1
|
Gielecińska A, Kciuk M, Mujwar S, Celik I, Kołat D, Kałuzińska-Kołat Ż, Kontek R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023; 12:986. [PMID: 37048059 PMCID: PMC10092955 DOI: 10.3390/cells12070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Continuous monitoring of the population's health is the main method of learning about disease prevalence. National and international data draw attention to the persistently high rates of cancer incidence. This necessitates the intensification of efforts aimed at developing new, more effective chemotherapeutic and chemopreventive drugs. Plants represent an invaluable source of natural substances with versatile medicinal properties. Multidirectional activities exhibited by natural substances and their ability to modulate key signaling pathways, mainly related to cancer cell death, make these substances an important research direction. This review summarizes the information regarding plant-derived chemotherapeutic drugs, including their mechanisms of action, with a special focus on selected anti-cancer drugs (paclitaxel, irinotecan) approved in clinical practice. It also presents promising plant-based drug candidates currently being tested in clinical and preclinical trials (betulinic acid, resveratrol, and roburic acid).
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Tsuzuki S, Kimoto Y, Marui K, Lee S, Inoue K, Sasaki T. Application of a novel fluorescence intensity assay: identification of distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149-168 of a transmembrane receptor CD36. Biosci Biotechnol Biochem 2022; 86:509-518. [PMID: 35102395 DOI: 10.1093/bbb/zbac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022]
Abstract
The cluster of differentiation 36 (CD36) is a transmembrane receptor expressed in various cells and has diverse lipid ligands. The expression of CD36 in the murine olfactory epithelium and its ability to recognize certain species of fatty aldehydes, a class of odor-active volatile compounds, have suggested a role for this receptor in the capture of specific odorants in the nasal cavity of mammals. However, the spectrum of CD36-recognizable volatile compounds is poorly understood. In this study, we employed our recently devised assay with fluorescently labeled peptides as probes (fluorescence intensity assay) and identified distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149-168 of CD36 (eg dodecyl and tetradecyl acetates). The present findings demonstrate the utility of our assay for the discovery of novel CD36 ligands and support the notion that the receptor functions as a captor of volatile compounds in the mammalian olfactory system.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Yusaku Kimoto
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Keita Marui
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Shinhye Lee
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| |
Collapse
|
3
|
Tsuzuki S, Kimoto Y, Yamasaki M, Sugawara T, Manabe Y, Inoue K, Sasaki T. Assessment of direct binding interaction between CD36 and its potential lipid ligands using a peptide mimic of the receptor labeled with a fluorophore. Biomed Res 2021; 42:181-191. [PMID: 34544994 DOI: 10.2220/biomedres.42.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cluster of differentiation 36 (CD36) is a cell-surface receptor that recognizes diverse substances. We have presented indirect evidence that a short segment of the receptor comprising amino acids 149-168 contains a site for binding of its lipid ligands (e.g., distinct fatty acids and aldehydes). However, experimental support for their direct interactions is yet to be achieved. For this, we devised a fluorescence intensity assay, where a synthetic peptide consisting of CD36 amino acids 149-168 labeled with fluorescein isothiocyanate (FITC-CD36149-168) and its variant peptides were used as positive and negative probes, respectively. First, we obtained results indicating that 1-palmitoyl-2-(5-keto-6-octenedioyl)phosphatidylcholine (an established CD36 ligand) but not 1-palmitoyl-2-arachidonyl-phosphatidylcholine (a non-ligand of the receptor) bound in a saturable and specific manner to FITC-CD36149-168. Strikingly, the assay allowed us to provide the first evidence supporting direct and specific binding between the CD36 segment and fatty aldehydes (e.g., Z-11-hexadecenal). However, this method failed to illustrate specific interactions of the segment with fatty acids, such as oleic acid. Nonetheless, our findings offer further insight into the biologically relevant ligands and the role of CD36. In addition, we suggest that this fluorescence-based technique provides a convenient means to evaluate protein (peptide)-lipid interactions.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Kimoto
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Masayuki Yamasaki
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
4
|
Seca AML, Pinto DCGA. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int J Mol Sci 2018; 19:ijms19010263. [PMID: 29337925 PMCID: PMC5796209 DOI: 10.3390/ijms19010263] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells and is one of the leading causes of mortality. The cases reported and the predictions for the near future are unthinkable. Food and Drug Administration data showed that 40% of the approved molecules are natural compounds or inspired by them, from which, 74% are used in anticancer therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid, diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed. Focusing on the ones that are in clinical trial development or already used in anticancer therapy, therefore successful cases such as paclitaxel and homoharringtonine (in clinical use), curcumin and ingenol mebutate (in clinical trials) will be addressed. Each compound’s natural source, the most important steps in their discovery, their therapeutic targets, as well as the main structural modifications that can improve anticancer properties will be discussed in order to show the role of plants as a source of effective and safe anticancer drugs.
