1
|
M. Ro̷rsted E, Jensen AA, Smits G, Frydenvang K, Kristensen JL. Discovery and Structure-Activity Relationships of 2,5-Dimethoxyphenylpiperidines as Selective Serotonin 5-HT 2A Receptor Agonists. J Med Chem 2024; 67:7224-7244. [PMID: 38648420 PMCID: PMC11089506 DOI: 10.1021/acs.jmedchem.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) are showing promising results in clinical trials for a range of psychiatric indications, including depression, anxiety, and substance abuse disorder. These compounds are characterized by broad pharmacological activity profiles, and while the acute mind-altering effects can be ascribed to their shared agonist activity at the serotonin 2A receptor (5-HT2AR), their apparent persistent therapeutic effects are yet to be decidedly linked to activity at this receptor. We report herein the discovery of 2,5-dimethoxyphenylpiperidines as a novel class of selective 5-HT2AR agonists and detail the structure-activity investigations leading to the identification of LPH-5 [analogue (S)-11] as a selective 5-HT2AR agonist with desirable drug-like properties.
Collapse
Affiliation(s)
- Emil M. Ro̷rsted
- Lophora, Charlottenlund, Copenhagen 2920, Denmark
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken
2, Copenhagen Ø 2100, Denmark
| | - Anders A. Jensen
- Lophora, Charlottenlund, Copenhagen 2920, Denmark
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken
2, Copenhagen Ø 2100, Denmark
| | - Gints Smits
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga 1006, Latvia
| | - Karla Frydenvang
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken
2, Copenhagen Ø 2100, Denmark
| | - Jesper L. Kristensen
- Lophora, Charlottenlund, Copenhagen 2920, Denmark
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken
2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
2
|
Kumar S, Arora A, Singh SK, Kumar R, Shankar B, Singh BK. Phenyliodine bis(trifluoroacetate) as a sustainable reagent: exploring its significance in organic synthesis. Org Biomol Chem 2024; 22:3109-3185. [PMID: 38529599 DOI: 10.1039/d3ob01964k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iodine-containing molecules, especially hypervalent iodine compounds, have gained significant attention in organic synthesis. They are valuable and sustainable reagents, leading to a remarkable surge in their use for chemical transformations. One such hypervalent iodine compound, phenyliodine bis(trifluoroacetate)/bis(trifluoroacetoxy)iodobenzene, commonly referred to as PIFA, has emerged as a prominent candidate due to its attributes of facile manipulation, moderate reactivity, low toxicity, and ready availability. PIFA presents an auspicious prospect as a substitute for costly organometallic catalysts and environmentally hazardous oxidants containing heavy metals. PIFA exhibits remarkable catalytic activity, facilitating an array of consequential organic reactions, including sulfenylation, alkylarylation, oxidative coupling, cascade reactions, amination, amidation, ring-rearrangement, carboxylation, and numerous others. Over the past decade, the application of PIFA in synthetic chemistry has witnessed substantial growth, necessitating an updated exploration of this field. In this discourse, we present a concise overview of PIFA's applications as a 'green' reagent in the domain of synthetic organic chemistry. A primary objective of this article is to bring to the forefront the scientific community's awareness of the merits associated with adopting PIFA as an environmentally conscientious alternative to heavy metals.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India.
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur-842002, India
| | - Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
3
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
4
|
Kiilerich KF, Lorenz J, Scharff MB, Speth N, Brandt TG, Czurylo J, Xiong M, Jessen NS, Casado-Sainz A, Shalgunov V, Kjaerby C, Satała G, Bojarski AJ, Jensen AA, Herth MM, Cumming P, Overgaard A, Palner M. Repeated low doses of psilocybin increase resilience to stress, lower compulsive actions, and strengthen cortical connections to the paraventricular thalamic nucleus in rats. Mol Psychiatry 2023; 28:3829-3841. [PMID: 37783788 DOI: 10.1038/s41380-023-02280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Psilocybin (a classic serotonergic psychedelic drug) has received appraisal for use in psychedelic-assisted therapy of several psychiatric disorders. A less explored topic concerns the use of repeated low doses of psychedelics, at a dose that is well below the psychedelic dose used in psychedelic-assisted therapy and often referred to as microdosing. Psilocybin microdose users frequently report increases in mental health, yet such reports are often highly biased and vulnerable to placebo effects. Here we establish and validate a psilocybin microdose-like regimen in rats with repeated low doses of psilocybin administration at a dose derived from occupancy at rat brain 5-HT2A receptors in vivo. The rats tolerated the repeated low doses of psilocybin well and did not manifest signs of anhedonia, anxiety, or altered locomotor activity. There were no deficits in pre-pulse inhibition of the startle reflex, nor did the treatment downregulate or desensitize the 5-HT2A receptors. However, the repeated low doses of psilocybin imparted resilience against the stress of multiple subcutaneous injections, and reduced the frequency of self-grooming, a proxy for human compulsive actions, while also increasing 5-HT7 receptor expression and synaptic density in the paraventricular nucleus of the thalamus. These results establish a well-validated regimen for further experiments probing the effects of repeated low doses of psilocybin. Results further substantiate anecdotal reports of the benefits of psilocybin microdosing as a therapeutic intervention, while pointing to a possible physiological mechanism.
Collapse
Affiliation(s)
- Kat F Kiilerich
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joe Lorenz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Malthe B Scharff
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias G Brandt
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Julia Czurylo
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mengfei Xiong
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Naja S Jessen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Agata Casado-Sainz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Agnete Overgaard
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.
- Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
5
|
Yao R, Jensen AA, Bryce-Rogers HP, Schultz-Knudsen K, Zhou L, Hovendal NP, Pedersen H, Kubus M, Ulven T, Laraia L. Identification of 5-HT2 Serotonin Receptor Modulators through the Synthesis of a Diverse, Tropane- and Quinuclidine-alkaloid-Inspired Compound Library. J Med Chem 2023; 66:11536-11554. [PMID: 37566000 DOI: 10.1021/acs.jmedchem.3c01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.
Collapse
Affiliation(s)
- Ruwei Yao
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hogan P Bryce-Rogers
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Katrine Schultz-Knudsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nicklas P Hovendal
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Henrik Pedersen
- Medicinal Chemistry, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Mariusz Kubus
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
6
|
Tetrahydroazepines with an annulated five-membered heteroaromatic ring. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yasui M, Inoue M, Nakao K, Takeda N, Ueda M. Sc(OTf) 3-Catalyzed Iodocyclization/Ritter-Type Amidation of N-Alkoxypropiolamides: A Synthetic Strategy for Isoxazol-3(2 H)-ones. J Org Chem 2021; 86:15498-15508. [PMID: 34670082 DOI: 10.1021/acs.joc.1c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Sc(OTf)3-catalyzed iodocyclization/Ritter-type amidation of N-alkoxypropiolamides for the synthesis of 4-iodoisoxazol-3(2H)-ones bearing an amide group has been developed. This domino protocol allows the construction of a valuable heterocycle, isoxazol-3(2H)-one, as well as the introduction of two functional groups. The reaction has a broad substrate scope and can be carried out on a large scale. Control experiments suggest that Sc(OTf)3 acts as a dual activator for both the iodocyclization and amidation steps. In addition, the N-alkoxy group in the substrate suppresses some of the side reactions.
Collapse
Affiliation(s)
- Motohiro Yasui
- Kobe Pharmaceutical University Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Maki Inoue
- Kobe Pharmaceutical University Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Kotone Nakao
- Kobe Pharmaceutical University Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Norihiko Takeda
- Kobe Pharmaceutical University Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
8
|
Kumar P, Keshri SK, Kapur M. Ru(II)-Catalyzed, Cu(II)-mediated carbene migratory insertion in the synthesis of trisubstituted pyrroles from isoxazoles. Org Biomol Chem 2021; 19:3428-3433. [PMID: 33899880 DOI: 10.1039/d1ob00255d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A convenient, "one-pot" synthesis of trisubstituted pyrroles via a Ru(ii)-catalyzed, Cu(ii)-mediated reaction of substituted isoxazoles with sulfonylhydrazones has been developed. A series of highly functionalized pyrroles are obtained via a synergistic formation of new C-C and C-N bonds. Mechanistic investigations were carried out to propose the plausible pathway. This protocol provides a facile and expeditious approach for the synthesis of various heterocyclic compounds bearing the pyrrole skeleton.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass road, Bhopal 462066, MP, India.
| | - Santosh Kumar Keshri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass road, Bhopal 462066, MP, India.
| |
Collapse
|
9
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
10
|
Li T, Rong W, Zhang T, Li J. Mechanism and Origins of Product Selectivity of Au‐Catalyzed Coupling Benzisoxazoles with Ynamides: A Computational Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ting Li
- Department of Chemistry College of Chemistry and Materials Science Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Wei Rong
- Department of Chemistry College of Chemistry and Materials Science Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Tian Zhang
- Department of Chemistry College of Chemistry and Materials Science Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Juan Li
- Department of Chemistry College of Chemistry and Materials Science Jinan University Guangzhou Guangdong 510632 P. R. China
| |
Collapse
|
11
|
Poulie CBM, Liu N, Jensen AA, Bunch L. Design, Synthesis, and Pharmacological Characterization of Heterobivalent Ligands for the Putative 5-HT 2A/mGlu 2 Receptor Complex. J Med Chem 2020; 63:9928-9949. [PMID: 32815361 DOI: 10.1021/acs.jmedchem.0c01058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the synthesis of the first series of heterobivalent ligands targeting the putative heteromeric 5-HT2A/mGlu2 receptor complex, based on the 5-HT2A antagonist MDL-100,907 and the mGlu2 ago-PAM JNJ-42491293. The functional properties of monovalent and heterobivalent ligands were characterized in 5-HT2A-, mGlu2/Gqo5-, 5-HT2A/mGlu2-, and 5-HT2A/mGlu2/Gqo5-expressing HEK293 cells using a Ca2+ imaging assay and a [3H]ketanserin binding assay. Pronounced functional crosstalk was observed between the two receptors in 5-HT2A/mGlu2 and 5-HT2A/mGlu2/Gqo5 cells. While the synthesized monovalent ligands retained the 5-HT2A antagonist and mGlu2 ago-PAM functionalities, the seven bivalent ligands inhibited 5-HT-induced responses in 5-HT2A/mGlu2 cells and both 5-HT- and Glu-induced responses in 5-HT2A/mGlu2/Gqo5 cells. However, no definitive correlation between the functional potency and spacer length of the ligands was observed, an observation substantiated by the binding affinities exhibited by the compounds in 5-HT2A, 5-HT2A/mGlu2, and 5-HT2A/mGlu2/Gqo5 cells. In conclusion, while functional crosstalk between 5-HT2A and mGlu2 was demonstrated, it remains unclear how these heterobivalent ligands interact with the putative receptor complex.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| |
Collapse
|
12
|
Ye LW, Zhu XQ, Sahani RL, Xu Y, Qian PC, Liu RS. Nitrene Transfer and Carbene Transfer in Gold Catalysis. Chem Rev 2020; 121:9039-9112. [PMID: 32786423 DOI: 10.1021/acs.chemrev.0c00348] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic transformations involving metal carbenes are considered one of the most important aspects of homogeneous transition metal catalysis. Recently, gold-catalyzed generation of gold carbenes from readily available alkynes represents a significant advance in metal carbene chemistry. This Review summarizes the advances in the gold-catalyzed nitrene-transfer reactions of alkynes with nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils, and gold-catalyzed carbene-transfer reactions, involving oxygen atom-transfer reactions of alkynes with nitro compounds, nitrones, sulfoxides, and pyridine N-oxides, through the presumable α-imino gold carbene and α-oxo gold carbene intermediates, respectively. Gold-catalyzed processes are reviewed by highlighting their product diversity, selectivity, and applicability, and the mechanistic rationale is presented where possible.
