1
|
Paulis A, Onali A, Vidalain PO, Lotteau V, Jaquemin C, Corona A, Distinto S, Delogu GL, Tramontano E. Identification of new benzofuran derivatives as STING agonists with broad-spectrum antiviral activity. Virus Res 2024; 347:199432. [PMID: 38969014 PMCID: PMC11294726 DOI: 10.1016/j.virusres.2024.199432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The Stimulator of Interferon Genes (STING) is involved in cytosolic DNA sensing and type I Interferons (IFN-I) induction. Aiming to identify new STING agonists with antiviral activity and given the known biological activity of benzothiazole and benzimidazole derivatives, a series of benzofuran derivatives were tested for their ability to act as STING agonists, induce IFN-I and inhibit viral replication. Compounds were firstly evaluated in a gene reporter assay measuring luciferase activity driven by the human IFN-β promoter in cells expressing exogenous STING (HEK293T). Seven of them were able to induce IFN-β transcription while no induction of the IFN promoter was observed in the presence of a mutated and inactive STING, showing specific protein-ligand interaction. Docking studies were performed to predict their putative binding mode. The best hit compounds were then tested on human coronavirus 229E replication in BEAS-2B and MRC-5 cells and three derivatives showed EC50 values in the μM range. Such compounds were also tested on SARS-CoV-2 replication in BEAS-2B cells and in Calu-3 showing they can inhibit SARS-CoV-2 replication at nanomolar concentrations. To further confirm their IFN-dependent antiviral activity, compounds were tested to verify their effect on phospho-IRF3 nuclear localization, that was found to be induced by benzofuran derivatives, and SARS-CoV-2 replication in Vero E6 cells, lacking IFN production, founding them to be inactive. In conclusion, we identified benzofurans as STING-dependent immunostimulatory compounds and host-targeting inhibitors of coronaviruses representing a novel chemical scaffold for the development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- A Paulis
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - A Onali
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - P O Vidalain
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - V Lotteau
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - C Jaquemin
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - A Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - S Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - G L Delogu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - E Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| |
Collapse
|
2
|
Osmani̇ye D, Sağlik BN, Levent S, Çevi̇k UACAR, Ilgin S, Yurttaş L, Özkay Y, Karaburun AC, Kaplancikli ZA, Gundogdu-Karaburun N. Design, Synthesis, and Biological Effect Studies of Novel Benzofuran-Thiazolylhydrazone Derivatives as Monoamine Oxidase Inhibitors. ACS OMEGA 2024; 9:11388-11397. [PMID: 38496951 PMCID: PMC10938434 DOI: 10.1021/acsomega.3c07703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024]
Abstract
In recent studies, monoamine oxidase (MAO) inhibitory effects of various thiazolylhydrazone derivatives have been demonstrated. Within the scope of this study, 12 new compounds containing thiazolylhydrazone groups were synthesized. The structures of the obtained compounds were elucidated by 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS) methods. The inhibitory effects of the final compounds on MAO enzymes were investigated by means of in vitro methods. In addition to enzyme inhibition studies, enzyme kinetic studies of compounds with high inhibitory activity were examined, and their effects on substrate-enzyme relations were investigated. Additionaly, cytotoxicity tests were carried out to determine the toxicities of the selected compounds, and the compounds were found to be nontoxic. The interactions of the active compound with the active site of the enzyme were characterized by in silico methods.
Collapse
Affiliation(s)
- Derya Osmani̇ye
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Begüm Nurpelin Sağlik
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ulviye ACAR Çevi̇k
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Sinem Ilgin
- Department of Pharmaceutical
Toxicology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty
of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmet Cagri Karaburun
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancikli
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Nalan Gundogdu-Karaburun
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
3
|
Liu F, Sohail A, Ablajan K. Metal-Free Oxidative Formation of Aryl Esters by Catalytic Coupling of Acyl and Sulfonyl Chlorides with Arylboronic Acids. J Org Chem 2024; 89:27-33. [PMID: 38096383 DOI: 10.1021/acs.joc.3c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A practical and efficient synthesis of aryl esters was developed through metal-free oxidation. This reaction employs stable and readily available acyl or sulfonyl chlorides and arylboronic acids as the starting materials and proceeds under mild reaction conditions without additional precious metal catalysts. This new strategy exhibits broad substrate tolerance and operational simplicity and gives diverse aryl esters in moderate to high yields.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Akbar Sohail
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
4
|
Luu TG, Kim HK. Visible-light-driven reactions for the synthesis of sulfur dioxide-inserted compounds: generation of S-F, S-O, and S-N bonds. RSC Adv 2023; 13:14412-14434. [PMID: 37180001 PMCID: PMC10172883 DOI: 10.1039/d3ra02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sulfur dioxide-containing compounds such as sulfonyl fluorides, sulfonyl esters, and sulfonyl amides are important structural frameworks in many natural products, pharmaceuticals, and organic compounds. Thus, synthesis of these molecules is a very valuable research topic in organic chemistry. Various synthetic methods to introduce SO2 groups into the structure of organic compounds have been developed for the synthesis of biologically and pharmaceutically useful compounds. Recently, visible-light-driven reactions were carried out to create SO2-X (X = F, O, N) bonds, and their effective synthetic approaches were demonstrated. In this review, we summarized recent advances in visible-light-mediated synthetic strategies for generation of SO2-X (X = F, O, N) bonds for various synthetic applications along with proposed reaction mechanisms.
