOI: 10.2147/ijn.s196959] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a hallmark of malignant tumors and often correlates with increasing tumor aggressiveness and poor treatment outcomes. Therefore, early diagnosis and effective killing of hypoxic tumor cells are crucial for successful tumor control. There has been a surge of interdisciplinary research aimed at developing functional molecules and nanomaterials that can be used to noninvasively image and efficiently treat hypoxic tumors. These mainly include hypoxia-active nanoparticles, anti-hypoxia agents, and agents that target biomarkers of tumor hypoxia. Hypoxia-active nanoparticles have been intensively investigated and have demonstrated advanced effects on targeting tumor hypoxia. In this review, we present an overview of the reports published to date on hypoxia-activated prodrugs and their nanoparticle forms used in tumor-targeted therapy. Hypoxia-responsive nanoparticles are inactive during blood circulation and normal physiological conditions but are activated by hypoxia once they extravasate into the hypoxic tumor microenvironment. Their use can enhance the efficiency of tumor chemotherapy, radiotherapy, fluorescence and photoacoustic intensity, and other imaging and therapeutic strategies. By targeting the broad habitats of tumors, rather than tumor-specific receptors, this strategy has the potential to overcome the problem of tumor heterogeneity and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.,Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenting Shang
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Tian
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Institute of Medical Interdisciplinary Innovation, Beihang University, Beijing, 100080, People's Republic of China
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Transporter and protease mediated delivery of platinum complexes for precision oncology. J Biol Inorg Chem 2019; 24:457-466. [DOI: 10.1007/s00775-019-01660-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023]
|
29
|
King AP, Gellineau HA, MacMillan SN, Wilson JJ. Physical properties, ligand substitution reactions, and biological activity of Co(iii)-Schiff base complexes. Dalton Trans 2019; 48:5987-6002. [PMID: 30672949 PMCID: PMC6504617 DOI: 10.1039/c8dt04606a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four cobalt(iii) complexes of the general formula [Co(Schiff base)(L)2]+, where L is ammonia (NH3) or 3-fluorobenzylamine (3F-BnNH2), were synthesized. The complexes were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Their electrochemical properties, ligand substitution mechanisms, and ligand exchange rates in aqueous buffer were investigated. These physical properties were correlated to the cellular uptake and anticancer activities of the complexes. The complexes undergo sequential, dissociative ligand substitution, with the exchange rates depending heavily on the axial ligands. Eyring analyses revealed that the relative ligand exchange rates were largely impacted by differences in the entropy, rather than enthalpy, of activation for the complexes. Performing the substitution reactions in the presence of ascorbate led to a change in the reaction profile and kinetics, but no change in the final product. The cytotoxic activity of the complexes correlates with both the ligand exchange rate and reduction potential, with the more easily reduced and rapidly substituted complexes showing higher toxicity. These relationships may be valuable for the rational design of Co(iii) complexes as anticancer or antiviral prodrugs.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
30
|
Liang J, Levina A, Jia J, Kappen P, Glover C, Johannessen B, Lay PA. Reactivity and Transformation of Antimetastatic and Cytotoxic Rhodium(III)–Dimethyl Sulfoxide Complexes in Biological Fluids: An XAS Speciation Study. Inorg Chem 2019; 58:4880-4893. [DOI: 10.1021/acs.inorgchem.8b03477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun Liang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junteng Jia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Kappen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Chris Glover
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Bernt Johannessen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
31
|
Syntheses, crystal structures and biological evaluation of two new Cu(II) and Co(II) complexes based on (E)-2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-6-methoxyphenol. J Inorg Biochem 2019; 193:52-59. [DOI: 10.1016/j.jinorgbio.2019.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/20/2022]