Collapse
Affiliation(s)
- Ana M L Seca
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal.
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
6
|
Systematic discovery of molecular probes targeting multiple non-orthosteric and spatially distinct sites in the botulinum neurotoxin subtype A (BoNT/A). Mol Cell Probes 2015; 29:135-43. [PMID: 25745992 DOI: 10.1016/j.mcp.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/29/2023]
Abstract
The development of molecular probes targeting proteins has traditionally relied on labeling compounds already known to bind to the protein of interest. These known ligands bind to orthosteric or allosteric sites in their target protein as a way to control their activity. Binding pockets other than known orthosteric or allosteric sites may exist that are large enough to accommodate a ligand without significantly disrupting protein activity. Such sites may provide opportunities to discriminate between subtypes or other closely related proteins, since they are under less evolutionary pressure to be conserved. The Protein Scanning with Virtual Ligand Screening (PSVLS) approach was previously used to identify a novel inhibitor and a fluorescent probe against the catalytic site of the botulinum neurotoxin subtype A (BoNT/A). PSVLS screens compound databases against multiple sites within a target protein, and the results for all the sites probed against BoNT/A, not only the catalytic site, are available online. Here, we analyze the PSVLS data for multiple sites in order to identify molecular probes with affinity for binding pockets other than the catalytic site of BoNT/A. BoNT/A is a large protein with a light (LC) and a heavy (HC) chain that can be assayed separately. We used scintillation proximity assay (SPA) to test experimentally 5 probe candidates predicted computationally to have affinity for different non-orthosteric binding regions within the HC and LC, and one compound predicted not to have affinity for either domain. The binding profiles obtained experimentally confirmed the targeting of multiple and spatially distinct pockets within BoNT/A. Moreover, inhibition assay results indicate that some of these probes do not significantly interfere with the catalytic activity of BoNT/A.
Collapse
|
7
|
Kamstra RL, Freywald A, Floriano WB. N-(2,4)-dinitrophenyl-L-arginine Interacts with EphB4 and Functions as an EphB4 Kinase Modulator. Chem Biol Drug Des 2015; 86:476-86. [DOI: 10.1111/cbdd.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Rhiannon L. Kamstra
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
- Thunder Bay Regional Research Institute; Thunder Bay ON P7A 7T1 Canada
| | - Andrew Freywald
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 0W0 Canada
| | - Wely B. Floriano
- Department of Chemistry; Lakehead University; Thunder Bay ON P7B 5E1 Canada
- Thunder Bay Regional Research Institute; Thunder Bay ON P7A 7T1 Canada
| |
Collapse
|
8
|
Kamstra RL, Dadgar S, Wigg J, Chowdhury MA, Phenix CP, Floriano WB. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes. J Comput Aided Mol Des 2014; 28:1129-42. [PMID: 25150502 DOI: 10.1007/s10822-014-9789-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.
Collapse
Affiliation(s)
- Rhiannon L Kamstra
- Department of Chemistry, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | | | | | | | | | | |
Collapse
|