Collapse
Affiliation(s)
- Truong Giang Luu
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk, National University-Biomedical Research, Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk, National University-Biomedical Research, Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
5
|
Zhong G, Guo J, Pang C, Su D, Tang C, Jing L, Zhang F, He P, Yan Y, Chen Z, Liu J, Jiang N. Novel AP2238-clorgiline hybrids as multi-target agents for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem 2023; 130:106224. [DOI: 10.1016/j.bioorg.2022.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
6
|
Sudevan ST, Oh JM, Abdelgawad MA, Abourehab MAS, Rangarajan TM, Kumar S, Ahmad I, Patel H, Kim H, Mathew B. Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Sci Rep 2022; 12:22404. [PMID: 36575270 PMCID: PMC9794710 DOI: 10.1038/s41598-022-26929-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The inhibitory action of fifteen benzyloxy ortho/para-substituted chalcones (B1-B15) was evaluated against human monoamine oxidases (hMAOs). All the molecules inhibited hMAO-B isoform more potently than hMAO-A. Furthermore, the majority of the molecules showed strong inhibitory actions against hMAO-B at 10 μM level with residual activities of less than 50%. Compound B10 has an IC50 value of 0.067 μM, making it the most potent inhibitor of hMAO-B, trailed by compound B15 (IC50 = 0.12 μM). The thiophene substituent (B10) in the A-ring exhibited the strongest hMAO-B inhibition structurally, however, increased residue synthesis did not result in a rise in hMAO-B inhibition. In contrast, the benzyl group at the para position of the B-ring displayed more hMAO-B inhibition than the other positions. Compounds B10 and B15 had relatively high selectivity index (SI) values for hMAO-B (504.791 and 287.600, respectively). Ki values of B10 and B15 were 0.030 ± 0.001 and 0.033 ± 0.001 μM, respectively. The reversibility study showed that B10 and B15 were reversible inhibitors of hMAO-B. PAMPA assay manifested that the benzyloxy chalcones (B10 and B15) had a significant permeability and CNS bioavailability with Pe value higher than 4.0 × 10-6 cm/s. Both compounds were stabilized in protein-ligand complexes by the π-π stacking, which enabled them to bind to the hMAO-B enzyme's active site incredibly effectively. The hMAO-B was stabilized by B10- and B15-hMAO-B complexes, with binding energies of - 74.57 and - 87.72 kcal/mol, respectively. Using a genetic algorithm and multiple linear regression, the QSAR model was created. Based on the best 2D and 3D descriptor-based QSAR model, the following statistics were displayed: R2 = 0.9125, Q2loo = 0.8347. These findings imply that B10 and B15 are effective, selective, and reversible hMAO-B inhibitors.
Collapse
Affiliation(s)
- Sachithra Thazhathuveedu Sudevan
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Jong Min Oh
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Mohamed A. Abdelgawad
- grid.440748.b0000 0004 1756 6705Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72341 Saudi Arabia ,grid.411662.60000 0004 0412 4932Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mohammed A. S. Abourehab
- grid.412832.e0000 0000 9137 6644Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - T. M. Rangarajan
- grid.8195.50000 0001 2109 4999Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, 110021 India
| | - Sunil Kumar
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002 Maharashtra India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Maharashtra India
| | - Hoon Kim
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Bijo Mathew
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
7
|
Pisani L, Catto M, Muncipinto G, Nicolotti O, Carrieri A, Rullo M, Stefanachi A, Leonetti F, Altomare C. A twenty-year journey exploring coumarin-based derivatives as bioactive molecules. Front Chem 2022; 10:1002547. [PMID: 36300022 PMCID: PMC9590106 DOI: 10.3389/fchem.2022.1002547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The coumarin core (i.e., 1-benzopyran-2 (2H)-one) is a structural motif highly recurrent in both natural products and bioactive molecules. Indeed, depending on the substituents and branching positions around the byciclic core, coumarin-containing compounds have shown diverse pharmacological activities, ranging from anticoagulant activities to anti-inflammatory, antimicrobial, anti-HIV and antitumor effects. In this survey, we have reported the main scientific results of the 20-years investigation on the coumarin core, exploited by the research group headed by Prof. Angelo Carotti (Bari, Italy) either as a scaffold or a pharmacophore moiety in designing novel biologically active small molecules.
Collapse
Affiliation(s)
- Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Angela Stefanachi, Francesco Leonetti,
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Angela Stefanachi, Francesco Leonetti,
| | - Cosimo Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Lippe D, Elghawy O, Zucker AM, Yanagawa ESK, Mathews E, Ahmed YG, D’Elia PN, Bimson S, Walvoord RR. Synthesis of 7-Aminocoumarins from 7-Hydroxycoumarins via Amide Smiles Rearrangement. ACS OMEGA 2022; 7:35269-35279. [PMID: 36211046 PMCID: PMC9535735 DOI: 10.1021/acsomega.2c04653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
N-Substituted 7-aminocoumarins can be synthesized from readily available 7-hydroxycoumarins via alkylation with α-bromoacetamides and subsequent tandem O → N Smiles rearrangement-amide hydrolysis. The key rearrangement sequence proceeds under mild conditions to provide convenient access to various N-alkyl and N-aryl products in moderate to high yields. The process is operationally simple, inexpensive, transition-metal-free, and can be telescoped into a one-pot process.