|
32
|
Abstract
The availability of electrons to biological systems underpins the mitochondrial electron transport chain (ETC) that powers living cells. It is little wonder, therefore, that the sufficiency of electron supply is critical to cellular health. Considering mitochondrial redox activity alone, a lack of oxygen (hypoxia) leads to impaired production of adenosine triphosphate (ATP), the major energy currency of the cell, whereas excess oxygen (hyperoxia) is associated with elevated production of reactive oxygen species (ROS) from the interaction of oxygen with electrons that have leaked from the ETC. Furthermore, the redox proteome, which describes the reversible and irreversible redox modifications of proteins, controls many aspects of biological structure and function. Indeed, many major diseases, including cancer and diabetes, are now termed "redox diseases", spurring much interest in the measurement and monitoring of redox states and redox-active species within biological systems. In this Account, we describe recent efforts to develop magnetic resonance (MR) and fluorescence imaging probes for studying redox biology. These two classes of molecular imaging tools have proved to be invaluable in supplementing the structural information that is traditionally provided by MRI and fluorescence microscopy, respectively, with highly sensitive chemical information. Importantly, the study of biological redox processes requires sensors that operate at biologically relevant reduction potentials, which can be achieved by the use of bioinspired redox-sensitive groups. Since oxidation-reduction reactions are so crucial to modulating cellular function and yet also have the potential to damage cellular structures, biological systems have developed highly sophisticated ways to regulate and sense redox changes. There is therefore a plethora of diverse chemical structures in cells with biologically relevant reduction potentials, from transition metals to organic molecules to proteins. These chemical groups can be harnessed in the development of exogenous molecular imaging agents that are well-tuned to biological redox events. To date, small-molecule redox-sensitive tools for oxidative stress and hypoxia have been inspired from four classes of cellular regulators. The redox-sensitive groups found in redox cofactors, such as flavins and nicotinamides, can be used as reversible switches in both fluorescent and MR probes. Enzyme substrates that undergo redox processing within the cell can be modified to provide fluorescence or MR readout while maintaining their selectivity. Redox-active first-row transition metals are central to biological homeostasis, and their marked electronic and magnetic changes upon oxidation/reduction have been used to develop MR sensors. Finally, redox-sensitive amino acids, particularly cysteine, can be utilized in both fluorescent and MR sensors.
Collapse
Affiliation(s)
- Amandeep Kaur
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
33
|
You Y, Wang N, He L, Shi C, Zhang D, Liu Y, Luo L, Chen T. Designing dual-functionalized carbon nanotubes with high blood–brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 2019; 48:1569-1573. [PMID: 30499579 DOI: 10.1039/c8dt03948h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein we synthesize a cell penetrating peptide- and cancer-targeted molecule-functionalized multi-walled carbon nanotube for precise orthotopic glioma therapy.
Collapse
Affiliation(s)
- Yuanyuan You
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Ni Wang
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Lizhen He
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Changzheng Shi
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Dong Zhang
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yiyong Liu
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Liangping Luo
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital
- and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
34
|
