1
|
Rafaniello AA, Kumar R, Phillips RC, Gaunt MJ. Modular Synthesis of Heterobenzylic Amines via Carbonyl Azinylative Amination. Angew Chem Int Ed Engl 2024; 63:e202408287. [PMID: 38994685 DOI: 10.1002/anie.202408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Transformations enabling the synthesis of α-alkyl, α'-2-azinyl amines by addition of 2-heteroaryl-based nucleophiles to in situ-generated and non-activated alkyl-substituted iminium ions are extremely rare. Approaches involving classical 2-azinyl organometallics, such as the corresponding Grignard reagents, often fail to produce the desired products. Here, we report an operationally straightforward solution to this problem through the development of a multicomponent coupling process wherein a soft 2-azinyl indium nucleophile, generated in situ from the corresponding 2-iodo heteroarene and indium powder, adds to an iminium ion that is also formed directly in the reaction. This modular carbonyl azinylative amination (CAzA) displays a broad scope and only a metal reductant is needed to generate a reactive 2-azinyl nucleophile. Beyond the addition to iminium ions, the 2-azinyl addition to polyfluoromethyl ketones forms the corresponding tertiary alcohols. Together, the products of these reactions possess a high degree of functionality, are typically challenging to synthesize by other methods, and contain motifs recognized as privileged in the context of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Alex A Rafaniello
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Roopender Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Rachel C Phillips
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, Gaidhane AM, Lakhanpal S, Prasad KN, Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis. RSC Med Chem 2024:d4md00632a. [PMID: 39493227 PMCID: PMC11528346 DOI: 10.1039/d4md00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Heterocyclic scaffolds, particularly, pyridine-containing azaheterocycles, constitute a major part of the drugs approved in the past decade. In the present review, we explored the pyridine ring part of US FDA-approved small molecules (2014-2023). The analysis of the approved drugs bearing a pyridine ring revealed that a total of 54 drugs were approved. Among them, the significant number comprised the anticancer category (18 drugs, 33%), followed by drugs affecting the CNS system (11 drugs, 20%), which include drugs to treat migraines, Parkinsonism disorders, chemotherapeutic-induced nausea, insomnia, and ADHD or as CNS-acting analgesics or sedatives. Next, six drugs (11%) were also approved to treat rare conditions, followed by five drugs that affect the hematopoietic system. The analysis also revealed that drug approval was granted for antibiotics, antivirals, and antifungals, including drugs for the treatment of tropical and sub-tropical diseases. Primary drug targets explored were kinases, and the major metabolizing enzyme was CYP3A4. Further analysis of formulation types revealed that 50% of the approved drugs were tablets, followed by 17% capsules and 15% injections. Elemental analysis showed that most approved drugs contained sulfur, while fluorine was noted in 32 compounds. Therefore, the present review is a concerted effort to cover drugs bearing pyridine rings approved in the last decade and provide thorough discussion and commentary on their pharmacokinetics and pharmacodynamics aspects. Furthermore, in-depth structural and elemental analyses were explored, thus providing comprehensive guidance for medicinal chemists and scientists working in allied science domains.