Collapse
|
9
|
Erol M, Celik I, Sağlık BN, Karayel A, Mellado M, Mella J. Synthesis, molecular modeling, 3D-QSAR and biological evaluation studies of new benzimidazole derivatives as potential MAO-A and MAO-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Functionalization of Sulfonic Acid to Sulfonic Ester Using Diazo Compound under Mild Reaction Conditions in the Absence of Additives. ChemistrySelect 2022. [DOI: 10.1002/slct.202202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Luu TG, Bui TT, Kim HK. Visible-light-induced one-pot synthesis of sulfonic esters via multicomponent reaction of arylazo sulfones and alcohols. RSC Adv 2022; 12:17499-17504. [PMID: 35765441 PMCID: PMC9190201 DOI: 10.1039/d2ra02656b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023] Open
Abstract
Sulfonic ester is a chemical structure common to many organic molecules, including biologically active compounds. Herein, a visible-light-induced synthetic method to prepare aryl sulfonic ester from arylazo sulfones was developed. In the present study, a one-pot reaction was carried out using arylazo sulfones, DABSO (DABCO·(SO2)2), and alcohols in the presence of CuI as a coupling catalyst and HCl as an additive to yield sulfonic esters via multicomponent reaction. This synthetic method afforded a wide range of sulfonic esters with high yields under mild conditions.
Collapse
Affiliation(s)
- Truong Giang Luu
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Tien Tan Bui
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
12
|
Korkmaz A, Bursal E. Synthesis, Biological Activity and Molecular Docking Studies of Novel Sulfonate Derivatives Bearing Salicylaldehyde. Chem Biodivers 2022; 19:e202200140. [PMID: 35561156 DOI: 10.1002/cbdv.202200140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Enzyme activity alterations have been associated with many metabolism disorders and have crucial roles in the pathogenesis of some diseases. Tyrosinase is a key enzyme in melanin biosynthesis, which is responsible for skin pigmentation to protect the skin from solar radiation. Pancreatic lipase has been considered a key enzyme for the treatment of obesity. Herein, we reported the synthesis and enzyme inhibitions of a series of sulfonates as possible tyrosinase and pancreatic lipase inhibitors. According to the calculated IC50 values, compound 3f (74.1±11.1 μM) and compound 3c (86.6±6.9 μM) were determined to be the best inhibitors among the synthesized compounds for the tyrosinase and pancreatic lipase enzymes, respectively. The approach yielded at extremely high level by creating very flexible structural domains for the chemically modified groups. The structural characterization of the target molecules was implemented by 1 H-NMR, 13 C-NMR, and HR-MS analyses. Also, molecular docking studies of the synthesized compounds with tyrosinase and pancreatic lipase enzymes were conducted using AutoDock Vina software. Additionally, the studies of the absorption distribution, metabolism, and excretion (ADME) were performed to uncover the target compounds' pharmacokinetics, drug similarities, and medicinal properties of the novel sulfonate derivatives bearing salicylaldehyde.
Collapse
Affiliation(s)
- Adem Korkmaz
- Faculty of Health Sciences, Muş Alparslan University, Muş, 49250, Turkey
| | - Ercan Bursal
- Faculty of Health Sciences, Muş Alparslan University, Muş, 49250, Turkey
| |
Collapse
|
13
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
14
|
Satyanarayana N, Boddu R, Sathish K, Nagaraju S, K D, Pawar R, Shirisha T, Kashinath D. Synthesis of 2-styryl-quinazoline and 3-styryl-quinoxaline based sulfonate esters via sp3 C-H activation and their evaluation for α-glucosidase inhibition. NEW J CHEM 2022. [DOI: 10.1039/d1nj05644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of 2-styryl-quinazolines and 3-styryl-quinoxaline based sulfonates is reported via sp3 C-H functionalization in the presence of triethylamine (10 mol%). The resulting compounds were tested for the α-glucosidase enzyme inhibition...
Collapse
|
15
|
Fu Z, Yang Z, Sun L, Yin J, Yi X, Cai H, Lei A. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Bisz E. Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignards with Aryl Chlorobenzenesulfonates. Molecules 2021; 26:5895. [PMID: 34641439 PMCID: PMC8510395 DOI: 10.3390/molecules26195895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Aryl sulfonate esters are versatile synthetic intermediates in organic chemistry as well as attractive architectures due to their bioactive properties. Herein, we report the synthesis of alkyl-substituted benzenesulfonate esters by iron-catalyzed C(sp2)-C(sp3) cross-coupling of Grignard reagents with aryl chlorides. The method operates using an environmentally benign and sustainable iron catalytic system, employing benign urea ligands. A broad range of chlorobenzenesulfonates as well as challenging alkyl organometallics containing β-hydrogens are compatible with these conditions, affording alkylated products in high to excellent yields. The study reveals that aryl sulfonate esters are the most reactive activating groups for iron-catalyzed alkylative C(sp2)-C(sp3) cross-coupling of aryl chlorides with Grignard reagents.
