1
|
Feng H, Tu N, Wang K, Ma X, Zhang Z, Liu Z, Cheng Z, Bu L. Neuromelanin-targeted 18 F-P3BZA PET/MR imaging of the substantia nigra in rhesus macaques. EJNMMI Res 2024; 14:79. [PMID: 39225971 PMCID: PMC11372002 DOI: 10.1186/s13550-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuromelanin is mostly located in dopaminergic neurons in the substantia nigra (SN) pars compacta, and can be detected by magnetic resonance imaging (MRI). It is a promising imaging-base biomarker for neurological diseases. We previously developed a melanin-specific probe N-(2-(diethylamino)-ethyl)-18F-5-fluoropicolinamide (18F-P3BZA), which was initially developed for the imaging of melanoma. 18F-P3BZA exhibited high levels of binding to the melanin in vitro and in vivo with high retention and favorable pharmacokinetics. In this study we further investigated whether 18F-P3BZA could be used to quantitatively detect neuromelanin in the SN in healthy rhesus macaques. RESULTS 18F-P3BZA exhibited desired hydrophobicity with estimated log Know 5.08 and log D7.4 1.68. 18F-P3BZA readily crossed the blood-brain barrier with brain transport coefficients (Kin) of 40 ± 8 µL g-1s-1. 18F-P3BZA accumulated specifically in neuromelanotic PC12 cells, melanin-rich melanoma cells, and melanoma xenografts. Binding of 18F-P3BZA to B16F10 cells was much higher than to SKOV3 cells at 60 min (6.17 ± 0.53%IA and 0.24 ± 0.05%IA, respectively). In the biodistribution study, 18F-P3BZA had higher accumulation in B16F10 tumors (6.31 ± 0.99%IA/g) than in SKOV3 tumors (0.25 ± 0.09%IA/g). Meanwhile, 18F-P3BZA uptake in B16F10 tumors could be blocked by excess cold 19F-P3BZA (0.81 ± 0.02%IA/g, 88% inhibition, p < 0.05). PET/MRI 18F-P3BZA provided clear visualization of neuromelanin-rich SN at 30-60 min after injection in healthy macaques. The SN to cerebella ratios were 2.7 and 2.4 times higher at 30 and 60 min after injection. In in vitro autoradiography studies 18F-P3BZA exhibited high levels of binding to the SN, and almost no binding to surrounding midbrain tissues. CONCLUSION 18F-P3BZA PET/MRI clearly images neuromelanin in the SN, and may assist in the early diagnosis of neurological diseases associated with abnormal neuromelanin expression.
Collapse
Affiliation(s)
- Hongyan Feng
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ning Tu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ke Wang
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, 95Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
3
|
Pyo A, Yun M, Song B, Kwon SY, Min JJ, Kim DY. Synthesis and evaluation of 18F-labeled procainamide as a PET imaging agent for malignant melanoma. Bioorg Med Chem Lett 2023; 96:129528. [PMID: 37852422 DOI: 10.1016/j.bmcl.2023.129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma has an aggressive nature and a high metastatic propensity resulting in the highest mortality rate of any skin cancer. In this study, we synthesized 18F-labeled procainamide (PCA) for detection of melanoma using positron emission tomography (PET), and evaluated its biological characteristics. The non-decay-corrected radiochemical yield of 18F-PCA was 10-15% and its in vitro stability was over 98% for 2 h. At 1 h, cellular uptake of 18F-PCA was 3.8-fold higher in a group with the presence of l-tyrosine than in a non-l-tyrosine-treated group. Furthermore, 18F-PCA permitted visualization of B16F10 (mouse melanoma) xenografts on microPET after intravenous injection, and was retained in the tumor for 60 min, with a high tumor-to-liver uptake ratio. 18F-PCA showed specific melanoma uptake in primary lesions with a high melanin targeting ability in small animal models. 18F-PCA may have potential as a PET imaging agent for direct melanoma detection.
Collapse
Affiliation(s)
- Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Misun Yun
- Hygenic Safety-Material Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Boreum Song
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Young Kwon
- Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jung-Joon Min
- Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea.
| |
Collapse
|
4
|
Ali S, Zhou J. Highlights on U.S. FDA-approved fluorinated drugs over the past five years (2018-2022). Eur J Med Chem 2023; 256:115476. [PMID: 37207534 PMCID: PMC10247436 DOI: 10.1016/j.ejmech.2023.115476] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
The objective of this review is to provide an update on the fluorine-containing drugs approved by U.S. Food and Drug Administration in the span of past five years (2018-2022). The agency accepted a total of fifty-eight fluorinated entities to diagnose, mitigate and treat a plethora of diseases. Among them, thirty drugs are for therapy of various types of cancers, twelve for infectious diseases, eleven for CNS disorders, and six for some other diseases. These are categorized and briefly discussed based on their therapeutic areas. In addition, this review gives a glimpse about their trade name, date of approval, active ingredients, company developers, indications, and drug mechanisms. We anticipate that this review may inspire the drug discovery and medicinal chemistry community in both industrial and academic settings to explore the fluorinated molecules leading to the discovery of new drugs in the near future.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States.