Collapse
Affiliation(s)
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University Mathura, 17, Km Stone, National Highway #2, Delhi-Mathura Road India
| | - Deepak Kukkar
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Roshan Kumar
- Graphic Era (Deemed to be University) Clement Town Dehradun 248002 India
- Department Of Microbiology, Central University of Punjab VPO-Ghudda Punjab-151401 India
| | - Thakur Gurjeet Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education Wardha India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University Phagwara-144411 India
| | | | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Chauras Campus, HNB Garhwal University (A Central University) Srinagar Uttarakhand 246174 India
| |
Collapse
|
3
|
Bai Y, Dai C, Chen N, Zhou X, Li H, Xu Q, Xu Y. Plasma-activated medium exerts tumor-specific inhibitory effect on hepatocellular carcinoma via disruption of the salvage pathway. J Clin Biochem Nutr 2024; 75:91-101. [PMID: 39345287 PMCID: PMC11425076 DOI: 10.3164/jcbn.23-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatocellular carcinoma has high fatality and poor prognosis. For curing hepatocellular carcinoma, the demand for effective therapeutic reagents with low toxicity is urgent. Herein, we investigated plasma-activated medium, an emerging reagent obtained via irradiation of cell-free medium with cold atmospheric plasma. Plasma-activated medium exerts inhibitory effect on many types of tumor cells with little toxicity to non-cancerous cells. In present study, we verified the tumor-specific inhibition of plasma-activated medium on hepatocellular carcinoma cell lines. Under the effect of plasma-activated medium, oxidative stress, mitochondrial dysfunction, and loss of intracellular NAD+ and ATP were detected inside cells, suggesting an energy depletion. Through investigating the salvage pathway which synthesizes NAD+ and maintains the respiratory chain in hepatocellular carcinoma, we found that the energy failure was resulted by the blockage of the salvage pathway. Moreover, nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway, was determined as an important target to be inactivated by the effect of plasma-activated medium. Additionally, the blockage of the salvage pathway activates AMPKα and suppresses mTOR pathway, which reinforces the cell growth inhibition. Overall, our findings demonstrated that the disruption of functions of nicotinamide phosphoribosyltransferase and the salvage pathway contribute to the tumor-specific cytotoxicity of plasma-activated medium.
Collapse
Affiliation(s)
- Yu Bai
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| | - Nini Chen
- School of Life Science, Anhui Agricultural University, Changjiang 130, Hefei City, Anhui Province, China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| | - Hua Li
- School of Basic Medicine, Anhui Medical College, Furong Road 632, Hefei City, Anhui Province, China
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Fanhua Road 12560, Hefei City, Anhui Province, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| |
Collapse
|
4
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
5
|
Wozniak JM, Li W, Governa P, Chen LY, Jadhav A, Dongre A, Forli S, Parker CG. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol 2024; 20:823-834. [PMID: 38167919 PMCID: PMC11213684 DOI: 10.1038/s41589-023-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Governa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok Dongre
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
6
|
Li Y, Kong X, Chu X, Fu H, Feng X, Zhao C, Deng Y, Ge J. Targeting NAD Metabolism: Rational Design, Synthesis and In Vitro Evaluation of NAMPT/PARP1 Dual-Target Inhibitors as Anti-Breast Cancer Agents. Molecules 2024; 29:2836. [PMID: 38930900 PMCID: PMC11206297 DOI: 10.3390/molecules29122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The malignancy of breast cancer poses a global challenge, with existing treatments often falling short of desired efficacy. Extensive research has underscored the effectiveness of targeting the metabolism of nicotinamide adenine dinucleotide (NAD), a pivotal molecule crucial for cancer cell survival and growth, as a promising anticancer strategy. Within mammalian cells, sustaining optimal NAD concentrations relies on two key enzymes, namely nicotinamide phosphoribosyltransferase (NAMPT) and poly(ADP-ribose) polymer 1 (PARP1). Recent studies have accentuated the potential benefits of combining NAMPT inhibitors and PARP1 inhibitors to enhance therapeutic outcomes, particularly in breast cancer. In this study, we designed and synthesized eleven novel NAMPT/PARP1 dual-target inhibitors. Among them, compound DDY02 exhibited acceptable inhibitory activities against both NAMPT and PARP1, with IC50 values of 0.01 and 0.05 µM, respectively. Moreover, in vitro evaluations revealed that treatment with DDY02 resulted in proliferation inhibition, NAD depletion, DNA damage, apoptosis, and migration inhibition in MDA-MB-468 cells. These results posit DDY02, by targeting NAD metabolism through inhibiting both NAMPT and PARP1, as a promising lead compound for the development of breast cancer therapy.