Collapse
Affiliation(s)
- Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, 45-052 Opole, Poland
| |
Collapse
|
17
|
Tian Z, Gong Q, Huang T, Liu L, Chen T. Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. J Org Chem 2021; 86:15914-15926. [PMID: 33789426 DOI: 10.1021/acs.joc.1c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical and sustainable synthesis of arylsulfonate esters has been developed through electro-oxidation. This reaction employed the stable and readily available phenols and sodium arenesulfinates as the starting materials and took place under mild reaction conditions without additional oxidants. A wide range of arylsulfonate esters including those bearing functional groups were produced in good to excellent yields. This reaction could also be conducted at a gram scale without a decrease of reaction efficiency. Those results well demonstrated the potential synthetic value of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Zhibin Tian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Qihang Gong
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Musa MA, Badisa VLD, Aghimien MO, Eyunni SVK, Latinwo LM. Identification of 7,8-dihydroxy-3-phenylcoumarin as a reversible monoamine oxidase enzyme inhibitor. J Biochem Mol Toxicol 2020; 35:e22651. [PMID: 33085988 DOI: 10.1002/jbt.22651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
We herein report the biological evaluation of 3-arylcoumarin derivatives (3a-l) as potential human monoamine oxidase-A and -B (hMAO-A and hMAO-B) inhibitors. The result indicated that 7,8-dihydroxy-3-(4-nitrophenyl)coumarin (3j) was most effective against MAO-A (inhibition concentration [IC50 ] = 6.46 ± 0.02 µM) and MAO-B (IC50 = 3.8 ± 0.3 µM) enzymes than other synthesized compounds and reference compounds (pargyline and moclobemide). Furthermore, compound (3j) showed (a) nonselectivity against hMAO enzymes, (b) reversible hMAO enzymes inhibition, and (c) neuroprotection against H2 O2 -treated human neuroblastoma (N2a) cells. Finally, a molecular modeling study revealed that the hMAO enzymes inhibitory activity of the compound (3j) may be due to the orientation where the nitro (NO2 ) group lies deep into the receptor and the phenyl ring directed toward flavin adenosine dinucleotide via hydrogen bond interaction, and possible π-π interaction with various important residues. Thus, the results of the present study demonstrate that compound (3j) can be considered as a promising scaffold for the development of hMAO-A and hMAO-B inhibitors.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Department of Chemistry, Florida A&M University, Tallahassee, Florida
| | - Veera L D Badisa
- School of the Environment, Florida A&M University, Tallahassee, Florida
| | - Monica O Aghimien
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Suresh V K Eyunni
- Department of Chemistry, Florida A&M University, Tallahassee, Florida.,College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| |
Collapse
|
19
|
Han XM, Huang F, Jiao ML, Liu HR, Zhao ZH, Zhan HQ, Guo SY. Antidepressant Activity of Euparin: Involvement of Monoaminergic Neurotransmitters and SAT1/NMDAR2B/BDNF Signal Pathway. Biol Pharm Bull 2020; 43:1490-1500. [PMID: 32788507 DOI: 10.1248/bpb.b20-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depression is the most significant risk factor for suicide, yet the causes are complex and disease mechanism remains unclear. The incidence and disability rate of depression are very high and the efficacy of some traditional antidepressants is not completely satisfactory. Recently, some studies have found that benzofurans have anti-oxidation and anti-monoamine oxidase properties, which are related to depression. Euparin is a monomer compound of benzofuran, previous work by our team found that it improves the behavior of depressed mice. However, additional antidepressant effects and mechanisms of Euparin have not been reported. In this study, the Chronic Unpredictable Mild Stress (CUMS) model of mice was used to further investigate the effect and mechanism of Euparin on depression. Results showed that Euparin (8, 16 and 32 mg/kg) reduced depression-like behavior in mice compared with the model group. Meanwhile, all doses of Euparin were found to increase the contents of monoamine neurotransmitter and decrease monoamine oxidase and reactive oxygen species (ROS) levels in brain of depression mice. Additionally, Euparin restored CUMS-induced decrease of Spermidine/Spermine N1-Acetyltransferase 1 (SAT1), N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) and brain derived neurotrophic factor (BDNF) expression. These findings demonstrate that Euparin has antidepressant properties, and its mechanism involves the SAT1/NMDAR2B/BDNF signaling pathway.
Collapse
Affiliation(s)
- Xu-Meng Han
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Feng Huang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Ming-Li Jiao
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Hui-Ru Liu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Zheng-Hang Zhao
- Department of Pharmacology, School of Basic Medicine Sciences, Xi'an Jiaotong University Health Science Center
| | - He-Qin Zhan
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Shi-Yu Guo
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| |
Collapse
|
20
|
Bhatthula BKG, Kanchani JR, Arava VR, Marata Chenna Subbarao S. A simple method for the synthesis of sulfonic esters. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1794657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Janardhan Reddy Kanchani
- Research and Development Center, Suven Life Sciences Limited, Hyderabad, India
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Veera Reddy Arava
- Research and Development Center, Suven Life Sciences Limited, Hyderabad, India
| | | |
Collapse
|
21
|
NFSI/KF mediated mild and chemoselective interconversion of aryl TBDMS ethers to their benzene sulfonate. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Hu X, Maffucci I, Contini A. Advances in the Treatment of Explicit Water Molecules in Docking and Binding Free Energy Calculations. Curr Med Chem 2020; 26:7598-7622. [DOI: 10.2174/0929867325666180514110824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Background:
The inclusion of direct effects mediated by water during the ligandreceptor
recognition is a hot-topic of modern computational chemistry applied to drug discovery
and development. Docking or virtual screening with explicit hydration is still debatable,
despite the successful cases that have been presented in the last years. Indeed, how to select
the water molecules that will be included in the docking process or how the included waters
should be treated remain open questions.
Objective:
In this review, we will discuss some of the most recent methods that can be used in
computational drug discovery and drug development when the effect of a single water, or of a
small network of interacting waters, needs to be explicitly considered.
Results:
Here, we analyse the software to aid the selection, or to predict the position, of water
molecules that are going to be explicitly considered in later docking studies. We also present
software and protocols able to efficiently treat flexible water molecules during docking, including
examples of applications. Finally, we discuss methods based on molecular dynamics
simulations that can be used to integrate docking studies or to reliably and efficiently compute
binding energies of ligands in presence of interfacial or bridging water molecules.