| |
Collapse
|
5
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
6
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Shi H, Cheng Z. MC1R and melanin-based molecular probes for theranostic of melanoma and beyond. Acta Pharmacol Sin 2022; 43:3034-3044. [PMID: 36008707 PMCID: PMC9712491 DOI: 10.1038/s41401-022-00970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is accounting for most of skin cancer-associated mortality. The incidence of melanoma increased every year worldwide especially in western countries. Treatment efficiency is highly related to the stage of melanoma. Therefore, accurate staging and restaging play a pivotal role in the management of melanoma patients. Though 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) has been widely used in imaging of tumor metastases, novel radioactive probes for specific targeted imaging of both primary and metastasized melanoma are still desired. Melanocortin receptor 1 (MC1R) and melanin are two promising biomarkers specifically for melanoma, and numerous research groups including us have been actively developing a plethora of radioactive probes based on targeting of MC1R or melanin for over two decades. In this review, some of the MC1R-targeted tracers and melanin-associated molecular imaging probes developed in our research and others have been briefly summarized, and it provides a quick glance of melanoma-targeted probe design and may contribute to further developing novel molecular probes for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
8
|
Huang D, Liu Q, Zhang M, Guo Y, Cui Z, Li T, Luo D, Xu B, Huang C, Guo J, Tam KY, Zhang M, Zhang SL, He Y. A Mitochondria-Targeted Phenylbutyric Acid Prodrug Confers Drastically Improved Anticancer Activities. J Med Chem 2022; 65:9955-9973. [PMID: 35818137 DOI: 10.1021/acs.jmedchem.2c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phenylbutyric acid (PBA) has been reported as a dual inhibitor of pyruvate dehydrogenase kinases (PDKs) and histone deacetylases (HDACs), exhibiting anticancer effects. However, the low membrane permeability and poor cellular uptake limit its access to the target organelle, resulting in weak potencies against the intended targets. Herein, we report the design and identification of a novel 4-CF3-phenyl triphenylphosphonium-based PBA conjugate (53) with improved in vitro and in vivo anticancer activities. Compound 53 exhibited an IC50 value of 2.22 μM against A375 cells, outperforming the parent drug PBA by about 4000-fold. In the A375 cell-derived xenograft mouse model, 53 reduced the tumor growth by 76% at a dose of 40 mg/kg, while PBA only reduced the tumor growth by 10% at a dose of 80 mg/kg. On the basis of these results, 53 may be considered for further preclinical evaluations for cancer therapy.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Qingwang Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Zhiying Cui
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Biao Xu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Jian Guo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Min Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
9
|
Liu J, Fu S, Xie J, Zhang J, Pan J, Chu C, Liu G, Ju S. Application of Self-Assembly Nanoparticles Based on DVDMS for Fenton-Like Ion Delivery and Enhanced Sonodynamic Therapy. BIOSENSORS 2022; 12:255. [PMID: 35448315 PMCID: PMC9025210 DOI: 10.3390/bios12040255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 05/14/2023]
Abstract
Upon harnessing low-intensity ultrasound to activate sonosensitizers, sonodynamic therapy (SDT) induces cancer cell death through the reactive oxygen species (ROS) mediated pathway. Compared with photodynamic therapy (PDT), SDT possesses numerous advantages, including deeper tissue penetration, higher accuracy, fewer side effects, and better patient compliance. Sinoporphyrin sodium (DVDMS), a sonosensitizer approved by the FDA, has drawn abundant attention in clinical research, but there are some deficiencies. In order to further improve the efficiency of DVDMS, many studies have applied self-assembly nanotechnology to modify it. Furthermore, the combined applications of SDT/chemodynamic therapy (CDT) have become a research hotspot in tumor therapy. Therefore, we explored the self-assembly of nanoparticles based on DVDMS and copper to combine SDT and CDT. A cost-effective sonosensitizer was synthesized by dropping CuCl2 into the DVDMS solution with the assistance of PVP. The results revealed that the nanostructures could exert excellent treatment effects on tumor therapy and perform well for PET imaging, indicating the potential for cancer theranostics. In vitro and in vivo experiments showed that the nanoparticles have outstanding biocompatibility, higher ROS production efficiency, and antitumor efficacy. We believe this design can represent a simple approach to combining SDT and CDT with potential applications in clinical treatment and PET imaging.
Collapse
Affiliation(s)
- Jinqiang Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210000, China;
| | - Shiying Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Jiaxuan Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Jintao Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210000, China;
| |
Collapse
|
10
|
León-Vargas F, Arango Oviedo JA, Luna Wandurraga HJ. Two Decades of Research in Artificial Pancreas: Insights from a Bibliometric Analysis. J Diabetes Sci Technol 2022; 16:434-445. [PMID: 33853377 PMCID: PMC8861788 DOI: 10.1177/19322968211005500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Artificial pancreas is a well-known research topic devoted to achieving better glycemic outcomes that has been attracting increasing attention over the years. However, there is a lack of systematic, chronological, and synthesizing studies that show the background of the knowledge generation in this field. This study implements a bibliometric analysis to recognize the main documents, type of publications, research categories, countries, keywords, organizations, and authors related to this topic. METHODS Web of Science core collection database was accessed from 2000 to 2020 in order to select high-quality scientific documents based on a specific search query. Bibexcel, MS Excel, Power BI, R-Studio, VOSviewer, and CorText software were used for a descriptive and network analysis based on the local database obtained. Bibliometric parameters as the h-index, frequencies, co-authorship and co-ocurrences were computed. RESULTS A total of 756 documents were included that show a growing scientific production on this topic with an increasing contribution from engineering. Outstanding authors, organizations, and countries were identified. An analysis of trends in research was conducted according to the scientific categories of the Web of Science database to identify the main research interests of the last 2 decades and the emerging areas with greater prominence in the coming years. A keyword network analysis allowed to identify the main stages in the development of the AP research over time. CONCLUSIONS Results reveal a comprehensive background of the knowledge generation for the AP topic during the last 2 decades, which has been strengthened with international collaborations and a remarkable interdisciplinarity between endocrinology and engineering, giving rise to a growing number of research areas over time, where computer science and medical informatics stand out as the main emerging research areas.
Collapse
Affiliation(s)
- Fabian León-Vargas
- Universidad Antonio Nariño, Bogotá,
Colombia
- Fabian León-Vargas, PhD, Universidad
Antonio Nariño, Cll 22 Sur # 12D – 81, Bogotá, 111511, Colombia.
| | | | | |
Collapse
|
11
|
Development of Radiofluorinated Nicotinamide/Picolinamide Derivatives as Diagnostic Probes for the Detection of Melanoma. Int J Mol Sci 2021; 22:ijms22126432. [PMID: 34208566 PMCID: PMC8234188 DOI: 10.3390/ijms22126432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023] Open
Abstract
Regarding the increased incidence and high mortality rate of malignant melanoma, practical early-detection methods are essential to improve patients’ clinical outcomes. In this study, we successfully prepared novel picolinamide–benzamide (18F-FPABZA) and nicotinamide–benzamide (18F-FNABZA) conjugates and determined their biological characteristics. The radiochemical yields of 18F-FPABZA and 18F-FNABZA were 26 ± 5% and 1 ± 0.5%, respectively. 18F-FPABZA was more lipophilic (log P = 1.48) than 18F-FNABZA (log P = 0.68). The cellular uptake of 18F-FPABZA in melanotic B16F10 cells was relatively higher than that of 18F-FNABZA at 15 min post-incubation. However, both radiotracers did not retain in amelanotic A375 cells. The tumor-to-muscle ratios of 18F-FPABZA-injected B16F10 tumor-bearing mice increased from 7.6 ± 0.4 at 15 min post-injection (p.i.) to 27.5 ± 16.6 at 3 h p.i., while those administered with 18F-FNABZA did not show a similarly dramatic increase throughout the experimental period. The results obtained from biodistribution studies were consistent with those derived from microPET imaging. This study demonstrated that 18F-FPABZA is a promising melanin-targeting positron emission tomography (PET) probe for melanotic melanoma.