Collapse
Affiliation(s)
- Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rajkumar Lalji Sahani
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
13
|
Kumar P, Kapur M. Ruthenium(II)‐ and Copper(II)‐Mediated Synthesis of Trisubstituted Pyrroles from Isoxazoles and Acrylate Esters. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pravin Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| |
Collapse
|
14
|
Marcher-Rørsted E, Halberstadt AL, Klein AK, Chatha M, Jademyr S, Jensen AA, Kristensen JL. Investigation of the 2,5-Dimethoxy Motif in Phenethylamine Serotonin 2A Receptor Agonists. ACS Chem Neurosci 2020; 11:1238-1244. [PMID: 32212672 DOI: 10.1021/acschemneuro.0c00129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 2,5-dimethoxyphenethylamine (2,5-PEA) scaffold is recognized as a motif conferring potent agonist activity at the serotonin 2A receptor (5-HT2AR). The 2,5-dimethoxy motif is present in several classical phenethylamine psychedelics such as 2,4,5- trimethoxyamphetamine (TMA-2), 2,5-dimethoxy-4-methylamphetamine (DOM), 2,5-dimethoxy-4-iodoamphetamine (DOI), 2,5- dimethoxy-4-bromoamphetamine (DOB), 2,5-dimethoxy-4-bromophenethylamine (2C-B), and 2,5-dimethoxy-4-iodophenethylamine (2C-I), and it has previously been suggested that this structural motif is essential for 5-HT2AR activation. In the present study, we present data that challenges this assumption. The 2- and 5-desmethoxy derivatives of 2C-B and DOB were synthesized, and their pharmacological profiles were evaluated in vitro at 5-HT2AR and 5-HT2CR in binding and functional assays and in vivo by assessing their induction of the head-twitch response in mice. Elimination of either the 2- or 5-methoxy group leads to a modest drop in binding affinity and functional potency at 5-HT2AR and 5-HT2CR, which was more pronounced upon removal of the 2-methoxy group. However, this trend was not mirrored in vivo, as removal of either methoxy group resulted in significant reduction in the ability of the compounds to induce the head-twitch response in mice. Thus, the 2,5-dimethoxyphenethylamine motif appears to be important for in vivo potency of phenethylamine 5-HT2AR agonists, but this does not correlate to the relative affinity and potency of the ligands at the recombinant 5-HT2AR.
Collapse
Affiliation(s)
- Emil Marcher-Rørsted
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla 92093, California
| | - Adam K. Klein
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla 92093, California
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla 92093, California
| | - Simon Jademyr
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper L. Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Jensen AA, Halberstadt AL, Märcher-Rørsted E, Odland AU, Chatha M, Speth N, Liebscher G, Hansen M, Bräuner-Osborne H, Palner M, Andreasen JT, Kristensen JL. The selective 5-HT 2A receptor agonist 25CN-NBOH: Structure-activity relationship, in vivo pharmacology, and in vitro and ex vivo binding characteristics of [ 3H]25CN-NBOH. Biochem Pharmacol 2020; 177:113979. [PMID: 32298690 DOI: 10.1016/j.bcp.2020.113979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/10/2020] [Indexed: 01/16/2023]
Abstract
The remarkable effects exhibited by classical psychedelics in recent clinical trials have spawned considerable interest in 5-HT2A receptor (5-HT2AR) activation as a treatment strategy for several psychiatric/cognitive disorders. In this study we have continued our development of 25CN-NBOH, one of the most 5-HT2AR-selective agonists reported to date, as a pharmacological tool for exploration of 5-HT2AR expression and functions. The importance of the 2' and 3' positions in 25CN-NBOH as structural hotspots for its 5-HT2AR activity was investigated by synthesis and pharmacological characterization of six novel analogs at 5-HT2AR and 5-HT2CR in binding and functional assays. While the 5-HT2AR activity of 25CN-NBOH was retained in 3'-methyl, 2',3'-chroman, 2',3'-dihydrofuran and 2',3'-furan analogs, the 3'-methoxy and 3'-ethyl analogs displayed substantially lower binding affinities and agonist potencies than 25CN-NBOH. Interestingly, the 2',3'-substitution pattern was also a key determinant of agonist efficacy, as all six analogs exhibited low-efficacy partial agonism or de facto antagonism at the 5-HT2AR in the functional assays. Systemic administration of 25CN-NBOH and its close structural analog 25CN-NBMD induced robust head-twitch response in mice, a well-established behavioural effect of 5-HT2AR activation in vivo, and 25CN-NBOH mediated robust reductions in the activity of mice in an anxiety-related marble burying assay, which supports the proposed beneficial effects of 5-HT2AR activation on disorders characterized by cognitive rigidity. Finally, tritiated 25CN-NBOH exhibited high 5-HT2AR binding affinity (KD ~1 nM) and selectivity against 5-HT2BR and 5-HT2CR in equilibrium and kinetic binding studies of the recombinant receptors, and in concordance [3H]25CN-NBOH displayed substantial specific, ketanserin-sensitive binding to cortex and small levels of binding to choroid plexus in rat brain slices in autoradiography studies. In conclusion, this work delineates the subtle molecular determinants of the 5-HT2AR activity in 25CN-NBOH, substantiates the potential in this compound and its analogs as tools for in vivo studies of the 5-HT2AR, and introduces a novel selective agonist radioligand as another potentially valuable tool for future explorations of this receptor.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Emil Märcher-Rørsted
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anna U Odland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gudrun Liebscher
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Martin Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
16
|