Conclusions:
Software applications aiding the design of new drugs that exploit water molecules,
either as displaceable residues or as bridges to the receptor, are constantly being developed.
Although further validation is needed, workflows that explicitly consider water will
probably become a standard for computational drug discovery soon.
Collapse
Affiliation(s)
- Xiao Hu
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Via Venezian, 21 20133 Milano, Italy
| | - Irene Maffucci
- Pasteur, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
| | - Alessandro Contini
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Via Venezian, 21 20133 Milano, Italy
| |
Collapse
|
23
|
Rullo M, Catto M, Carrieri A, de Candia M, Altomare CD, Pisani L. Chasing ChEs-MAO B Multi-Targeting 4-Aminomethyl-7-Benzyloxy-2 H-Chromen-2-ones. Molecules 2019; 24:E4507. [PMID: 31835376 PMCID: PMC6943664 DOI: 10.3390/molecules24244507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
A series of 4-aminomethyl-7-benzyloxy-2H-chromen-2-ones was investigated with the aim of identifying multiple inhibitors of cholinesterases (acetyl- and butyryl-, AChE and BChE) and monoamine oxidase B (MAO B) as potential anti-Alzheimer molecules. Starting from a previously reported potent MAO B inhibitor (3), we studied single-point modifications at the benzyloxy or at the basic moiety. The in vitro screening highlighted triple-acting compounds (6, 8, 9, 16, 20) showing nanomolar and selective MAO B inhibition along with IC50 against ChEs at the low micromolar level. Enzyme kinetics analysis toward AChE and docking simulations on the target enzymes were run in order to get insight into the mechanism of action and plausible binding modes.
Collapse
Affiliation(s)
| | | | | | | | | | - Leonardo Pisani
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
24
|
He Y, Huang L, Xie L, Liu P, Wei Q, Mao F, Zhang X, Huang J, Chen S, Huang C. Palladium-Catalyzed C-H Bond Functionalization Reactions Using Phosphate/Sulfonate Hypervalent Iodine Reagents. J Org Chem 2019; 84:10088-10101. [PMID: 31329431 DOI: 10.1021/acs.joc.9b01278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new and operationally simple approach for palladium-catalyzed C-H functionalization reactions utilizing an organophosphorus/sulfonate hypervalent iodine reagent as both an oxidant and the source of a functional group has been developed. Through this method, the oxidative phosphorylation-, sulfonation-, and hydroxylation of unactivated benzyl C(sp3)-H bonds, along with the hydroxylation and arylation of aryl C(sp2)-H bonds, are successfully realized under mild conditions and with excellent site-selectivity. The versatile C-OSO2R bond provides a platform for a wide array of subsequent diversification reactions.
Collapse
Affiliation(s)
| | | | | | - Peng Liu
- Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , P. R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Oklješa A, Klisurić OR, Jakimov D, Penov Gaši K, Sakač M, Jovanović-Šanta S. Structural, computational and anticancer activity studies of D-seco-17-mesyloxy androstane derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Huang C, Xiong J, Guan HD, Wang CH, Lei X, Hu JF. Discovery, synthesis, biological evaluation and molecular docking study of (R)-5-methylmellein and its analogs as selective monoamine oxidase A inhibitors. Bioorg Med Chem 2019; 27:2027-2040. [DOI: 10.1016/j.bmc.2019.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 01/23/2023]
|
27
|
Investigating alkyl nitrates as nitric oxide releasing precursors of multitarget acetylcholinesterase-monoamine oxidase B inhibitors. Eur J Med Chem 2019; 161:292-309. [DOI: 10.1016/j.ejmech.2018.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
|
28
|
Rullo M, Pisani L. 4-Hydroxycoumarins as Michael donors in asymmetric routes to polycyclic coumarins (microreview). Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2281-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Andleeb H, Khan I, Bauzá A, Tahir MN, Simpson J, Hameed S, Frontera A. A comparative experimental and theoretical investigation of hydrogen-bond, halogen-bond and π–π interactions in the solid-state supramolecular assembly of 2- and 4-formylphenyl arylsulfonates. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:816-829. [DOI: 10.1107/s2053229618008355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/06/2018] [Indexed: 11/11/2022]
Abstract
To explore the operational role of noncovalent interactions in supramolecular architectures with designed topologies, a series of solid-state structures of 2- and 4-formylphenyl 4-substituted benzenesulfonates was investigated. The compounds are 2-formylphenyl 4-methylbenzenesulfonate, C14H12O4S, 3a, 2-formylphenyl 4-chlorobenzenesulfonate, C13H9ClO4S, 3b, 2-formylphenyl 4-bromobenzenesulfonate, C13H9BrO4S, 3c, 4-formylphenyl 4-methylbenzenesulfonate, C14H12O4S, 4a, 4-formylphenyl 4-chlorobenzenesulfonate, 4b, C13H9ClO4S, and 4-formylphenyl 4-bromobenzenesulfonate, C13H9BrO4S, 4c. The title compounds were synthesized under basic conditions from salicylaldehyde/4-hydroxybenzaldehydes and various aryl sulfonyl chlorides. Remarkably, halogen-bonding interactions are found to be important to rationalize the solid-state crystal structures. In particular, the formation of O...X (X = Cl and Br) and type I X...X halogen-bonding interactions have been analyzed by means of density functional theory (DFT) calculations and characterized using Bader's theory of `atoms in molecules' and molecular electrostatic potential (MEP) surfaces, confirming the relevance and stabilizing nature of these interactions. They have been compared to antiparallel π-stacking interactions that are formed between the arylsulfonates.
