1
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Maltarollo VG, Shevchenko E, Lima IDDM, Cino EA, Ferreira GM, Poso A, Kronenberger T. Do Go Chasing Waterfalls: Enoyl Reductase (FabI) in Complex with Inhibitors Stabilizes the Tetrameric Structure and Opens Water Channels. J Chem Inf Model 2022; 62:5746-5761. [PMID: 36343333 DOI: 10.1021/acs.jcim.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.
Collapse
Affiliation(s)
- Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Igor Daniel de Miranda Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av Prof Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
3
|
Guo Y, Gao Q. Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org Biomol Chem 2022; 20:7138-7150. [PMID: 36043318 DOI: 10.1039/d2ob01348g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-based heterocycles are an important class of structural scaffolds distributed in biologically active natural products, medicinal chemistry, and agrochemicals. Hence, there is increasing interest in the development of novel synthetic strategies for the construction of these privileged structural motifs. Recently, 3-aminoindazoles have emerged as versatile synthons participating in a variety of condensation annulation, denitrogenative transannulation and rearrangement ring expansion reactions, which provide efficient synthetic routes for the formation of nitrogen heterocycles. This review systematically highlights for the first time the most recent advances in 3-aminoindazoles to provide a deep understanding of using 3-aminoindazoles as versatile synthons in organic transformations for synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
4
|
Synaptamide activates the adhesion GPCR GPR110 (ADGRF1) through GAIN domain binding. Commun Biol 2020; 3:109. [PMID: 32144388 PMCID: PMC7060178 DOI: 10.1038/s42003-020-0831-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCR) are characterized by a large extracellular region containing a conserved GPCR-autoproteolysis-inducing (GAIN) domain. Despite their relevance to several disease conditions, we do not understand the molecular mechanism by which aGPCRs are physiologically activated. GPR110 (ADGRF1) was recently deorphanized as the functional receptor of N-docosahexaenoylethanolamine (synaptamide), a potent synaptogenic metabolite of docosahexaenoic acid. Thus far, synaptamide is the first and only small-molecule endogenous ligand of an aGPCR. Here, we demonstrate the molecular basis of synaptamide-induced activation of GPR110 in living cells. Using in-cell chemical cross-linking/mass spectrometry, computational modeling and mutagenesis-assisted functional assays, we discover that synaptamide specifically binds to the interface of GPR110 GAIN subdomains through interactions with residues Q511, N512 and Y513, causing an intracellular conformational change near TM6 that triggers downstream signaling. This ligand-induced GAIN-targeted activation mechanism provides a framework for understanding the physiological function of aGPCRs and therapeutic targeting in the GAIN domain. Huang et al clarify the molecular mechanism of activation of adhesion G protein-coupled receptor GPR110 by synaptamide, the only small-molecule endogenous ligand known for this class of GPCR. They find through chemical cross-linking mass spectrometry, modeling and mutagenesis that synaptamide binds to residues in the GAIN domain and induces a conformational change triggering downstream signaling.
Collapse
|
5
|
Hu X, Zhang YQ, Lee OW, Liu L, Tang M, Lai K, Boxer MB, Hall MD, Shen M. Discovery of novel inhibitors of human galactokinase by virtual screening. J Comput Aided Mol Des 2019; 33:405-417. [PMID: 30806949 DOI: 10.1007/s10822-019-00190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Classic Galactosemia is a potentially lethal autosomal recessive metabolic disorder caused by deficient galactose-1-phosphate uridyltransferase (GALT) that results in the buildup of galactose-1-phosphate (gal-1-p) in cells. Galactokinase (GALK1) is the enzyme responsible for converting galactose into gal-1-p. A pharmacological inhibitor of GALK1 is hypothesized to be therapeutic strategy for treating galactosemia by reducing production of gal-1-p. In this study, we report the discovery of novel series of GALK1 inhibitors by structure-based virtual screening (VS). Followed by an extensive structural modeling and binding mode analysis of the active compounds identified from quantitative high-throughput screen (qHTS), we developed an efficient pharmacophore-based VS approach and applied for a large-scale in silico database screening. Out of 230,000 compounds virtually screened, 350 compounds were cherry-picked based on multi-factor prioritization procedure, and 75 representing a diversity of chemotypes exhibited inhibitory activity in GALK1 biochemical assay. Furthermore, a phenylsulfonamide series with excellent in vitro ADME properties was selected for downstream characterization and demonstrated its ability to lower gal-1-p in primary patient fibroblasts. The compounds described herein should provide a starting point for further development of drug candidates for the GALK1 modulation in the Classic Galactosemia.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ya-Qin Zhang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Olivia W Lee