Radan M, Ruzic D, Antonijevic M, Djikic T, Nikolic K. In silico identification of novel 5-HT 2A antagonists supported with ligand- and target-based drug design methodologies. J Biomol Struct Dyn 2020; 39:1819-1837. [PMID: 32141385 DOI: 10.1080/07391102.2020.1738961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A wide range of neuropsychological disorders is caused by serotonin 5-HT2A receptor (5-HT2AR) malfunction. Therefore, this receptor had been frequently used as target in CNS drug research. To design novel potent 5-HT2AR antagonists, we have combined ligand-based and target-based approaches. This study was performed on wide range of structurally diverse antagonists that were divided into three different clusters: clozapine, ziprasidone, and ChEMBL240876 derivatives. By performing the 50 ns long molecular dynamic simulations with each cluster representative in complex with 5-HT2A receptor, we have obtained virtually bioactive conformations of the ligands and three different antagonist-bound, inactive, conformations of the 5-HT2AR. These three 5-HT2AR conformations were further used for docking studies and generation of the bioactive conformations of the data set ligands in each cluster. Subsequently, selected conformers were used for 3D-Quantitative Structure Activity Relationship (3D-QSAR) modelling and pharmacophore analysis. The reliability and predictive power of the created model was assessed using an external test set compounds and showed reasonable external predictability. Statistically significant variables were used to define the most important structural features required for 5-HT2A antagonistic activity. Conclusions obtained from performed ligand-based (3D-QSAR) and target-based (molecular docking and molecular dynamics) methods were compiled and used as guidelines for rational drug design of novel 5-HT2AR antagonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Milica Radan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mirjana Antonijevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Kim J, Kim YJ, Londhe AM, Pae AN, Choo H, Kim HJ, Min SJ. Synthesis and Biological Evaluation of Disubstituted Pyrimidines as Selective 5-HT 2C Agonists. Molecules 2019; 24:molecules24183234. [PMID: 31491978 PMCID: PMC6767204 DOI: 10.3390/molecules24183234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Here, we describe the synthesis of disubstituted pyrimidine derivatives and their biological evaluation as selective 5-HT2C agonists. To improve selectivity for 5-HT2C over other subtypes, we synthesized two series of disubstituted pyrimidines with fluorophenylalkoxy groups at either the 5-position or 4-position and varying cyclic amines at the 2-position. The in vitro cell-based assay and binding assay identified compounds 10a and 10f as potent 5-HT2C agonists. Further studies on selectivity to 5-HT subtypes and drug-like properties indicated that 2,4-disubstituted pyrimidine 10a showed a highly agonistic effect on the 5-HT2C receptor, with excellent selectivity, as well as exceptional drug-like properties, including high plasma and microsomal stability, along with low CYP inhibition. Thus, pyrimidine 10a could be considered a viable lead compound as a 5-HT2C selective agonist.
Collapse
Affiliation(s)
- Juhyeon Kim
- Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yoon Jung Kim
- Department of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Ashwini M Londhe
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hyunah Choo
- Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
- Department of Chemical & Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| |
Collapse
|
18
|
Kumar P, Kapur M. Catalyst Control in Positional-Selective C-H Alkenylation of Isoxazoles and a Ruthenium-Mediated Assembly of Trisubstituted Pyrroles. Org Lett 2019; 21:2134-2138. [PMID: 30860851 DOI: 10.1021/acs.orglett.9b00446] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High levels of catalyst control are demonstrated in determining the positional selectivity in C-H alkenylation of isoxazoles. A cationic rhodium-mediated, strong-directing group promotes C( sp2)-H activation at the proximal aryl ring whereas, the palladium-mediated electrophilic metallation leads to the C( sp2)-H activation at the distal position of the directing group. Synthetic elaboration of this C-H alkenylation product via ruthenium and copper co-catalysis leads to an efficient method for the assembly of densely substituted pyrroles.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri , Bhopal 462066 MP , India
| | - Manmohan Kapur
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri , Bhopal 462066 MP , India
| |
Collapse
|
19
|
Wang X, Sun M, Gan L, Chen W. MK212, a 5-hydroxytryptamine 2C receptor agonist, inhibits conditioned avoidance responses independent of blocking endogenous dopamine release in rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:16-22. [PMID: 30145182 DOI: 10.1016/j.pnpbp.2018.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Although it is widely accepted that 5-hydroxytryptamine (5-HT) 2C receptor agonists produce antipsychotic effects by reducing endogenous dopamine release from presynaptic neurons, no direct evidence supports this. The aim of the present study was to investigate whether the antipsychotic effects induced by 5-HT2C receptor agonists are dependent on the inhibition of endogenous dopamine release. We developed a novel conditioned avoidance response paradigm to test this hypothesis. In this assay, rats in which dopamine was depleted by reserpine failed to show conditioned avoidance responses, and the acute administration of quinpirole reversed the disruption of avoidance responses induced by reserpine. This suggests that animals successfully showed conditioned avoidance responses independent of endogenous dopamine release under these experimental conditions. Our results revealed that MK212 (0.5 mg/kg) reduced avoidance responses triggered by quinpirole in dopamine-depleted rats. Therefore, 5-HT2C receptor agonists can inhibit conditioned avoidance responses independent of blocking endogenous dopamine release. Furthermore, the 5-HT2C receptor agonist, MK212, decreased the extracellular concentration of glutamate in the nucleus accumbens, indicating that this mechanism may be critical for the antipsychotic effects of 5-HT2C receptor agonists.