Bright lights down under: Metal ion complexes turning the spotlight on metabolic processes at the cellular level. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Synthesis, characterization and antimicrobial activities of Co(III) and Ni(II) complexes with 5-methyl-3-formylpyrazole-N(4)-dihexylthiosemicarbazone (HMPzNHex2): X-ray crystallography and DFT calculations of [Co(MPzNHex2)2]ClO4·1.5H2O (I) and [Ni(HMPzNHex2)2]Cl2·2H2O (II). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Renfrew AK, O'Neill ES, Hambley TW, New EJ. Harnessing the properties of cobalt coordination complexes for biological application. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Zeng Y, Ma J, Zhan Y, Xu X, Zeng Q, Liang J, Chen X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine 2018; 13:6551-6574. [PMID: 30425475 PMCID: PMC6202002 DOI: 10.2147/ijn.s173431] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is one of the marked features of malignant tumors, which is associated with several adaptation changes in the microenvironment of tumor cells. Therefore, targeting tumor hypoxia is a research hotspot for cancer therapy. In this review, we summarize the developing chemotherapeutic drugs for targeting hypoxia, including quinones, nitroaromatic/nitroimidazole, N-oxides, and transition metal complexes. In addition, redox-responsive bonds, such as nitroimidazole groups, azogroups, and disulfide bonds, are frequently used in drug delivery systems for targeting the redox environment of tumors. Both hypoxia-activated prodrugs and redox-responsive drug delivery nanocarriers have significant effects on targeting tumor hypoxia for cancer therapy. Hypoxia-activated prodrugs are commonly used in clinical trials with favorable prospects, while redox-responsive nanocarriers are currently at the experimental stage.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jingwen Ma
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| |
Collapse
|
38
|
Synthesis and Characterization of trans-Dichlorotetrakis(imidazole)cobalt(III) Chloride: A New Cobalt(III) Coordination Complex with Potential Prodrug Properties. Bioinorg Chem Appl 2018; 2018:4560757. [PMID: 30254666 PMCID: PMC6140278 DOI: 10.1155/2018/4560757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Numerous therapies for the treatment of cancer have been explored with increasing evidence that the use of metal-containing compounds could prove advantageous as anticancer therapeutics. Previous works on Ru(III) complexes suggest that structurally similar Co(III) complexes may provide good alternative, low-cost, effective prodrugs. Herein, a new complex, trans-[Co(imidazole)4Cl2]Cl (2), has been synthesized in high yields utilizing ligand exchange under refluxing conditions. The structure of 2 has been characterized by elemental analysis, 1H and 13C·NMR, ESI-MS, CV, and UV-Vis. The ability of 2 to become reduced in the presence of ascorbic acid was probed demonstrating the likely reduction of the Co(III) metal center to Co(II). In addition, preliminary cell line testing on 2 shows a lack of cytotoxicity.
Collapse
|
39
|
Schnaars C, Kildahl-Andersen G, Prandina A, Popal R, Radix S, Le Borgne M, Gjøen T, Andresen AMS, Heikal A, Økstad OA, Fröhlich C, Samuelsen Ø, Lauksund S, Jordheim LP, Rongved P, Åstrand OAH. Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors. ACS Infect Dis 2018; 4:1407-1422. [PMID: 30022668 DOI: 10.1021/acsinfecdis.8b00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of antimicrobial resistance (AMR) worldwide and the increasing spread of multi-drug-resistant organisms expressing metallo-β-lactamases (MBL) require the development of efficient and clinically available MBL inhibitors. At present, no such inhibitor is available, and research is urgently needed to advance this field. We report herein the development, synthesis, and biological evaluation of chemical compounds based on the selective zinc chelator tris-picolylamine (TPA) that can restore the bactericidal activity of Meropenem (MEM) against Pseudomonas aeruginosa and Klebsiella pneumoniae expressing carbapenemases Verona integron-encoded metallo-β-lactamase (VIM-2) and New Delhi metallo-β-lactamase 1 (NDM-1), respectively. These adjuvants were prepared via standard chemical methods and evaluated in biological assays for potentiation of MEM against bacteria and toxicity (IC50) against HepG2 human liver carcinoma cells. One of the best compounds, 15, lowered the minimum inhibitory concentration (MIC) of MEM by a factor of 32-256 at 50 μM within all tested MBL-expressing clinical isolates and showed no activity toward serine carbapenemase expressing isolates. Biochemical assays with purified VIM-2 and NDM-1 and 15 resulted in inhibition kinetics with kinact/ KI of 12.5 min-1 mM-1 and 0.500 min-1 mM-1, respectively. The resistance frequency of 15 at 50 μM was in the range of 10-7 to 10-9. 15 showed good tolerance in HepG2 cells with an IC50 well above 100 μM, and an in vivo study in mice showed no acute toxic effects even at a dose of 128 mg/kg.