Collapse
|
12
|
Hong Z, Yu B, Xiao J, Feng H, Ma X, Cheng Z, Bu L. A convenient and efficient solid phase extraction-based pathway for purification of melanin-targeted probe 18F-P3BZA. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Abstract
Melanin exists in the most of melanoma lesions. Melanin plays an important role in melanoma progression, metastasis, therapy response, and the overall survival of patients. Therefore, melanin is a critical target for melanoma diagnosis and therapy. Many melanin targeting probes, such as radioisotope-labeled benzamide analogs, have been developed for melanoma diagnosis using positron emission tomography (PET). The N-(2-(diethylamino)-ethyl)-18F-5-fluoropicolinamide (18F-P3BZA) probe is one of the benzamide analogs and has been preliminarily tested for clinical diagnosis of melanoma in our recent studies. It has shown high specificity and favorable in vivo performance for PET of melanoma. Herein, we describe the detailed synthesis protocol of 18F-P3BZA and PET/CT imaging procedure for animal models and patients.
Collapse
|
14
|
Chen CC, Chen YY, Lo YH, Lin MH, Chang CH, Chen CL, Wang HE, Wu CY. Evaluation of Radioiodinated Fluoronicotinamide/Fluoropicolinamide-Benzamide Derivatives as Theranostic Agents for Melanoma. Int J Mol Sci 2020; 21:ijms21186597. [PMID: 32916962 PMCID: PMC7554940 DOI: 10.3390/ijms21186597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/01/2022] Open
Abstract
Malignant melanoma is the most harmful type of skin cancer and its incidence has increased in this past decade. Early diagnosis and treatment are urgently desired. In this study, we conjugated picolinamide/nicotinamide with the pharmacophore of 131I-MIP-1145 to develop 131I-iodofluoropicolinamide benzamide (131I-IFPABZA) and 131I-iodofluoronicotiamide benzamide (131I-IFNABZA) with acceptable radiochemical yield (40 ± 5%) and high radiochemical purity (>98%). We also presented their biological characteristics in melanoma-bearing mouse models. 131I-IFPABZA (Log P = 2.01) was more lipophilic than 131I-IFNABZA (Log P = 1.49). B16F10-bearing mice injected with 131I-IFNABZA exhibited higher tumor-to-muscle ratio (T/M) than those administered with 131I-IFPABZA in planar γ-imaging and biodistribution studies. However, the imaging of 131I-IFNABZA- and 131I-IFPABZA-injected mice only showed marginal tumor uptake in A375 amelanotic melanoma-bearing mice throughout the experiment period, indicating the high binding affinity of these two radiotracers to melanin. Comparing the radiation-absorbed dose of 131I-IFNABZA with the melanin-targeted agents reported in the literature, 131I-IFNABZA exerts lower doses to normal tissues on the basis of similar tumor dose. Based on the in vitro and in vivo studies, we clearly demonstrated the potential of using 131I-IFNABZA as a theranostic agent against melanoma.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Yang-Yi Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Yi-Hsuan Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital Zhongxiao Branch, Taipei 115, Taiwan;
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
- Correspondence:
| |
Collapse
|
15
|
Abstract
With the emergence of new therapeutic modalities, the diagnosis of melanoma at the earliest practicable stage has become more important for improving the survival of patients. We developed a positron emission tomography (PET) imaging probe, N-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) and evaluated diagnostic performance in animal models. [18F]DMPY2 PET exhibited excellent performance in detecting primary and metastatic melanomas, demonstrating strong/prolonged tumoral uptake and rapid background clearance. This suggests that this radiotracer could be used as a novel PET imaging agent to obtain outstanding image quality in the diagnosis of melanoma. This is the pioneering report of pyridine-based benzamide derivative with reduced alkyl chains in the amine residue and ultrasensitive detection of melanoma lesions in living subjects compared to conventional PET imaging agents. Malignant melanoma has one of the highest mortality rates of any cancer because of its aggressive nature and high metastatic potential. Clinical staging of the disease at the time of diagnosis is very important for the prognosis and outcome of melanoma treatment. In this study, we designed and synthesized the 18F-labeled pyridine-based benzamide derivatives N-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) and N-(2-(dimethylamino)ethyl)-6-[18F]fluoronicotinamide ([18F]DMPY3) to detect primary and metastatic melanoma at an early stage and evaluated their performance in this task. [18F]DMPY2 and [18F]DMPY3 were synthesized by direct radiofluorination of the bromo precursor, and radiochemical yields were ∼15–20%. Cell uptakes of [18F]DMPY2 and [18F]DMPY3 were >103-fold and 18-fold higher, respectively, in B16F10 (mouse melanoma) cells than in negative control cells. Biodistribution studies revealed strong tumor uptake and retention of [18F]DMPY2 (24.8% injected dose per gram of tissue [ID/g] at 60 min) and [18F]DMPY3 (11.7%ID/g at 60 min) in B16F10 xenografts. MicroPET imaging of both agents demonstrated strong tumoral uptake/retention and rapid washout, resulting in excellent tumor-to-background contrast in B16F10 xenografts. In particular, [18F]DMPY2 clearly visualized almost all metastatic lesions in lung and lymph nodes, with excellent image quality. [18F]DMPY2 demonstrated a significantly higher tumor-to-liver ratio than [18F]fluorodeoxyglucose ([18F]FDG) and the previously reported benzamide tracers N-[2-(diethylamino)-ethyl]-5-[18F]fluoropicolinamide ([18F]P3BZA) and N-[2-(diethylamino)-ethyl]-4-[18F]fluorobenzamide ([18F]FBZA) in B16F10-bearing or SK-MEL-3 (human melanoma)-bearing mice. In conclusion, [18F]DMPY2 might have strong potential for the diagnosis of early stage primary and metastatic melanoma using positron emission tomography (PET).