Collapse
Affiliation(s)
- Xiaqing Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Meng Sun
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Lu Gan
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
20
|
Li C, Yuan J, Zhang Q, Bhujanga Rao C, Zhang R, Zhao Y, Deng B, Dong D. Oxidative Cyclization of β-Aminoacrylamides Mediated by PhIO: Chemoselective Synthesis of Isoxazoles and 2H-Azirines. J Org Chem 2018; 83:14999-15008. [DOI: 10.1021/acs.joc.8b02132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chaoran Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingwen Yuan
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qian Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chitturi Bhujanga Rao
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Rui Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanning Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Bicheng Deng
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dewen Dong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
21
|
Sharma V, Kaur J, Chimni SS. Chiral Squaramide Catalyzed Enantioselective 1,6-Michael Addition of Pyrazolin-5-ones to Styrylisoxazole Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vivek Sharma
- Department of Chemistry; U. G. C. Centre of Advance Studies in Chemistry; Guru Nanak Dev University; 143005 Amritsar India
| | - Jasneet Kaur
- Department of Chemistry; U. G. C. Centre of Advance Studies in Chemistry; Guru Nanak Dev University; 143005 Amritsar India
| | - Swapandeep S. Chimni
- Department of Chemistry; U. G. C. Centre of Advance Studies in Chemistry; Guru Nanak Dev University; 143005 Amritsar India
| |
Collapse
|
22
|
Subramanian P, Kaliappan KP. Transition-Metal-Free Multicomponent Approach to Stereoenriched Cyclopentyl-isoxazoles through C-C Bond Cleavage. Chem Asian J 2018; 13:2031-2039. [PMID: 29920954 DOI: 10.1002/asia.201800608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient multicomponent reaction for the synthesis of stereoenriched cyclopentyl-isoxazoles from camphor-derived α-oximes, alkynes, and MeOH is reported. Our method involved a series of cascade transformations, including the in situ generation of an IIII catalyst, which catalyzed the addition of MeOH to a sterically hindered ketone. Oxidation of the oxime, and rearrangement of the α-hydroxyiminium ion generated a nitrile oxide in situ, which, upon [3+2] cycloaddition reaction with an alkyne, delivered the regioselective product. This reaction was very selective for the syn-oxime. This multicomponent approach was also extended to the synthesis of a new glycoconjugate, camphoric ester-isoxazole C-galactoside.
Collapse
Affiliation(s)
- Parthasarathi Subramanian
- Department of Chemistry, Indian Institute of Technology Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| |
Collapse
|
23
|
Li L, Tan TD, Zhang YQ, Liu X, Ye LW. Recent advances in transition-metal-catalyzed reactions of alkynes with isoxazoles. Org Biomol Chem 2018; 15:8483-8492. [PMID: 28875211 DOI: 10.1039/c7ob01895a] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isoxazoles, as masked 1,3-dicarbonyl equivalents, have proven to be versatile building blocks and pivotal intermediates for the construction of a variety of useful azacycles with molecular complexity. As a result, a range of new reactions have been discovered based on isoxazoles in the past decade. However, the relevant reactions of isoxazoles with alkynes have seldom been explored. In this review, we will focus on the recent progress in the transition-metal-catalyzed formal annulations for the efficient synthesis of N-heterocycles between alkynes and isoxazoles by highlighting their specificity and applicability, and the mechanistic rationale is presented where possible.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
24
|
Jensen AA, McCorvy JD, Leth-Petersen S, Bundgaard C, Liebscher G, Kenakin TP, Bräuner-Osborne H, Kehler J, Kristensen JL. Detailed Characterization of the In Vitro Pharmacological and Pharmacokinetic Properties of N-(2-Hydroxybenzyl)-2,5-Dimethoxy-4-Cyanophenylethylamine (25CN-NBOH), a Highly Selective and Brain-Penetrant 5-HT 2A Receptor Agonist. J Pharmacol Exp Ther 2017; 361:441-453. [PMID: 28360333 DOI: 10.1124/jpet.117.239905] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Therapeutic interest in augmentation of 5-hydroxytryptamine2A (5-HT2A) receptor signaling has been renewed by the effectiveness of psychedelic drugs in the treatment of various psychiatric conditions. In this study, we have further characterized the pharmacological properties of the recently developed 5-HT2 receptor agonist N-2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (25CN-NBOH) and three structural analogs at recombinant 5-HT2A, 5-HT2B, and 5-HT2C receptors and investigated the pharmacokinetic properties of the compound. 25CN-NBOH displayed robust 5-HT2A selectivity in [3H]ketanserin/[3H]mesulergine, [3H]lysergic acid diethylamide and [3H]Cimbi-36 binding assays (Ki2C/Ki2A ratio range of 52-81; Ki2B/Ki2A ratio of 37). Moreover, in inositol phosphate and intracellular Ca2+ mobilization assays 25CN-NBOH exhibited 30- to 180-fold 5-HT2A/5-HT2C selectivities and 54-fold 5-HT2A/5-HT2B selectivity as measured by Δlog(Rmax/EC50) values. In an off-target screening 25CN-NBOH (10 μM) displayed either substantially weaker activity or inactivity at a plethora of other receptors, transporters, and kinases. In a toxicological screening, 25CN-NBOH (100 μM) displayed a benign acute cellular toxicological profile. 25CN-NBOH displayed high in vitro permeability (Papp = 29 × 10-6 cm/s) and low P-glycoprotein-mediated efflux in a conventional model of cellular transport barriers. In vivo, administration of 25CN-NBOH (3 mg/kg, s.c.) in C57BL/6 mice mice produced plasma and brain concentrations of the free (unbound) compound of ∼200 nM within 15 minutes, further supporting that 25CN-NBOH rapidly penetrates the blood-brain barrier and is not subjected to significant efflux. In conclusion, 25CN-NBOH appears to be a superior selective and brain-penetrant 5-HT2A receptor agonist compared with (±)-2,5-dimethoxy-4-iodoamphetamine (DOI), and thus we propose that the compound could be a valuable tool for future investigations of physiologic functions mediated by this receptor.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - John D McCorvy
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Sebastian Leth-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Christoffer Bundgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Gudrun Liebscher
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Terry P Kenakin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Jan Kehler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| | - Jesper Langgaard Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A.J., S.L-P., G.L., H.B.-O., J.L.K.); Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.D.M., T.P.K.); and Department of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark (C.B., J.K.)