Collapse
|
30
|
Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules 2018; 23:E250. [PMID: 29382051 PMCID: PMC6017103 DOI: 10.3390/molecules23020250] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Many naturally occurring substances, traditionally used in popular medicines around the world, contain the coumarin moiety. Coumarin represents a privileged scaffold for medicinal chemists, because of its peculiar physicochemical features, and the versatile and easy synthetic transformation into a large variety of functionalized coumarins. As a consequence, a huge number of coumarin derivatives have been designed, synthesized, and tested to address many pharmacological targets in a selective way, e.g., selective enzyme inhibitors, and more recently, a number of selected targets (multitarget ligands) involved in multifactorial diseases, such as Alzheimer's and Parkinson's diseases. In this review an overview of the most recent synthetic pathways leading to mono- and polyfunctionalized coumarins will be presented, along with the main biological pathways of their biosynthesis and metabolic transformations. The many existing and recent reviews in the field prompted us to make some drastic selections, and therefore, the review is focused on monoamine oxidase, cholinesterase, and aromatase inhibitors, and on multitarget coumarins acting on selected targets of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
31
|
Delogu GL, Pintus F, Mayán L, Matos MJ, Vilar S, Munín J, Fontenla JA, Hripcsak G, Borges F, Viña D. MAO inhibitory activity of bromo-2-phenylbenzofurans: synthesis, in vitro study, and docking calculations. MEDCHEMCOMM 2017; 8:1788-1796. [PMID: 30108888 PMCID: PMC6084085 DOI: 10.1039/c7md00311k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme responsible for metabolism of monoamine neurotransmitters which play an important role in brain development and function. This enzyme exists in two isoforms, and it has been demonstrated that MAO-B activity, but not MAO-A activity, increases with aging. MAO inhibitors show clinical value because besides the monoamine level regulation they reduce the formation of by-products of the MAO catalytic cycle, which are toxic to the brain. A series of 2-phenylbenzofuran derivatives was designed, synthesized and evaluated against hMAO-A and hMAO-B enzymes. A bromine substituent was introduced in the 2-phenyl ring, whereas position 5 or 7 of the benzofuran moiety was substituted with a methyl group. Most of the tested compounds inhibited preferentially MAO-B in a reversible manner, with IC50 values in the low micro or nanomolar range. The 2-(2'-bromophenyl)-5-methylbenzofuran (5) was the most active compound identified (IC50 = 0.20 μM). In addition, none of the studied compounds showed cytotoxic activity against the human neuroblastoma cell line SH-SY5Y. Molecular docking simulations were used to explain the observed hMAO-B structure-activity relationship for this type of compounds.
Collapse
Affiliation(s)
- G L Delogu
- Department of Life Sciences and Environment - Section of Pharmaceutical Sciences - University of Cagliari, 09124 Cagliari, Italy.
| | - F Pintus
- Department of Life Sciences and Environment - Section of Pharmaceutical Sciences - University of Cagliari, 09124 Cagliari, Italy.
| | - L Mayán
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M J Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S Vilar
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Biomedical Informatics, Columbia University, Medical Center of New York, 10032 New York, USA
| | - J Munín
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J A Fontenla
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - G Hripcsak
- Department of Biomedical Informatics, Columbia University, Medical Center of New York, 10032 New York, USA
| | - F Borges
- CIQUP/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Portugal
| | - D Viña
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Pisani L, Catto M, De Palma A, Farina R, Cellamare S, Altomare CD. Discovery of Potent Dual Binding Site Acetylcholinesterase Inhibitors via Homo- and Heterodimerization of Coumarin-Based Moieties. ChemMedChem 2017; 12:1349-1358. [PMID: 28570763 DOI: 10.1002/cmdc.201700282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/01/2017] [Indexed: 01/08/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors still comprise the majority of the marketed drugs for Alzheimer's disease (AD). The structural arrangement of the enzyme, which features a narrow gorge that separates the catalytic and peripheral anionic subsites (CAS and PAS, respectively), inspired the development of bivalent ligands that are able to bind and block the catalytic activity of the CAS as well as the role of the PAS in beta amyloid (Aβ) fibrillogenesis. With the aim of discovering novel AChE dual binders with improved drug-likeness, homo- and heterodimers containing 2H-chromen-2-one building blocks were developed. By exploring diverse linkages of neutral and protonatable amino moieties through aliphatic spacers of different length, a nanomolar bivalent AChE inhibitor was identified (3-[2-({4-[(dimethylamino)methyl]-2-oxo-2H-chromen-7-yl}oxy)ethoxy]-6,7-dimethoxy-2H-chromen-2-one (6 d), IC50 =59 nm) from originally weakly active fragments. To assess the potential against AD, the disease-related biological properties of 6 d were investigated. It performed mixed-type AChE enzyme kinetics (inhibition constant Ki =68 nm) and inhibited Aβ self-aggregation. Moreover, it displayed an outstanding ability to protect SH-SY5Y cells from Aβ1-42 damage.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Roberta Farina
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Cosimo D Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
33
|
Mangiatordi GF, Alberga D, Pisani L, Gadaleta D, Trisciuzzi D, Farina R, Carotti A, Lattanzi G, Catto M, Nicolotti O. A rational approach to elucidate human monoamine oxidase molecular selectivity. Eur J Pharm Sci 2017; 101:90-99. [DOI: 10.1016/j.ejps.2017.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 02/05/2023]
|
34
|
Ramprasad N, Gowda KVA, Gowda R, Basanagouda M, Kantharaj KS, Gowda GVJ. 2-(5-Methyl-1-benzofuran-3-yl)- N-(2-phenylethyl)acetamide. IUCRDATA 2017. [DOI: 10.1107/s2414314617002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The title compound, C19H19NO2, is non-planar with the phenyl ring of the phenethylacetamide residue inclined to the benzofuran ring system by 84.8 (3)°. The methyl group lies in the plane of the fused ring system [C—C—C—C torsion angle = −179.6 (3)°]. In the crystal, N—H...O hydrogen bonds link the molecules into chains along thea-axis direction. π–π stacking interactions with a centroid-to-centroid distances of 3.497 (3) Å further stabilize the structure, stacking the molecules alonga.