Collapse
|
16
|
Wang H, Dong W, Zhao Q, Lu K, Guo X, Liu H, Wu Z, Li S. Synthesis of N-(6-[ 18F]Fluoropyridin-3-yl)glycine as a potential renal PET agent. Nucl Med Biol 2019; 76-77:21-27. [PMID: 31648134 DOI: 10.1016/j.nucmedbio.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Given the requirements of high sensitivity and spatial resolution, the development of new positron emission tomography (PET) agents is required for PET renography. The objective of this study was to investigate a new fluorine-18 labeled hippurate analogue of picolinamide, N-(6-[18F]Fluoropyridin-3-yl)glycine, as a new renal PET agent for evaluating renal function. METHODS N-(6-[18F]Fluoropyridin-3-yl)glycine was prepared via a two-step reaction, including the nucleophilic substitution reaction of Br with 18F using methyl 2-(6-bromonicotinamido)acetate as a precursor followed the hydrolysis with sodium hydroxide and purification by preparative-HPLC. The in vitro and in vivo stability were determined using HPLC, and the plasma protein binding (PPB) and erythrocyte uptake of N-(6-[18F]Fluoropyridin-3-yl)glycine were determined using blood collected from healthy rats at 5 min post-injection. Biodistribution and dynamic micro-PET/CT imaging studies were conducted in healthy rats. RESULTS N-(6-[18F]Fluoropyridin-3-yl)glycine was prepared within 45 min with an uncorrected radiochemical yield of 24.5 ± 6.7% (n = 6, based on [18F]F-) and a radiochemical purity of >98%. N-(6-[18F]Fluoropyridin-3-yl)glycine demonstrated good stability both in vitro and in vivo. The results of the biodistribution and dynamic micro-PET/CT imaging studies in normal rats indicated that N-(6-[18F]Fluoropyridin-3-yl)glycine was rapidly and exclusively excreted via the renal-urinary pathway. CONCLUSION N-(6-[18F]Fluoropyridin-3-yl)glycine is has been shown to be a promising renal PET agent and warrants further evaluation of renal function.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.
| | - Weixuan Dong
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Qinan Zhao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Keyi Lu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Xiaoshan Guo
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Molecular Imaging Precision Medicine Collaborative Innovation Center of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.
| |
Collapse
|
17
|
Pauton M, Gillet R, Aubert C, Bluet G, Gruss-Leleu F, Roy S, Perrio C. The first radiosynthesis of 2-amino-5-[ 18F]fluoropyridines via a "minimalist" radiofluorination/palladium-catalyzed amination sequence from anisyl(2-bromopyridinyl)iodonium triflate. Org Biomol Chem 2019; 17:6359-6363. [PMID: 31218326 DOI: 10.1039/c9ob01187k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of 2-amino-5-[18F]fluoropyridines was achieved in 8-85% yields by palladium-catalyzed reaction of 2-bromo-5-[18F]fluoropyridine with piperidine, dimethylamine, butylamine, methylpiperazine, benzylamine, aniline and 3-aminopyridine. 2-Bromo-5-[18F]fluoropyridine was obtained by radiofluorination of anisyl(2-bromopyridinyl-5)iodonium triflate (88% yield). The radiofluorination step was performed under "minimalist" conditions to guarantee a successful subsequent amination reaction.
Collapse
Affiliation(s)
- Mathilde Pauton
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT-UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France. and Sanofi R&D, IDD, Isotope Chemistry, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Raphaël Gillet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT-UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France.
| | - Catherine Aubert
- Sanofi R&D, IDD, Isotope Chemistry, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Guillaume Bluet
- Sanofi R&D, IDD, Isotope Chemistry, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Florence Gruss-Leleu
- Sanofi R&D, IDD, Isotope Chemistry, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Sébastien Roy
- Sanofi R&D, IDD, Isotope Chemistry, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT-UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
18
|
Pauton M, Aubert C, Bluet G, Gruss-Leleu F, Roy S, Perrio C. Development, Optimization, and Scope of the Radiosynthesis of 3/5-[18F]Fluoropyridines from Readily Prepared Aryl(pyridinyl) Iodonium Salts: The Importance of TEMPO and K2CO3. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mathilde Pauton
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Catherine Aubert
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Guillaume Bluet
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | | | - Sébastien Roy
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
19
|
Shen Z, Huang H, Zhu C, Warratz S, Ackermann L. MnCl 2-Catalyzed C-H Alkylation on Azine Heterocycles. Org Lett 2019; 21:571-574. [PMID: 30604972 DOI: 10.1021/acs.orglett.8b03924] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-valent manganese-catalyzed C-H alkylation of pyridine derivatives with both primary and challenging secondary alkyl halides was established by amide assistance. The strategy provided expedient access to alkylated pyridines with wide functional group tolerance and ample scope through weak chelation. Mechanistic studies provided strong support for a rate-determining C-H activation and a SET-type C-X scission.
Collapse
Affiliation(s)
- Zhigao Shen
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Huawen Huang
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
20
|
Pyo A, Kim HS, Kim HS, Yun M, Kim DY, Min JJ. N-(2-(Dimethylamino)Ethyl)-4- 18F-Fluorobenzamide: A Novel Molecular Probe for High-Contrast PET Imaging of Malignant Melanoma. J Nucl Med 2018; 60:924-929. [PMID: 30552204 DOI: 10.2967/jnumed.118.221416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Malignant melanoma is an aggressive and serious form of skin cancer, with prognosis and treatment outcome depending heavily on the clinical stage of the disease at the time of diagnosis. Here, we synthesized a novel 18F-labeled benzamide derivative to target melanoma and then evaluated its biologic characteristics in small-animal models. Methods: N-(2-(dimethylamino)ethyl)-4-18F-fluorobenzamide (18F-DMFB) was synthesized by reaction of N-succinimidyl 4-18F-fluorobenzoate with N,N-dimethylethylenediamine. The binding affinity of 18F-DMFB was measured in B16F10 (mouse melanoma) cells with or without l-tyrosine. Small-animal PET imaging with 18F-DMFB was performed on B16F10 xenograft and metastasis mouse models. Results: The overall non-decay-corrected radiochemical yield of 18F-DMFB was approximately 10%-15%. Uptake of 18F-DMFB was melanin-specific, as cellular uptake in B16F10 increased more than 18-fold in the presence of l-tyrosine. Biodistribution studies revealed that 18F-DMFB accumulated, and was retained, in B16F10 xenografts for 120 min (10, 30, 60, and 120 min: 9.24, 10.80, 13.0, and 10.59 percentage injected dose/g, respectively) after radiotracer injection. Liver uptake of 18F-DMFB decreased from 10 to 120 min and showed fast clearance (10, 30, 60, and 120 min: 11.19, 5.7, 2.47, and 0.4 percentage injected dose/g). Furthermore, 18F-DMFB allowed visualization of metastatic lesions immediately after injection and was retained in lesions for over 60 min, with a high tumor-to-background ratio. Conclusion: 18F-DMFB demonstrated a high melanin-targeting ability and tumor-specific tumor uptake in both primary and metastatic lesions in animal models bearing malignant melanoma. 18F-DMFB may be a potential PET imaging agent for melanoma.