Collapse
Affiliation(s)
| | | | - Anthony Prandina
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | | | - Sylvie Radix
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de
Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry,
SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 69373 Lyon Cedex 8, France
| | | | | | - Adam Heikal
- Centre for Integrative
Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Ole Andreas Økstad
- Centre for Integrative
Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Christopher Fröhlich
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- NorStruct, Department of Chemistry, Faculty of Science and Technology,
SIVA Innovation Centre, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Pharmacy, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| | - Silje Lauksund
- Norwegian National
Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Lars Petter Jordheim
- Université Lyon, Université Claude Bernard Lyon 1, INSERM
1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche
en Cancérologie de Lyon, Lyon 69008, France
| | | | | |
Collapse
|
40
|
Co(III) complexes based on α-N-heterocyclic thiosemicarbazone ligands: DNA binding, DNA cleavage, and topoisomerase I/II inhibitory activity studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Glenister A, Chen CKJ, Tondl EM, Paterson D, Hambley TW, Renfrew AK. Targeting curcumin to specific tumour cell environments: the influence of ancillary ligands. Metallomics 2018; 9:699-705. [PMID: 28488704 DOI: 10.1039/c6mt00275g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumour-activation of prodrugs has the potential to improve the efficacy of anticancer agents while minimising systemic toxicity. Cobalt complexes are of interest in this respect as chaperones to deliver and release anticancer agents in the low oxygen, reducing environment of solid tumours. In addition to being able to release a cytotoxic ligand under the conditions of the tumour microenvironment, it is fundamental that the chaperone complex must also be able to penetrate through multiple cell layers to deliver the cytotoxin to all regions of the tumour. Herein, we report an investigation of the distribution and metabolism of two chaperone complexes of the anticancer agent curcumin within monolayer tumour cells and multicellular tumour spheroids. Using a combination of X-ray fluorescence microscopy, confocal fluorescence microscopy, and X-ray absorption spectroscopy, we demonstrate how the nature of the chaperone complex can profoundly influence the cellular uptake, distribution, and release mechanism of curcumin, providing key insights into the design of this class of prodrug.
Collapse
Affiliation(s)
- A Glenister
- School of Chemistry, University of Sydney, New South Wales, 2006, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Buglyó P, Kacsir I, Kozsup M, Nagy I, Nagy S, Bényei AC, Kováts É, Farkas E. Tuning the redox potentials of ternary cobalt(III) complexes containing various hydroxamates. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Zhang C, Sutherland M, Herasymchuk K, Clarke RM, Thompson JR, Chiang L, Walsby CJ, Storr T. Octahedral Co(III) salen complexes: the role of peripheral ligand electronics on axial ligand release upon reduction. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of octahedral CoIII salen complexes (where salen represents a N2O2 bis-Schiff-base bis-phenolate framework) were prepared with axial imidazole ligating groups. When using 1-methylimidazole (1-MeIm) axial ligands, the CoIII/CoII reduction potential could be altered by 220 mV via variation of the electron-donating ability of the para-ring substituents (R = H (1), OMe (2), tBu (3), Br (4), NO2 (5), and CF3 (6)). In addition, the irreversibility of the reduction process suggested substantial geometrical changes and axial ligand exchange upon reduction to the more labile CoII oxidation state. Installing an imidazole-coumarin conjugate as the axial ligands resulted in fluorescence quenching when bound to the CoIII centre (R = H (7), OMe (8), and CF3 (9)). The redox properties and fluorescence increase upon ligand release for 7–9 were studied under reducing conditions and in the presence of excess competing ligand (1-MeIm). It was determined that the Lewis acidity of the CoIII centre was the dominant factor in controlling axial ligand exchange for this series of complexes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mathew Sutherland
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Khrystyna Herasymchuk
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ryan M. Clarke
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John R. Thompson
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
44
|
Kolanowski JL, Liu F, New EJ. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem Soc Rev 2018; 47:195-208. [DOI: 10.1039/c7cs00528h] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review identifies and discusses fluorescent sensors that are capable of simultaneously reporting on the presence of two analytes for biological application.