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Li Liu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Matthew B Boxer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Nexus Discovery Advisors, 7820B Wormans Mill Road, Suite 208, Frederick, MD, 21701, USA
| | - Matthew D Hall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
6
|
Liu R, Li Z, Wang S, Zhou X. Pd(OAc) 2/CuI-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201904032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Hu X, Myhr C, Huang Z, Xiao J, Barnaeva E, Ho BA, Agoulnik IU, Ferrer M, Marugan JJ, Southall N, Agoulnik AI. Structural Insights into the Activation of Human Relaxin Family Peptide Receptor 1 by Small-Molecule Agonists. Biochemistry 2016; 55:1772-83. [PMID: 26866459 DOI: 10.1021/acs.biochem.5b01195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis. The first small-molecule agonists of RXFP1 were recently identified from a high-throughput screening, using a homogeneous cell-based cAMP assay. Optimization of the hit compounds resulted in a series of highly potent and RXFP1 selective agonists with low cytotoxicity, and excellent in vitro ADME and pharmacokinetic properties. Here, we undertook extensive site-directed mutagenesis studies in combination with computational modeling analysis to probe the molecular basis of the small-molecule binding to RXFP1. The results showed that the agonists bind to an allosteric site of RXFP1 in a manner that closely interacts with the seventh transmembrane domain (TM7) and the third extracellular loop (ECL3). Several residues were determined to play an important role in the agonist binding and receptor activation, including a hydrophobic region at TM7 consisting of W664, F668, and L670. The G659/T660 motif within ECL3 is crucial to the observed species selectivity of the agonists for RXFP1. The receptor binding and activation effects by the small molecule ML290 were compared with the cognate ligand, relaxin, providing valuable insights on the structural basis and molecular mechanism of receptor activation and selectivity for RXFP1.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | | | - Jingbo Xiao
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Elena Barnaeva
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | | | - Marc Ferrer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Noel Southall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | |
Collapse
|
8
|
Hu Z, Hu X, He S, Yim HJ, Xiao J, Swaroop M, Tanega C, Zhang YQ, Yi G, Kao CC, Marugan J, Ferrer M, Zheng W, Southall N, Liang TJ. Identification of novel anti-hepatitis C virus agents by a quantitative high throughput screen in a cell-based infection assay. Antiviral Res 2015; 124:20-9. [PMID: 26515788 DOI: 10.1016/j.antiviral.2015.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/02/2015] [Accepted: 10/21/2015] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) poses a major health threat to the world. The recent development of direct-acting antivirals (DAAs) against HCV has markedly improved the response rate of HCV and reduced the side effects in comparison to the interferon-based therapy. Despite this therapeutic advance, there is still a need to develop new inhibitors that target different stages of the HCV life cycle because of various limitations of the current regimens. In this study, we performed a quantitative high throughput screening of the Molecular Libraries Small Molecule Repository (MLSMR) of ∼350,000 chemicals for novel HCV inhibitors using our previously developed cell-based HCV infection assay. Following confirmation and structural clustering analysis, we narrowed down to 158 compounds from the initial ∼3000 molecules that showed inhibitory activity for further structural and functional analyses. We were able to assign the majority of these compounds to specific stage(s) in the HCV life cycle. Three of them are direct inhibitors of NS3/4A protease. Most of the compounds appear to act on novel targets in HCV life cycle. Four compounds with novel structure and excellent drug-like properties, three targeting HCV entry and one targeting HCV assembly/secretion, were advanced for further development as lead hits. These compounds represent diverse chemotypes that are potential lead compounds for further optimization and may offer promising candidates for the development of novel therapeutics against HCV infection. In addition, they represent novel molecular probes to explore the complex interactions between HCV and the cells.
Collapse
Affiliation(s)
- Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Shanshan He
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung Joon Yim
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingbo Xiao
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Cordelle Tanega
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Ya-qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Guanghui Yi
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne St, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne St, Bloomington, IN 47405, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Shin WH, Zhu X, Bures MG, Kihara D. Three-dimensional compound comparison methods and their application in drug discovery. Molecules 2015; 20:12841-62. [PMID: 26193243 PMCID: PMC5005041 DOI: 10.3390/molecules200712841] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 11/16/2022] Open
Abstract
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaolei Zhu
- School of Life Science, Anhui University, Hefei 230601, China.