Collapse
Affiliation(s)
- Ayoung Pyo
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea
| | - Hyung Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, Korea; and
| | - Misun Yun
- Microbiology and Functionality Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
21
|
Xu X, Yuan L, Gai Y, Liu Q, Yin L, Jiang Y, Wang Y, Zhang Y, Lan X. Targeted radiotherapy of pigmented melanoma with 131I-5-IPN. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:306. [PMID: 30537980 PMCID: PMC6288928 DOI: 10.1186/s13046-018-0983-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Purpose There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent. Methods The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data. Results 131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT. Conclusion We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lianglan Yin
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
22
|
Ma X, Wang S, Wang S, Liu D, Zhao X, Chen H, Kang F, Yang W, Wang J, Cheng Z. Biodistribution, Radiation Dosimetry, and Clinical Application of a Melanin-Targeted PET Probe, 18F-P3BZA, in Patients. J Nucl Med 2018; 60:16-22. [DOI: 10.2967/jnumed.118.209643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023] Open
|
23
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
24
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
25
|
Seddik U, Aglan H, Trencsényi G, Szabó JP, Kertész I, Kandil SA. Rapid radiosynthesis of two [ 18F]-labeled nicotinamide derivatives for malignant melanoma imaging. Appl Radiat Isot 2017; 132:142-146. [PMID: 29227835 DOI: 10.1016/j.apradiso.2017.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
Abstract
The rapid synthesis of two radiofluoronicotinamide derivatives, namely, [18F]MEL050 and [18F]MEL-2F has been simply performed starting from commercial materials. [18F]MEL-2F is a new, potential analogue PET-probe for melanoma imaging. [18F]MEL050 is already an excellent PET imaging probe for early specific diagnosis. The synthesis involves coupling step to obtain the precursor followed by radiofluorination. During the synthesis of the precursors different coupling reagents, such as HBTU, TFFH, HOBT, COMU and PyCIU have been applied. PyClU was found the best to reduce the coupling period to < 1h. The labeled compounds were isolated and purified by HPLC. In the in-vitro study three kinds of cells, namely, Melur (melanin free), KB-3 carcinoma cell line (non-melanoma) and B16-F10 melanoma cell line were used to evaluate the uptake of the radiotracers.
Collapse
Affiliation(s)
- U Seddik
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt
| | - H Aglan
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt
| | - G Trencsényi
- Department of Nuclear Medicine, Medical Center, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - J P Szabó
- Department of Nuclear Medicine, Medical Center, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - I Kertész
- Department of Nuclear Medicine, Medical Center, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - S A Kandil
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt.
| |
Collapse
|
26
|
Wang Y, Li M, Zhang Y, Zhang F, Liu C, Song Y, Zhang Y, Lan X. Detection of melanoma metastases with PET—Comparison of 18 F-5-FPN with 18 F–FDG. Nucl Med Biol 2017; 50:33-38. [DOI: 10.1016/j.nucmedbio.2017.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
|
27
|
Raji I, Ahluwalia K, Oyelere AK. Design, synthesis and evaluation of antiproliferative activity of melanoma-targeted histone deacetylase inhibitors. Bioorg Med Chem Lett 2017; 27:744-749. [PMID: 28131715 PMCID: PMC5314971 DOI: 10.1016/j.bmcl.2017.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
The clinical validation of histone deacetylase inhibition as a cancer therapeutic modality has stimulated interest in the development of new generation of potent and tumor selective histone deacetylase inhibitors (HDACi). With the goal of selective delivery of the HDACi to melanoma cells, we incorporated the benzamide, a high affinity melanin-binding template, into the design of HDACi to generate a new series of compounds 10a-b and 11a-b which display high potency towards HDAC1 and HDAC6. However, these compounds have attenuated antiproliferative activities relative to the untargeted HDACi. An alternative strategy furnished compound 14, a prodrug bearing the benzamide template linked via a labile bond to a hydroxamate-based HDACi. This pro-drug compound showed promising antiproliferative activity and warrant further study.
Collapse
Affiliation(s)
- Idris Raji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Kabir Ahluwalia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
28
|
Al-Karmi S, Albu SA, Vito A, Janzen N, Czorny S, Banevicius L, Nanao M, Zubieta J, Capretta A, Valliant JF. Preparation of an18F-Labeled Hydrocyanine Dye as a Multimodal Probe for Reactive Oxygen Species. Chemistry 2016; 23:254-258. [PMID: 27768812 DOI: 10.1002/chem.201604473] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Salma Al-Karmi
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Silvia A. Albu
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Alyssa Vito
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Shannon Czorny
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Laura Banevicius
- Centre for Probe Development and Commercialization; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Max Nanao
- European Molecular Biology Laboratory; Grenoble Outstation; 71 Avenue des Martyrs, CS 90181 38042 Grenoble Cedex 9 France
| | - Jon Zubieta
- Department of Chemistry; Syracuse University; Syracuse NY 13244 USA
| | - Alfredo Capretta
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - John F. Valliant
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
- Centre for Probe Development and Commercialization; 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
29
|
Rathmann SM, Janzen N, Valliant JF. Synthesis, radiolabelling, and biodistribution studies of triazole derivatives for targeting melanoma. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular probes that target specific markers expressed in solid tumours are in demand for cancer imaging and radionuclide therapy applications. The synthesis, characterization, and in vivo evaluation of radioiodinated triazoles designed as probes to target melanoma are described here. Compounds were prepared using a thermal click reaction between ethynylstannane and methyl 2-azidoacetate, resulting in preferential formation of the corresponding 1,4-tin triazole. The primary amine of various targeting vectors was then coupled to the resulting tin triazole methyl ester. These precursors were labelled with no carrier added 123I or 125I and purified by high performance liquid chromatography to give isolated radiochemical yields between 6% and 51% and radiochemical purities of >95% in all cases. Among the evaluated compounds, N-(2-diethylamino-ethyl)-2-(4-iodo-[1,2,3]triazol-1-yl)acetamide (7a) and N-(1-benzylpiperidin-4-yl)-2-(4-iodo-1H-1,2,3-triazol-1-yl)acetamide (7d) showed the most promising in vivo data, and their 123I-labelled forms were used in single photon emission computed tomography computed tomography (SPECT–CT) imaging studies. The imaging data showed excellent tumour visualization with a very high signal to noise ratio.
Collapse
Affiliation(s)
- Stephanie M. Rathmann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
30
|
Brugarolas P, Freifelder R, Cheng SH, DeJesus O. Synthesis of meta-substituted [(18)F]3-fluoro-4-aminopyridine via direct radiofluorination of pyridine N-oxides. Chem Commun (Camb) 2016; 52:7150-2. [PMID: 27216991 PMCID: PMC4950977 DOI: 10.1039/c6cc02362b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Due to their electron-rich aromatic structure, nucleophilic (radio)fluorination of pyridines is challenging, especially at the meta position. In this paper, we describe the first example of direct fluorination of a pyridine N-oxide to produce a meta fluorinated pyridine. Specifically, fluorination of 3-bromo-4-nitropyridine N-oxide produced in several minutes 3-fluoro-4-nitropyridine N-oxide in moderate yield at room temperature. This intermediate compound was later converted to 3-fluoro-4-aminopyridine easily by catalytic hydrogenation. Furthermore, this approach was successfully applied for labeling with fluorine-18. The use of pyridine N-oxides for the preparation of fluoropyridines is unprecedented in the chemical literature and has the potential to offer a new way for the synthesis of these important structures in pharmaceuticals and radiopharmaceuticals.