| |
Collapse
|
25
|
Pairas GN, Perperopoulou F, Tsoungas PG, Varvounis G. The Isoxazole Ring and ItsN-Oxide: A Privileged Core Structure in Neuropsychiatric Therapeutics. ChemMedChem 2017; 12:408-419. [DOI: 10.1002/cmdc.201700023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Indexed: 01/23/2023]
Affiliation(s)
- George N. Pairas
- Laboratory of Medicinal Chemistry, Department of Pharmacy; University of Patras; 265 04 Patras Greece
| | - Fereniki Perperopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology; Agricultural University of Athens; 75 Iera Odos St. 118 55 Athens Greece
| | - Petros G. Tsoungas
- Laboratory of Biochemistry; Hellenic Pasteur Institute; 127 Vas. Sofias Ave. 115 21 Athens Greece
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry; University of Ioannina; 451 10 Ioannina Greece
| |
Collapse
|
26
|
Antonijević M, Nikolić K, Vučićević J, Oljačić S, Agbaba D. 3D-QSAR modeling and pharmacophore study of serotonin 5HT-₂A receptors antagonists. ARHIV ZA FARMACIJU 2017. [DOI: 10.5937/arhfarm1704233a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
27
|
Radan M, Nikolić K, Vučićević J, Oljačić S, Agbaba D. 3D-QSAR study and development of pharmacophore for serotonin 5-HT2A receptors agonists. ARHIV ZA FARMACIJU 2017. [DOI: 10.5937/arhfarm1703165r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
28
|
Sahani RL, Liu RS. Development of Gold-catalyzed [4+1] and [2+2+1]/[4+2] Annulations between Propiolate Derivatives and Isoxazoles. Angew Chem Int Ed Engl 2016; 56:1026-1030. [DOI: 10.1002/anie.201610665] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 01/03/2023]
Affiliation(s)
| | - Rai-Shung Liu
- Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| |
Collapse
|
29
|
Sahani RL, Liu RS. Development of Gold-catalyzed [4+1] and [2+2+1]/[4+2] Annulations between Propiolate Derivatives and Isoxazoles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610665] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Rai-Shung Liu
- Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| |
Collapse
|
30
|
Leth-Petersen S, Petersen IN, Jensen AA, Bundgaard C, Bæk M, Kehler J, Kristensen JL. 5-HT 2A/5-HT 2C Receptor Pharmacology and Intrinsic Clearance of N-Benzylphenethylamines Modified at the Primary Site of Metabolism. ACS Chem Neurosci 2016; 7:1614-1619. [PMID: 27564969 DOI: 10.1021/acschemneuro.6b00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The toxic hallucinogen 25B-NBOMe is very rapidly degraded by human liver microsomes and has low oral bioavailability. Herein we report on the synthesis, microsomal stability, and 5-HT2A/5-HT2C receptor profile of novel analogues of 25B-NBOMe modified at the primary site of metabolism. Although microsomal stability could be increased while maintaining potent 5-HT2 receptor agonist properties, all analogues had an intrinsic clearance above 1.3 L/kg/h predictive of high first-pass metabolism.
Collapse
Affiliation(s)
- Sebastian Leth-Petersen
- Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Ida N. Petersen
- Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Christoffer Bundgaard
- Department
of Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Mathias Bæk
- Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Jan Kehler
- Department
of Discovery Chemistry and DMPK, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Jesper L. Kristensen
- Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| |
Collapse
|
31
|
Petersen IN, Villadsen J, Hansen HD, Jensen AA, Lehel S, Gillings N, Herth MM, Knudsen GM, Kristensen JL. Convergent 18 F-labeling and evaluation of N -benzyl-phenethylamines as 5-HT 2A receptor PET ligands. Bioorg Med Chem 2016; 24:5353-5356. [DOI: 10.1016/j.bmc.2016.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
|
32
|
Chen W, Wang X, Yan M, Wang Y, Xie S, Li H, Li M. Repeated administration of 5-hydroxytryptamine 2C agonist MK212 produces a sensitization effect of antipsychotic activity. IUBMB Life 2016; 68:985-993. [PMID: 27797140 DOI: 10.1002/iub.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 11/11/2022]
Abstract
5-Hydroxytryptamine 2C (5-HT2C ) receptor agonists have been suggested to possess an antipsychotic activity in several acute preclinical tests of antipsychotic drugs with low extra-pyramidal side effect liability. However, little is known about the long-term effect associated with chronic use of 5-HT2C receptor agonists. The present study examined whether repeated activation of 5-HT2C receptor with a highly selective 5-HT2C receptor agonist MK212 would induce a long-term change in its antipsychotic-like activity (either a sensitization or tolerance) in the conditioned avoidance response and MK801-induced hyperlocomotion tests. Sprague-Dawley rats were first tested under the intraperitoneal (i.p.) treatment of MK212 (0.25, 0.5, 1.0 mg/kg) for 5 consecutive days. Three days later, when all rats were injected with a low dose of MK 212 (0.25 mg/kg) and tested for avoidance responding, rats that had been pretreated with 1.0 and 0.5 mg/kg MK212 made significantly fewer avoidance responses than those that had been treated with vehicle (0.9% saline). However, this past drug exposure-induced group difference was not significant in the MK801-induced hyperlocomotion test. Overall, results from this study suggest that repeated treatment of MK212 is capable of inducing a dose-dependent sensitization of antipsychotic activity in conditioned avoidance response. The discrepancy in sensitization of MK212 in CAR and MK801-induce hyperlocomotion may be related to the different mechanism underlying the effect of MK212 in these two tests. © 2016 IUBMB Life, 68(12):985-993, 2016.