Collapse
|
35
|
Zhang X, Li P, Lyu C, Yong W, Li J, Zhu X, Rao W. Synthesis of 1H-indole-3-sulfonates via palladium-catalyzed tandem reactions of 2-alkynyl arylazides with sulfonic acids. Org Biomol Chem 2017; 15:6080-6083. [DOI: 10.1039/c7ob01337j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An efficient method for the synthesis of 1H-indole-3-sulfonates via palladium-catalyzed tandem reactions of 2-alkynyl arylazides with sulfonic acids has been developed.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Ping Li
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Chang Lyu
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Wanxiong Yong
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Jing Li
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xinbao Zhu
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Weidong Rao
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
36
|
Shen C, Yang M, Xu J, Chen C, Zheng K, Shen J, Zhang P. Iodobenzene-catalyzed synthesis of aryl sulfonate esters from aminoquinolines via remote radical C–O cross-coupling. RSC Adv 2017. [DOI: 10.1039/c7ra09053f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and efficient approach is established for the iodobenzene-catalyzed synthesis of aryl sulfonate esters from aminoquinolines via remote radical C–O cross-coupling in the absence of any transition metal catalysts.
Collapse
Affiliation(s)
- Chao Shen
- College of Biology and Environmental Engineering
- Zhejiang Shuren University
- Hangzhou 310015
- China
| | - Ming Yang
- College of Material Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Jun Xu
- College of Material Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Chao Chen
- College of Life Sciences
- Huzhou Teachers College
- Huzhou
- China
| | - Kai Zheng
- College of Biology and Environmental Engineering
- Zhejiang Shuren University
- Hangzhou 310015
- China
| | - Jiabing Shen
- College of Material Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
37
|
Pisani L, Farina R, Catto M, Iacobazzi RM, Nicolotti O, Cellamare S, Mangiatordi GF, Denora N, Soto-Otero R, Siragusa L, Altomare CD, Carotti A. Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents. J Med Chem 2016; 59:6791-806. [DOI: 10.1021/acs.jmedchem.6b00562] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leonardo Pisani
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Roberta Farina
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Saverio Cellamare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Ramon Soto-Otero
- Departamento
de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco I, E-15782 Santiago de Compostela, Spain
| | - Lydia Siragusa
- Molecular Discovery Limited 215
Marsh Road, Pinner, Middlesex, London HA5 5NE, U.K
| | - Cosimo Damiano Altomare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Angelo Carotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
38
|
Li Y, Qiang X, Luo L, Li Y, Xiao G, Tan Z, Deng Y. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2016; 24:2342-51. [PMID: 27079124 DOI: 10.1016/j.bmc.2016.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
A series of 4-hydroxyl aurone derivatives were designed synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer's disease. The results demonstrated that most of the derivatives exhibited good multifunctional properties. Among them, compound 14e displayed good inhibitory activities of self- and Cu(2+)-induced Aβ1-42 aggregation with 99.2% and 84.0% at 25μM, respectively, and high antioxidant activity with a value 1.90-fold of Trolox. In addition, 14e also showed remarkable inhibitory activities of both monoamine oxidase A and B with IC50 values of 0.271μM and 0.393μM, respectively. However the 6-methoxyl aurones 15a-c revealed excellent selectivity toward MAO-B. Furthermore, the representative compounds 14e and 15b displayed good metal-chelating abilities and blood-brain barrier (BBB) permeabilities in vitro.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuxing Li
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ganyuan Xiao
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
39
|
Pisani L, Farina R, Soto-Otero R, Denora N, Mangiatordi GF, Nicolotti O, Mendez-Alvarez E, Altomare CD, Catto M, Carotti A. Searching for Multi-Targeting Neurotherapeutics against Alzheimer's: Discovery of Potent AChE-MAO B Inhibitors through the Decoration of the 2H-Chromen-2-one Structural Motif. Molecules 2016; 21:362. [PMID: 26999091 PMCID: PMC6273473 DOI: 10.3390/molecules21030362] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
The need for developing real disease-modifying drugs against neurodegenerative syndromes, particularly Alzheimer’s disease (AD), shifted research towards reliable drug discovery strategies to unveil clinical candidates with higher therapeutic efficacy than single-targeting drugs. By following the multi-target approach, we designed and synthesized a novel class of dual acetylcholinesterase (AChE)-monoamine oxidase B (MAO-B) inhibitors through the decoration of the 2H-chromen-2-one skeleton. Compounds bearing a propargylamine moiety at position 3 displayed the highest in vitro inhibitory activities against MAO-B. Within this series, derivative 3h emerged as the most interesting hit compound, being a moderate AChE inhibitor (IC50 = 8.99 µM) and a potent and selective MAO-B inhibitor (IC50 = 2.8 nM). Preliminary studies in human neuroblastoma SH-SY5Y cell lines demonstrated its low cytotoxicity and disclosed a promising neuroprotective effect at low doses (0.1 µM) under oxidative stress conditions promoted by two mitochondrial toxins (oligomycin-A and rotenone). In a Madin-Darby canine kidney (MDCK)II-MDR1 cell-based transport study, Compound 3h was able to permeate the BBB-mimicking monolayer and did not result in a glycoprotein-p (P-gp) substrate, showing an efflux ratio = 0.96, close to that of diazepam.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Roberta Farina
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Ramon Soto-Otero
- Grupo de Neuroquimica, Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco I, E-15782 Santiago de Compostela, Spain.