Collapse
Affiliation(s)
- P Brugarolas
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
31
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
32
|
Feng H, Xia X, Li C, Song Y, Qin C, Zhang Y, Lan X. TYR as a multifunctional reporter gene regulated by the Tet-on system for multimodality imaging: an in vitro study. Sci Rep 2015; 5:15502. [PMID: 26483258 PMCID: PMC4611178 DOI: 10.1038/srep15502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/24/2015] [Indexed: 12/04/2022] Open
Abstract
The human tyrosinase gene TYR is a multifunctional reporter gene with potential use in photoacoustic imaging (PAI), positron emission tomography (PET), and magnetic resonance imaging (MRI). We sought to establish and evaluate a reporter gene system using TYR under the control of the Tet-on gene expression system (gene expression induced by doxycycline [Dox]) as a multimodality imaging agent. We transfected TYR into human breast cancer cells (MDA-MB-231), naming the resulting cell line 231-TYR. Using non-transfected MDA-MB-231 cells as a control, we verified successful expression of TYR by 231-TYR after incubation with Dox using western blot, cellular tyrosinase activity, Masson-Fontana silver staining, and a cell immunofluorescence study, while the control cells and 231-TYR cells without Dox exposure revealed no TYR expression. Detected by its absorbance at 405 nm, increasing concentrations of melanin correlated positively with Dox concentration and incubation time. TYR expression by Dox-induced transfected cells shortened MRI T1 and T2 relaxation times. Photoacoustic signals were easily detected in these cells. (18)F-5-fluoro-N-(2-[diethylamino]ethyl)picolinamide ((18)F-5-FPN), which targets melanin, quickly accumulated in Dox-induced 231-TYR cells. These show that TYR induction of melanin production is regulated by the Tet-on system, and TYR-containing indicator cells may have utility in multimodality imaging.
Collapse
Affiliation(s)
- Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
33
|
Feng H, Xia X, Li C, Song Y, Qin C, Liu Q, Zhang Y, Lan X. Imaging malignant melanoma with (18)F-5-FPN. Eur J Nucl Med Mol Imaging 2015; 43:113-122. [PMID: 26260649 DOI: 10.1007/s00259-015-3134-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiolabelled benzamides are attractive candidates for targeting melanoma because they bind to melanin and exhibit high tumour uptake and retention. (18)F-5-Fluoro-N-(2-[diethylamino]ethyl)picolinamide ((18)F-5-FPN), a benzamide analogue, was prepared and its pharmacokinetics and binding affinity evaluated both in vitro and in vivo to assess its clinical potential in the diagnosis and staging of melanoma. METHODS (18)F-5-FPN was prepared and purified. Its binding specificity was measured in vitro in two different melanoma cell lines, one pigmented (B16F10 cells) and one nonpigmented (A375m cells), and in vivo in mice xenografted with the same cell lines. Dynamic and static PET images using (18)F-5-FPN were obtained in the tumour-bearing mice, and the static images were also compared with those acquired with (18)F-FDG. PET imaging with (18)F-5-FPN was also performed in B16F10 tumour-bearing mice with lung metastases. RESULTS (18)F-5-FPN was successfully prepared with radiochemical yields of 5 - 10 %. Binding of (18)F-5-FPN to B16F10 cells was much higher than to A375m cells. On dynamic PET imaging B16F10 tumours were visible about 1 min after injection of the tracer, and the uptake gradually increased over time. (18)F-5-FPN was rapidly excreted via the kidneys. B16F10 tumours were clearly visible on static images acquired 1 and 2 h after injection, with high uptake values of 24.34 ± 6.32 %ID/g and 16.63 ± 5.41 %ID/g, respectively, in the biodistribution study (five mice). However, there was no visible uptake by A375m tumours. (18)F-5-FPN and (18)F-FDG PET imaging were compared in B16F10 tumour xenografts, and the tumour-to-background ratio of (18)F-5-FPN was ten times higher than that of (18)F-FDG (35.22 ± 7.02 vs. 3.29 ± 0.53, five mice). (18)F-5-FPN PET imaging also detected simulated lung metastases measuring 1 - 2 mm. CONCLUSION (18)F-5-FPN specifically targeted melanin in vitro and in vivo with high retention and affinity and favourable pharmacokinetics. (18)F-5-FPN may be an ideal molecular probe for melanoma diagnosis and staging.
Collapse
Affiliation(s)
- Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| |
Collapse
|
34
|
Lau J, Liu Z, Lin KS, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM, Bénard F. Trimeric Radiofluorinated Sulfonamide Derivatives to Achieve In Vivo Selectivity for Carbonic Anhydrase IX–Targeted PET Imaging. J Nucl Med 2015. [DOI: 10.2967/jnumed.114.153288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Vectors for the delivery of radiopharmaceuticals in cancer therapeutics. Ther Deliv 2015; 5:893-912. [PMID: 25337647 DOI: 10.4155/tde.14.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Internal radiation using radiopharmaceuticals promises efficient cancer therapeutics. The specificity and selectivity required for screening and pinpointing tumor cells for cell-kill has been made possible by targeted ligands based on 'magic bullet' and tracer principle- theories nearing a century. Overexpression of certain receptors has been exploited using biomolecules for targeting. The pragmatic analysis, however, is not as promising compared with the theoretical knowledge of available gamut of vectors and targets. The complex interplay of in vitro and in vivo parameters, and the effect of radionuclides involve a systematic assessment of radiopharmaceuticals as diagnostic and therapeutic agent. This review presents different vectors with their pros and cons, present status and recent design variations followed by a future perspective based on novel approaches.