Collapse
Affiliation(s)
- Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaqing Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Minmin Yan
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Shixue Xie
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Li
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| |
Collapse
|
33
|
Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands. Nucl Med Biol 2016; 43:455-62. [DOI: 10.1016/j.nucmedbio.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 11/23/2022]
|
34
|
Afraj SN, Nuzlia C, Chen C, Lee GH. Multicomponent Coupling Reaction and Intramolecular Nitrile Oxide-Alkyne Cycloaddition towards Isoxazolo[3,4]-pyrrolizines. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shakil N. Afraj
- Department of Chemistry; National Dong Hwa University; Soufeng Hualien 974 Taiwan
| | - Cut Nuzlia
- Department of Chemistry; National Dong Hwa University; Soufeng Hualien 974 Taiwan
| | - Chinpiao Chen
- Department of Chemistry; National Dong Hwa University; Soufeng Hualien 974 Taiwan
- Department of Nursing; Tzu Chi University of Science and Technology; Hualien 970 Taiwan
| | - Gene-Hsian Lee
- Instrumentation Center; National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
35
|
Lebedev AV, Kaelen M, Lövdén M, Nilsson J, Feilding A, Nutt DJ, Carhart-Harris RL. LSD-induced entropic brain activity predicts subsequent personality change. Hum Brain Mapp 2016; 37:3203-13. [PMID: 27151536 DOI: 10.1002/hbm.23234] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A V Lebedev
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - M Kaelen
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - M Lövdén
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - J Nilsson
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - A Feilding
- The Beckley Foundation, Beckley Park, United Kingdom
| | - D J Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - R L Carhart-Harris
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| |
Collapse
|
36
|
Sugita S, Ueda M, Doi N, Takeda N, Miyata O. Gold-catalyzed sequential cyclization/rearrangement reaction of O-allyl hydroxamates: atom economical synthesis of 3-hydroxyisoxazoles. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Kumar GR, Kumar YK, Reddy MS. A direct access to isoxazoles from ynones using trimethylsilyl azide as amino surrogate under metal/catalyst free conditions. Chem Commun (Camb) 2016; 52:6589-92. [DOI: 10.1039/c6cc02047j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general access to isoxazoles with outstanding functional group compatibility from the readily available ynones using trimethylsilyl azide as an amino surrogate under exceptionally simple conditions is described.
Collapse
Affiliation(s)
- Gadi Ranjith Kumar
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| | - Yalla Kiran Kumar
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Maddi Sridhar Reddy
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
38
|
Deau E, Robin E, Voinea R, Percina N, Satała G, Finaru AL, Chartier A, Tamagnan G, Alagille D, Bojarski AJ, Morisset-Lopez S, Suzenet F, Guillaumet G. Rational Design, Pharmacomodulation, and Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT7)/5-Hydroxytryptamine 2A (5-HT2A) Receptor Antagonists and Evaluation by [18F]-PET Imaging in a Primate Brain. J Med Chem 2015; 58:8066-96. [DOI: 10.1021/acs.jmedchem.5b00874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Emmanuel Deau
- Institut
de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311, rue de Chartres, F-45067 Orleans, France
| | - Elodie Robin
- Centre
de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Université d’Orléans et INSERM, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Raluca Voinea
- Institut
de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311, rue de Chartres, F-45067 Orleans, France
- Centrul
de Cercetare ‘Chimie Aplicată şi Inginerie de
Proces’, Universitatea din Bacău, Calea Mărăşesti,
nr. 157, 600115 Bacău, Romania
| | - Nathalie Percina
- Institut
de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311, rue de Chartres, F-45067 Orleans, France
| | - Grzegorz Satała
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna
Street, Kraków 31-343, Poland
| | - Adriana-Luminita Finaru
- Centrul
de Cercetare ‘Chimie Aplicată şi Inginerie de
Proces’, Universitatea din Bacău, Calea Mărăşesti,
nr. 157, 600115 Bacău, Romania
| | - Agnès Chartier
- Institut
de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311, rue de Chartres, F-45067 Orleans, France
| | - Gilles Tamagnan
- Molecular NeuroImaging, 60 Temple
Street, New Haven, Connecticut 06510, United States
| | - David Alagille
- Molecular NeuroImaging, 60 Temple
Street, New Haven, Connecticut 06510, United States
| | - Andrzej J. Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna
Street, Kraków 31-343, Poland
| | - Séverine Morisset-Lopez
- Centre
de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Université d’Orléans et INSERM, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Franck Suzenet
- Institut
de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311, rue de Chartres, F-45067 Orleans, France
| | - Gérald Guillaumet
- Institut
de Chimie Organique et Analytique (ICOA), Université d’Orléans, CNRS, UMR 7311, rue de Chartres, F-45067 Orleans, France
| |
Collapse
|
39
|
Hu F, Szostak M. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500319] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Hansen M, Jacobsen SE, Plunkett S, Liebscher GE, McCorvy JD, Bräuner-Osborne H, Kristensen JL. Synthesis and pharmacological evaluation of N-benzyl substituted 4-bromo-2,5-dimethoxyphenethylamines as 5-HT2A/2C partial agonists. Bioorg Med Chem 2015; 23:3933-7. [DOI: 10.1016/j.bmc.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/06/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
|
41
|
Meneses A. 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci 2014; 24:629-64. [PMID: 24259245 DOI: 10.1515/revneuro-2013-0026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Drugs acting through 5-hydroxytryptamine (serotonin or 5-HT) systems modulate memory and its alterations, although the mechanisms involved are poorly understood. 5-HT drugs may present promnesic and/or antiamnesic (or even being amnesic) effects. Key questions regarding 5-HT markers include whether receptors directly or indirectly participate and/or contribute to the physiological and pharmacological basis of memory and its pathogenesis; hence, the major aim of this article was to examine recent advances in emergent targets of the 5-HT systems for memory formation and memory alterations. Recent reviews and findings are summarized, mainly in the context of the growing notion of memory deficits in brain disorders (e.g., posttraumatic stress disorder, mild cognitive impairment, consumption of drugs, poststroke cognitive dysfunctions, schizophrenia, Parkinson disease, and infection-induced memory impairments). Mainly, mammalian and (some) human data were the focus. At least agonists and antagonists for 5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin uptake inhibitors seem to have a promnesic and/or antiamnesic effect in different conditions and 5-HT markers seem to be associated to neural changes. Available evidence offers clues about the possibilities, but the exact mechanisms remain unclear. For instance, 5-HT transporter expression seems to be a reliable neural marker related to memory mechanisms and its alterations.