Collapse
Affiliation(s)
- Jacek L. Kolanowski
- School of Chemistry
- The University of Sydney
- Australia
- Institute of Bio-organic Chemistry
- Polish Academy of Sciences
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangdong
- People's Republic of China
| | | |
Collapse
|
45
|
Areas ES, Bronsato BJDS, Pereira TM, Guedes GP, Miranda FDS, Kümmerle AE, da Cruz AGB, Neves AP. Novel Co III complexes containing fluorescent coumarin-N-acylhydrazone hybrid ligands: Synthesis, crystal structures, solution studies and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:130-142. [PMID: 28683368 DOI: 10.1016/j.saa.2017.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/05/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
A series of new CoIII complexes of the type [Co(dien)(L1-L3)]ClO4 (1-3), containing fluorescent coumarin-N-acylhydrazonate hybrid ligands, (E)-N'-(1-(7-oxido-2-oxo-2H-chromen-3-yl)ethylidene)-4-R-benzohydrazonate [where R=H (L12-), OCH3 (L22-) or Cl (L32-)], were obtained and isolated in the low spin CoIII configuration. Single-crystal X-ray diffraction showed that the coumarin-N-acylhydrazones act as tridentate ligands in their deprotonated form (L2-). The cation (+1) complexes contain a diethylenetriamine (dien) as auxiliary ligand and their structures were calculated by DFT studies which were also performed for the CoII (S=1/2 and S=3/2) configurations. The LS CoII (S=1/2) concentrated the spin density on the O-Co-O axis while the HS CoII (S=3/2) exhibited a broad spin density distribution around the metallic center. Cyclic voltammetry studies showed that structural modifications made in the L2- ligands caused a slight influence on the electronic density of the metal center, and the E1/2 values for the CoIII/CoII redox couple increased following the electronic effect of the R-substituent, in the order: 2 (R=OCH3)<1 (R=H)<3 (R=Cl). The theoretical redox potentials (E°) of the process CoIII→CoII were calculated for both CoII spin states (S=1/2 and S=3/2) and a better correlation was found for CoIII→CoII (S=1/2), compared with experimental values vs SHE (E°calc=-0.37, -0.36 and -0.32V vs E°exp.=-0.371, -0.406 and -0.358V, for 1-3 respectively). Complexes 1-3 exhibited a very intense absorption band around 470nm, assigned by DFT calculations as π-π* transitions from the delocalized coumarin-N-acylhydrazone system. 1-3 were very stable in MeOH for several days. Likewise, 1-3 were stable in phosphate buffer containing sodium ascorbate after 15h, which was attributed to the high chelate effect and σ-donor ability of the L2- and dien ligands.
Collapse
Affiliation(s)
- Esther S Areas
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil
| | - Bruna Juliana da S Bronsato
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil
| | - Thiago M Pereira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil
| | - Guilherme P Guedes
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil
| | - Fábio da S Miranda
- Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói, RJ, Brazil
| | - Arthur E Kümmerle
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil
| | - Antônio G B da Cruz
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil
| | - Amanda P Neves
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Campus de Seropédica, BR-465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|
46
|
O'Neill ES, Kaur A, Bishop DP, Shishmarev D, Kuchel PW, Grieve SM, Figtree GA, Renfrew AK, Bonnitcha PD, New EJ. Hypoxia-Responsive Cobalt Complexes in Tumor Spheroids: Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Magnetic Resonance Imaging Studies. Inorg Chem 2017; 56:9860-9868. [PMID: 28766939 DOI: 10.1021/acs.inorgchem.7b01368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dense tumors are resistant to conventional chemotherapies due to the unique tumor microenvironment characterized by hypoxic regions that promote cellular dormancy. Bioreductive drugs that are activated in response to this hypoxic environment are an attractive strategy for therapy with anticipated lower harmful side effects in normoxic healthy tissue. Cobalt bioreductive pro-drugs that selectively release toxic payloads upon reduction in hypoxic cells have shown great promise as anticancer agents. However, the bioreductive response in the tumor microenvironment must be better understood, as current techniques for monitoring bioreduction to Co(II) such as X-ray absorption near-edge structure and extended X-ray absorption fine structure provide limited information on speciation and require synchrotron radiation sources. Here, we present magnetic resonance imaging (MRI) as an accessible and powerful technique to monitor bioreduction by treating the cobalt complex as an MRI contrast agent and monitoring the change in water signal induced by reduction from diamagnetic Co(III) to paramagnetic Co(II). Cobalt pro-drugs built upon the tris(2-pyridylmethyl)amine ligand scaffold with varying charge were investigated for distribution and activity in a 3D tumor spheroid model by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and MRI. In addition, paramagnetic 1H NMR spectroscopy of spheroids enabled determination of the speciation of activated Co(II)TPAx complexes. This study demonstrates the utility of MRI and associated spectroscopy techniques for understanding bioreductive cobalt pro-drugs in the tumor microenvironment and has broader implications for monitoring paramagnetic metal-based therapies.