Collapse
|
36
|
Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 2014; 26:1-18. [PMID: 25473848 PMCID: PMC4306521 DOI: 10.1021/bc500475e] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of (18)F into molecules of interest. The significant increase in (18)F radiotracers for PET imaging accentuates the need for simple and efficient (18)F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for (18)F labeling of small molecules and biomolecules.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
37
|
Perissinotti A, Vidal-Sicart S, Nieweg O, Valdés Olmos R. Melanoma and nuclear medicine. Melanoma Manag 2014; 1:57-74. [PMID: 30190811 DOI: 10.2217/mmt.14.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Supported by a large body of published work, the contribution of nuclear medicine technologies to the assessment of melanoma has been increasing in recent years. Lymphoscintigraphy-assisted sentinel lymph node biopsy and PET are in continuous evolution with the aid of technological imaging advances, making it possible to fuse functional and anatomic images (e.g., with SPECT/CT, PET/CT and 3D rendering systems). The development of hybrid fluorescent-radioactive tracers that enable high-quality preoperative lymphoscintigraphy and SPECT/CT, and the optimization of modern intraoperative portable imaging technologies, such as free-hand SPECT and portable γ-cameras, are important innovations that have improved sentinel lymph node identification in complex anatomical areas, such as the pelvis and head and neck. Concurrently, 18F-fluorodeoxyglucose-PET has proved its usefulness in the clinical staging and treatment decision-making process, and there is also emerging evidence regarding its utility in the evaluation of therapeutic response. The potential uses of other novel PET radiotracers could open up a new field of use for this technique. In this article, we review the current and future role of nuclear medicine in the management of melanoma.
Collapse
Affiliation(s)
- Andrés Perissinotti
- Nuclear Medicine Department, Hospital Clinic, C/Villarroel 170, 08036 Barcelona, Spain.,Nuclear Medicine Department, Hospital Clinic, C/Villarroel 170, 08036 Barcelona, Spain
| | - Sergi Vidal-Sicart
- Nuclear Medicine Department, Hospital Clinic, C/Villarroel 170, 08036 Barcelona, Spain.,Nuclear Medicine Department, Hospital Clinic, C/Villarroel 170, 08036 Barcelona, Spain
| | - Omgo Nieweg
- Melanoma Institute Australia, 40 Rocklands Road, North Sydney, NSW 2060, Australia.,Melanoma Institute Australia, 40 Rocklands Road, North Sydney, NSW 2060, Australia
| | - Renato Valdés Olmos
- Nuclear Medicine Department, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Interventional Molecular Imaging Laboratory & Nuclear Medicine Section, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Nuclear Medicine Department, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Interventional Molecular Imaging Laboratory & Nuclear Medicine Section, Department of Radiology, Leiden University Medical Hospital, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
38
|
Kiessling F. Science to practice: Cellular therapy of Parkinson disease--a new radiotracer to target transplanted dopaminergic cells with PET. Radiology 2014; 272:1-3. [PMID: 24956043 DOI: 10.1148/radiol.14140548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The article by Bu and colleagues (1) introduces N-[2-(diethylamino)ethyl]-(18)F-5-fluoropicolinamide ((18)F-P3BZA) as a promising positron emission tomography (PET) radiotracer to target transplanted porcine retinal pigment epithelial (pRPE) cells in the striatum. This strategy to monitor cellular therapy of Parkinson disease has a high translational potential and in the future may help us to better understand some of the controversial results reported in clinical trials.
Collapse
Affiliation(s)
- Fabian Kiessling
- Department of Experimental Molecular Imaging, RWTH Aachen University Pauwelsstrasse 20 52074 Aachen, Germany
| |
Collapse
|
39
|
Qin C, Cheng K, Chen K, Hu X, Liu Y, Lan X, Zhang Y, Liu H, Xu Y, Bu L, Su X, Zhu X, Meng S, Cheng Z. Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep 2014; 3:1490. [PMID: 23508226 PMCID: PMC3603217 DOI: 10.1038/srep01490] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/25/2013] [Indexed: 01/15/2023] Open
Abstract
Development of reporter genes for multimodality molecular imaging is highly important. In contrast to the conventional strategies which have focused on fusing several reporter genes together to serve as multimodal reporters, human tyrosinase (TYR)--the key enzyme in melanin production--was evaluated in this study as a stand-alone reporter gene for in vitro and in vivo photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and positron emission tomography (PET). Human breast cancer cells MCF-7 transfected with a plasmid that encodes TYR (named as MCF-7-TYR) and non-transfected MCF-7 cells were used as positive and negative controls, respectively. Melanin targeted N-(2-(diethylamino)ethyl)-18F-5-fluoropicolinamide was used as a PET reporter probe. In vivo PAI/MRI/PET imaging studies showed that MCF-7-TYR tumors achieved significant higher signals and tumor-to-background contrasts than those of MCF-7 tumor. Our study demonstrates that TYR gene can be utilized as a multifunctional reporter gene for PAI/MRI/PET both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxia Qin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tamura M, Matsui H, Hirohara S, Kakiuchi K, Tanihara M, Takahashi N, Nakai K, Kanai Y, Watabe H, Hatazawa J. Rapid Synthesis of 62Zn-Labeled S-Glycosylated Porphyrin as Positron Emission Tomography Tracers for In Vivo PET Imaging. CHEM LETT 2014. [DOI: 10.1246/cl.140056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Shiho Hirohara
- Department of Chemical and Biological Engineering, Ube National Collage of Technology
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST)
| | - Kiyomi Kakiuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST)
| | - Masao Tanihara
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST)
| | | | - Kozi Nakai
- Graduate School of Science, Osaka University
| | - Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University
| | - Hiroshi Watabe
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University
- Department of Nuclear Medicine, WPI Immunology Frontier Research Center, Osaka University
| |
Collapse
|
41
|
Bu L, Li R, Liu H, Feng W, Xiong X, Zhao H, Vollrath D, Shen B, Cheng Z. Intrastriatal transplantation of retinal pigment epithelial cells for the treatment of Parkinson disease: in vivo longitudinal molecular imaging with 18F-P3BZA PET/CT. Radiology 2014; 272:174-83. [PMID: 24758555 DOI: 10.1148/radiol.14132042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the performance of N-[2-(diethylamino)ethyl]-(18)F-5-fluoropicolinamide ((18)F-P3BZA) for visualizing porcine retinal pigment epithelium (pRPE) cells transplanted in the striatum for the treatment of Parkinson disease and to monitor the long-term activity of implanted pRPE cells by means of (18)F-P3BZA positron emission tomography (PET)/computed tomography (CT) in vivo. MATERIALS AND METHODS Animal work was conducted in accordance with the administrative panel on laboratory animal care. In vitro cell uptake of (18)F-P3BZA was determined with incubation of melanotic pRPE or amelanotic ARPE-19 cells with (18)F-P3BZA. To visualize the implanted pRPE cells in vivo, normal rats (four per group) were injected with pRPE or ARPE-19 cells attached to gelatin microcarriers in the left striatum and with control gelatin microcarriers in the right striatum and followed up with small animal PET/CT. Longitudinal PET/CT scans were acquired in 12 rats up to 16 days after surgery. Postmortem analysis, which included autoradiography and hematoxylin-eosin, Fontana-Masson, and immunofluorescence staining, was performed. Data were compared with the Student t test, analysis of variance, and regression analysis. RESULTS (18)F-P3BZA accumulated in pRPE cells effectively (3.48% of the injected dose [ID] per gram of brain tissue ± 0.58 at 1 hour after injection of the probe at 2 days after surgery in vivo) but not in control ARPE-19 cells (P < .05). Longitudinal PET/CT scans revealed that the activity of implanted pRPE cells decreased over time, as evidenced by a reduction in (18)F-P3BZA uptake (3.39% ID/g ± 0.18, 2.49% ID/g ± 0.41, and 1.20% ID/g ± 0.13 at days 2, 9, and 16, respectively; P < .05). Postmortem analysis helped confirm the results of in vivo imaging. CONCLUSION (18)F-P3BZA PET/CT is a feasible technique for visualizing and detecting the activity of implanted RPE cells in vivo.