Collapse
|
42
|
Stimulation of 5-HT2C receptors improves cognitive deficits induced by human tryptophan hydroxylase 2 loss of function mutation. Neuropsychopharmacology 2014; 39:1125-34. [PMID: 24196946 PMCID: PMC3957106 DOI: 10.1038/npp.2013.313] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022]
Abstract
Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT(2C) receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT(2) receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms.
Collapse
|
43
|
Canal CE, Cordova-Sintjago T, Liu Y, Kim MS, Morgan D, Booth RG. Molecular pharmacology and ligand docking studies reveal a single amino acid difference between mouse and human serotonin 5-HT2A receptors that impacts behavioral translation of novel 4-phenyl-2-dimethylaminotetralin ligands. J Pharmacol Exp Ther 2013; 347:705-16. [PMID: 24080681 DOI: 10.1124/jpet.113.208637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During translational studies to develop 4-phenyl-2-dimethylaminotetralin (PAT) compounds for neuropsychiatric disorders, the (2R,4S)-trans-(+)- and (2S,4R)-trans-(-)-enantiomers of the analog 6-hydroxy-7-chloro-PAT (6-OH-7-Cl-PAT) demonstrated unusual pharmacology at serotonin (5-HT) 5-HT2 G protein-coupled receptors (GPCRs). The enantiomers had similar affinities (Ki) at human (h) 5-HT2A receptors (≈ 70 nM). In an in vivo mouse model of 5-HT2A receptor activation [(±)-(2,5)-dimethoxy-4-iodoamphetamine (DOI)-elicited head twitch], however, (-)-6-OH-7-Cl-PAT was about 5-fold more potent than the (+)-enantiomer at attenuating the DOI-elicited response. It was discovered that (+)-6-OH-7-Cl-PAT (only) had ≈ 40-fold-lower affinity at mouse (m) compared with h5-HT2A receptors. Molecular modeling and computational ligand docking studies indicated that the 6-OH moiety of (+)- but not (-)-6-OH-7-Cl-PAT could form a hydrogen bond with serine residue 5.46 of the h5-HT2A receptor. The m5-HT2A as well as m5-HT2B, h5-HT2B, m5-HT2C, and h5-HT2C receptors have alanine at position 5.46, obviating this interaction; (+)-6-OH-7-Cl-PAT also showed ≈ 50-fold lower affinity than (-)-6-OH-7-Cl-PAT at m5-HT2C and h5-HT2C receptors. Mutagenesis studies confirmed that 5-HT2A S5.46 is critical for (+)- but not (-)-6-OH-7-Cl-PAT binding, as well as function. The (+)-6-OH-7-Cl-PAT enantiomer showed partial agonist effects at h5-HT2A wild-type (WT) and m5-HT2A A5.46S point-mutated receptors but did not activate m5-HT2A WT and h5-HT2A S5.46A point-mutated receptors, or h5-HT2B, h5-HT2C, and m5-HT2C receptors; (-)-6-OH-7-Cl-PAT did not activate any of the 5-HT2 receptors. Experiments also included the (2R,4S)-trans-(+)- and (2S,4R)-trans-(-)-enantiomers of 6-methoxy-7-chloro-PAT to validate hydrogen bonding interactions proposed for the corresponding 6-OH analogs. Results indicate that PAT ligand three-dimensional structure impacts target receptor binding and translational outcomes, supporting the hypothesis that GPCR ligand structure governs orthosteric binding pocket molecular determinants and resulting pharmacology.
Collapse
Affiliation(s)
- Clinton E Canal
- Center for Drug Discovery (C.E.C., T.C.-S., Y.L., R.G.B.), Department of Pharmaceutical Sciences (C.E.C., T.C.-S., Y.L., R.G.B.), and Department of Chemistry and Chemical Biology (R.G.B.), Northeastern University, Boston, Massachusetts; and Department of Medicinal Chemistry (M.S.K., T.C.-S.) and Department of Psychiatry (D.M.), University of Florida, Gainesville, Florida
| | | | | | | | | | | |
Collapse
|