Collapse
Affiliation(s)
- Edward S O'Neill
- School of Chemistry, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Amandeep Kaur
- School of Chemistry, University of Sydney , Sydney, New South Wales 2006, Australia
| | - David P Bishop
- Elemental Bio-imaging Facility, University of Technology Sydney , Thomas Street, Broadway, New South Wales 2007, Australia
| | - Dmitry Shishmarev
- School of Life and Environmental Sciences, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, University of Sydney , Camperdown, New South Wales 2006, Australia.,Department of Radiology, Royal Prince Alfred Hospital , Camperdown, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney , Camperdown, New South Wales 2006, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, University of Sydney , St Leonards, New South Wales 2065, Australia.,Cardiology Department, Royal North Shore Hospital , St Leonards, New South Wales 2065, Australia
| | - Anna K Renfrew
- School of Chemistry, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Paul D Bonnitcha
- Sydney Medical School, University of Sydney , Camperdown, New South Wales 2006, Australia.,Chemical Pathology Department, Royal Prince Alfred Hospital , Campderdown, Sydney, New South Wales 2050, Australia
| | - Elizabeth J New
- School of Chemistry, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Zhu H, Zhou B, Chan L, Du Y, Chen T. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy. Int J Nanomedicine 2017; 12:5023-5038. [PMID: 28761342 PMCID: PMC5516881 DOI: 10.2147/ijn.s139207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.
Collapse
Affiliation(s)
- Hai Zhu
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yanxin Du
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| | - Tianfeng Chen
- Department of Internal Medicine and Orthopedics, Guangdong Provincial Hospital of Traditional Chinese Medicine
| |
Collapse
|
48
|
King AP, Gellineau HA, Ahn JE, MacMillan SN, Wilson JJ. Bis(thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorg Chem 2017; 56:6609-6623. [PMID: 28509538 PMCID: PMC8113979 DOI: 10.1021/acs.inorgchem.7b00710] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nine bis(thiosemicarbazone) (BTSC) cobalt(III) complexes of the general formula [Co(BTSC)(L)2]NO3 were synthesized, where BTSC = diacetyl bis(thiosemicarbazone) (ATS), pyruvaldehyde bis(thiosemicarbazone) (PTS), or glyoxal bis(thiosemicarbazone) (GTS) and L = ammonia, imidazole (Im), or benzylamine (BnA). These compounds were characterized by multinuclear NMR spectroscopy, mass spectrometry, cyclic voltammetry, and X-ray crystallography. Their stability in phosphate-buffered saline was investigated and found to be highly dependent on the nature of the axial ligand, L. These studies revealed that complex stability is primarily dictated by the axial ligand following the sequence NH3 > Im > BnA. The cellular uptake and cytotoxicity in cancer cells were also determined. Both the cellular uptake and cytotoxicity were significantly affected by the nature of the equatorial BTSC. Complexes of ATS were taken up much more effectively than those of PTS and GTS. The cytotoxicity of the complexes was correlated to that of the free ligand. Cell uptake and cytotoxicity were also determined under hypoxic conditions. Only minor differences in the hypoxia activity and uptake were observed. Treatment of the cancer cells with the copper-depleting agent tetrathiomolybdate decreased the cytotoxic potency of the complexes, indicating that they may operate via a copper-dependent mechanism. These results provide a structure-activity relationship for this class of compounds, which may be applied for the rational design of new cobalt(III) anticancer agents.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Hendryck A. Gellineau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jung-Eun Ahn
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
49
|
Affiliation(s)
- Pingyu Zhang
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| |
Collapse
|
50
|
Garcia CV, Parrilha GL, Rodrigues BL, Barbeira PJ, Clarke RM, Storr T, Beraldo H. Cobalt(III) complexes with 2-acetylpyridine-derived Schiff bases: Studies investigating ligand release upon reduction. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|