Collapse
Affiliation(s)
- Lihong Bu
- From the Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, 1201 Welch Rd, Lucas Center, Room P095, Stanford, CA 94305-5484 (L.B., R.L., H.L., Z.C.); Molecular Imaging Center, Department of Radiology, The 4th Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China (L.B., R.L., B.S.); and Departments of Genetics (W.F., D.V.) and Neurosurgery (X.X., H.Z.), School of Medicine, Stanford University, Stanford, Calif
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qin C, Liu H, Chen K, Hu X, Ma X, Lan X, Zhang Y, Cheng Z. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med 2014; 55:812-7. [PMID: 24627435 DOI: 10.2967/jnumed.113.133850] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Human copper transporter 1 (CTR1) is overexpressed in a variety of cancers. This study aimed to evaluate the use of (64)CuCl2 as a theranostic agent for PET and radionuclide therapy of malignant melanoma. METHODS CTR1 expression levels were detected by Western blot analysis of a group of tumor cell lines. Two melanoma cell lines (B16F10 and A375M) that highly expressed CTR1 were then selected to study the uptake and efflux of (64)CuCl2. Mice bearing B16F10 or A375M tumors (n = 4 for each group) were subjected to 5 min of static whole-body PET scans at different time points after intravenous injection of (64)CuCl2. Dynamic scans were also obtained for B16F10 tumor-bearing mice. All mice were sacrificed at 72 h after injection of (64)CuCl2, and biodistribution studies were performed. Mice bearing B16F10 or A375M tumors were further subjected to (64)CuCl2 radionuclide therapy. Specifically, when the tumor size reached 0.5-0.8 cm in diameter, tumor-bearing mice were systemically administered (64)CuCl2 (74 MBq) or phosphate-buffered saline, and tumor sizes were monitored over the treatment period. RESULTS CTR1 was found to be overexpressed in the cancer cell lines tested at different levels, and high expression levels in melanoma cells and tissues were observed (melanotic B16F10 and amelanotic A375M). (64)CuCl2 displayed high and specific uptake in B16F10 and A375M cells. In vivo (64)CuCl2 PET imaging demonstrated that both B16F10 and A375M tumors were clearly visualized. Radionuclide treatment studies showed that the tumor growth in both the B16F10 and the A375M models under (64)CuCl2 treatment were much slower than that of the control group. CONCLUSION Both melanotic and amelanotic melanomas (B16F10 and A375M) tested were found to overexpress CTR1. The tumors can be successfully visualized by (64)CuCl2 PET and further treated by (64)CuCl2, highlighting the high potential of using (64)CuCl2 as a theranostic agent for the management of melanoma.
Collapse
Affiliation(s)
- Chunxia Qin
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, California; and
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu H, Liu S, Miao Z, Jiang H, Deng Z, Hong X, Cheng Z. A novel aliphatic 18F-labeled probe for PET imaging of melanoma. Mol Pharm 2013; 10:3384-91. [PMID: 23927458 DOI: 10.1021/mp400225s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiofluorinated benzamide and nicotinamide analogues are promising molecular probes for the positron emission tomography (PET) imaging of melanoma. Compounds containing aromatic (benzene or pyridine) and N,N-diethylethylenediamine groups have been successfully used for development of melanin targeted PET and single-photon emission computed tomography (SPECT) imaging agents for melanoma. The objective of this study was to determine the feasibility of using aliphatic compounds as a molecular platform for the development of a new generation of PET probes for melanoma detection. An aliphatic N,N-diethylethylenediamine precursor was directly coupled to a radiofluorination synthon, p-nitrophenyl 2-(18)F-fluoropropionate ((18)F-NFP), to produce the probe N-(2-(diethylamino)ethyl)-2-(18)F-fluoropropanamide ((18)F-FPDA). The melanoma-targeting ability of (18)F-FPDA was further evaluated both in vitro and in vivo through cell uptake assays, biodistribution studies, and small animal PET imaging in C57BL/6 mice bearing B16F10 murine melanoma tumors. Beginning with the precursor (18)F-NFP, the total preparation time for (18)F-FPDA, including the final high-performance liquid chromatography purification step, was approximately 30 min, with a decay-corrected radiochemical yield of 79.8%. The melanin-targeting specificity of (18)F-FPDA was demonstrated by significantly different uptake rates in tyrosine-treated and untreated B16F10 cells in vitro. The tumor uptake of (18)F-FPDA in vivo reached 2.65 ± 0.48 %ID/g at 2 h postinjection (p.i.) in pigment-enriched B16F10 xenografts, whereas the tumor uptake of (18)F-FPDA was close to the background levels, with rates of only 0.37 ± 0.07 %ID/g at 2 h p.i. in the nonpigmented U87MG tumor mouse model. Furthermore, small animal PET imaging studies revealed that (18)F-FPDA specifically targeted the melanotic B16F10 tumor, yielding a tumor-to-muscle ratio of approximately 4:1 at 1 h p.i. and 7:1 at 2 h p.i. In summary, we report the development of a novel (18)F-labeled aliphatic compound for melanoma imaging that can be easily synthesized in high yields using the radiosynthon (18)F-NFP. The PET probe (18)F-FPDA exhibits high B16F10 tumor-targeting efficacy and favorable in vivo pharmacokinetics. Our study demonstrates that aliphatic compounds can be used as a new generation molecular platform for the development of novel melanoma targeting agents. Further evaluation and optimization of (18)F-FPDA for melanin targeted molecular imaging are therefore warranted.
Collapse
Affiliation(s)
- Hongguang Liu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University , California, 94305-5344, United States
| | | | | | | | | | | | | |
Collapse
|