| | - Mark Gregory Bures
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Qu HE, Huang RZ, Yao GY, Li JL, Ye MY, Wang HS, Liu L. Synthesis and pharmacological evaluation of novel bisindole derivatives bearing oximes moiety: identification of novel proapoptotic agents. Eur J Med Chem 2015; 95:400-15. [PMID: 25841196 DOI: 10.1016/j.ejmech.2015.03.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023]
Abstract
In an effort to develop potent anti-cancer chemopreventive agents, a novel series of bisindole derivatives bearing oxime moiety were synthesized. Structures of all compounds were characterized by NMR and HRMS. Anti-proliferative activities for all of these compounds were investigated by the method of MTT assay on 7 human cancer lines and the normal cell lines (HUVEC). Most of them showed a noteworthy anti-cancer activity in vitro, the half maximal inhibitory concentration (IC50) value is 4.31 μM of 4e against T24. The results from Hoechst 33258 and acridine orange/propidium iodide staining as well as annexinV-FITC assays provided evidence for an apoptotic cell death. The further mechanisms of compound 4e-induced apoptosis in T24 cells demonstrated that compound 4e induced the productions of ROS, and altered anti- and pro-apoptotic proteins, leading to mitochondrial dysfunction and activations of caspase-9 and caspase-3 for causing cell apoptosis. Moreover, the cell cycle analysis and western-blot analysis indicated that compound 4e effectively arrested T24 cells in G1 stage and possibly has an effect on cell cycle regulatory proteins particularly cyclin D1.
Collapse
Affiliation(s)
- Hong-En Qu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Ri-Zhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Gui-Yang Yao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiu-Ling Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Man-Yi Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China.
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
11
|
Wang Q, Edupuganti R, Tavares CDJ, Dalby KN, Ren P. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis. Front Mol Biosci 2015; 2:9. [PMID: 25988177 PMCID: PMC4429643 DOI: 10.3389/fmolb.2015.00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r2 coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r2 of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.
Collapse
Affiliation(s)
- Qiantao Wang
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin Austin, TX, USA ; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin Austin, TX, USA
| | - Ramakrishna Edupuganti
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin Austin, TX, USA
| | - Clint D J Tavares
- Graduate Program in Cell and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin Austin, TX, USA ; Graduate Program in Cell and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
12
|
Bhakat S, Delang L, Kaptein S, Neyts J, Leyssen P, Jayaprakash V. Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. RSC Adv 2015. [DOI: 10.1039/c5ra14469h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Re-purposing HIV/HCV inhibitors against DENV and CHIKV using computer aided drug design.
Collapse
Affiliation(s)
| | - Leen Delang
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | - Suzanne Kaptein
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | - Johan Neyts
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | - Pieter Leyssen
- KU Leuven – University of Leuven
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
| | | |
Collapse
|
13
|
Kumar A, Zhang KYJ. Hierarchical virtual screening approaches in small molecule drug discovery. Methods 2015; 71:26-37. [PMID: 25072167 PMCID: PMC7129923 DOI: 10.1016/j.ymeth.2014.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
14
|
Applications of structure-based design to antibacterial drug discovery. Bioorg Chem 2014; 55:69-76. [PMID: 24962384 DOI: 10.1016/j.bioorg.2014.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/21/2022]
Abstract
In recent years bacterial resistance has been observed against many of our current antibiotics, for instance most worryingly against the cephalosporins which are typically the last line of defence against many bacterial infections. Additionally the failure of high throughput screening in the discovery of new antibacterial drug leads has led to a decline in the number of antibacterial agents reaching the market. Alternative methods of drug discovery including structure based drug design are needed to meet the threats caused by the emergence of resistance. In this review we explore the latest advancements in the identification of new antibacterial agents through the use of a number of structure based drug design programs.
Collapse
|
15
|
Wang Q, Park J, Devkota AK, Cho EJ, Dalby KN, Ren P. Identification and validation of novel PERK inhibitors. J Chem Inf Model 2014; 54:1467-75. [PMID: 24745945 PMCID: PMC4038368 DOI: 10.1021/ci500114r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 01/09/2023]
Abstract
PERK, as one of the principle unfolded protein response signal transducers, is believed to be associated with many human diseases, such as cancer and type-II diabetes. There has been increasing effort to discover potent PERK inhibitors due to its potential therapeutic interest. In this study, a computer-based virtual screening approach is employed to discover novel PERK inhibitors, followed by experimental validation. Using a focused library, we show that a consensus approach, combining pharmacophore modeling and docking, can be more cost-effective than using either approach alone. It is also demonstrated that the conformational flexibility near the active site is an important consideration in structure-based docking and can be addressed by using molecular dynamics. The consensus approach has further been applied to screen the ZINC lead-like database, resulting in the identification of 10 active compounds, two of which show IC50 values that are less than 10 μM in a dose-response assay.
Collapse
Affiliation(s)
- Qiantao Wang
- Division
of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Jihyun Park
- Division
of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ashwini K. Devkota
- Texas
Screening Alliance for Cancer Therapeutics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Texas
Screening Alliance for Cancer Therapeutics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kevin N. Dalby
- Division
of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas
Screening Alliance for Cancer Therapeutics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|