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Estefania Mendez-Alvarez
- Grupo de Neuroquimica, Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco I, E-15782 Santiago de Compostela, Spain.
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.
| |
Collapse
|
40
|
A microwave-assisted multicomponent protocol for the synthesis of benzofuran-2-carboxamides. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Kumar B, Sheetal S, Mantha AK, Kumar V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Adv 2016. [DOI: 10.1039/c6ra00302h] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Development of MAO inhibitors as effective drug candidates for the management and/or treatment of different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| | - Sheetal Sheetal
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| | - Anil K. Mantha
- Centre for Animal Sciences
- School of Basic and Applied Sciences
- Central University of Punjab
- Bathinda
- India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| |
Collapse
|
42
|
Farina R, Pisani L, Catto M, Nicolotti O, Gadaleta D, Denora N, Soto-Otero R, Mendez-Alvarez E, Passos CS, Muncipinto G, Altomare CD, Nurisso A, Carrupt PA, Carotti A. Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases. J Med Chem 2015; 58:5561-78. [DOI: 10.1021/acs.jmedchem.5b00599] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roberta Farina
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Leonardo Pisani
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Domenico Gadaleta
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Ramon Soto-Otero
- Grupo
de Neuroquimica, Departamento de Bioquimica y Biologia Molecular,
Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago
de Compostela, Spain
| | - Estefania Mendez-Alvarez
- Grupo
de Neuroquimica, Departamento de Bioquimica y Biologia Molecular,
Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago
de Compostela, Spain
| | - Carolina S. Passos
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Giovanni Muncipinto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Cosimo D. Altomare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Alessandra Nurisso
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Angelo Carotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
43
|
Murray AT, Dowley MJH, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Murray AT, Dowley MJH, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Angew Chem Int Ed Engl 2015; 54:8997-9000. [PMID: 26087676 PMCID: PMC4524416 DOI: 10.1002/anie.201503654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 11/10/2022]
Abstract
The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity.
Collapse
Affiliation(s)
| | - Myles J H Dowley
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK)
| | | | - Amgalanbaatar Baldansuren
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | - Alistair J Fielding
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | - Floriana Tuna
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | | | - Aron Walsh
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK)
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh EH9 3 JJ (UK)
| | - Matthew P John
- GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage (UK)
| | - David R Carbery
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK).
| |
Collapse
|
45
|
Gao J, Pan X, Liu J, Lai J, Chang L, Yuan G. Iodine-induced synthesis of sulfonate esters from sodium sulfinates and phenols under mild conditions. RSC Adv 2015. [DOI: 10.1039/c5ra00724k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and highly efficient method for the synthesis of sulfonate esters mediated by iodine at room temperature has been developed, without transition metal catalysts and oxidants.
Collapse
Affiliation(s)
- Jian Gao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xiaojun Pan
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Juan Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Junyi Lai
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Liming Chang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Gaoqing Yuan
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
46
|
Discovery of new 7-substituted-4-imidazolylmethyl coumarins and 4′-substituted-2-imidazolyl acetophenones open analogues as potent and selective inhibitors of steroid-11β-hydroxylase. Eur J Med Chem 2015; 89:106-14. [DOI: 10.1016/j.ejmech.2014.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022]
|
47
|
Pisani L, Farina R, Nicolotti O, Gadaleta D, Soto-Otero R, Catto M, Di Braccio M, Mendez-Alvarez E, Carotti A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur J Med Chem 2015; 89:98-105. [DOI: 10.1016/j.ejmech.2014.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
|
48
|
Nevagi RJ, Dighe SN, Dighe SN. Biological and medicinal significance of benzofuran. Eur J Med Chem 2014; 97:561-81. [PMID: 26015069 DOI: 10.1016/j.ejmech.2014.10.085] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/15/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
Abstract
This article emphasizes on the importance of benzofuran as a biologically relevant heterocycle. It covers most of the physiologically as well as medicinally important compounds containing benzofuran rings. This article also covers clinically approved drugs containing benzofuran scaffold.
Collapse
Affiliation(s)
- Reshma J Nevagi
- Department of Pharmaceutical Chemistry, SMBT College of Pharmacy, Nandi Hills, Dhamangaon, Igatpuri, Nashik 422403, Maharashtra, India
| | - Santosh N Dighe
- Department of Chemistry, Sir Parshurambhau College, Pune 30, Maharashtra, India
| | - Satish N Dighe
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy, Vadgaon (BK), Pune, Maharashtra, India.
| |
Collapse
|
49
|
Huang Q, Ke S, Qiu L, Zhang X, Lin S. Palladium(II)/Polyoxometalate-Catalyzed Direct Alkenylation of Benzofurans under Atmospheric Dioxygen. ChemCatChem 2014. [DOI: 10.1002/cctc.201400091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Fine molecular tuning at position 4 of 2H-chromen-2-one derivatives in the search of potent and selective monoamine oxidase B inhibitors. Eur J Med Chem 2013; 70:723-39. [DOI: 10.1016/j.ejmech.2013.09.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 11/18/2022]
|