Collapse
Affiliation(s)
- Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianxiu Kong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchi Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanru Deng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Velma G, Krider IS, Alves ETM, Courey JM, Laham MS, Thatcher GRJ. Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death. J Med Chem 2024; 67:5999-6026. [PMID: 38580317 PMCID: PMC11056997 DOI: 10.1021/acs.jmedchem.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S. Krider
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Erick T. M. Alves
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Wen F, Gui G, Wang X, Ye L, Qin A, Zhou C, Zha X. Drug discovery targeting nicotinamide phosphoribosyltransferase (NAMPT): Updated progress and perspectives. Bioorg Med Chem 2024; 99:117595. [PMID: 38244254 DOI: 10.1016/j.bmc.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
9
|
Conforti I, Benzi A, Caffa I, Bruzzone S, Nencioni A, Marra A. New Analogues of the Nicotinamide Phosphoribosyltransferase Inhibitor FK866 as Potential Anti-Pancreatic Cancer Agents. Med Chem 2024; 20:694-708. [PMID: 38333979 DOI: 10.2174/0115734064289584240121142405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND During the past two decades, many nicotinamide phosphoribosyltransferase (NAMPT) inhibitors were prepared and tested because this enzyme is overexpressed in pancreatic cancer. Although FK866 is a well-known, strong NAMPT inhibitor, it suffers severe drawbacks. OBJECTIVE Our work aimed to synthesize efficient NAMPT inhibitors featuring better pharmacokinetic properties than the pyridine-containing FK866. To this aim, the new anticancer agents were based on benzene, pyridazine, or benzothiazole moieties as a cap group instead of the pyridine unit found in FK866 and other NAMPT inhibitors. METHODS The new compounds, prepared exploiting standard heterocycle chemistry and coupling reactions (e.g., formation of amides, ureas, and cyanoguanidines, copper-mediated azide-alkyne cycloaddition), have been fully characterized using NMR and HRMS analyses. Their activity has been evaluated using cytotoxicity and intracellular NAD depletion assays in the human pancreatic cancer cell line MiaPaCa-2. RESULTS Among the 14 products obtained, compound 28, bearing a pyridazine unit as the cap group and a thiophene moiety as the tail group, showed 6.7 nanomolar inhibition activity in the intracellular NAD depletion assay and 43 nanomolar inhibition in the MiaPaCa-2 cells cytotoxicity assay, comparable to that observed for FK866. CONCLUSION The positive results observed for some newly synthesized molecules, particularly those carrying a thiophene unit as a tail group, indicate that they could act as in vivo anti-pancreatic cancer agents.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| | - Andrea Benzi
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Irene Caffa
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Santina Bruzzone
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessio Nencioni
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
10
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Fratta S, Biniecka P, Moreno-Vargas AJ, Carmona AT, Nahimana A, Duchosal MA, Piacente F, Bruzzone S, Caffa I, Nencioni A, Robina I. Synthesis and structure-activity relationship of new nicotinamide phosphoribosyltransferase inhibitors with antitumor activity on solid and haematological cancer. Eur J Med Chem 2023; 250:115170. [PMID: 36787658 DOI: 10.1016/j.ejmech.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Cancer cells are highly dependent on Nicotinamide phosphoribosyltransferase (NAMPT) activity for proliferation, therefore NAMPT represents an interesting target for the development of anti-cancer drugs. Several compounds, such as FK866 and CHS828, were identified as potent NAMPT inhibitors with strong anti-cancer activity, although none of them reached the late stages of clinical trials. We present herein the preparation of three libraries of new inhibitors containing (pyridin-3-yl)triazole, (pyridin-3-yl)thiourea and (pyridin-3/4-yl)cyanoguanidine as cap/connecting unit and a furyl group at the tail position of the compound. Antiproliferative activity in vitro was evaluated on a panel of solid and haematological cancer cell lines and most of the synthesized compounds showed nanomolar or sub-nanomolar cytotoxic activity in MiaPaCa-2 (pancreatic cancer), ML2 (acute myeloid leukemia), JRKT (acute lymphobalistic leukemia), NMLW (Burkitt lymphoma), RPMI8226 (multiple myeloma) and NB4 (acute myeloid leukemia), with lower IC50 values than those reported for FK866. Notably, compounds 35a, 39a and 47 showed cytotoxic activity against ML2 with IC50 = 18, 46 and 49 pM, and IC50 towards MiaPaCa-2 of 0.005, 0.455 and 2.81 nM, respectively. Moreover, their role on the NAD+ synthetic pathway was demonstrated by the NAMPT inhibition assay. Finally, the intracellular NAD+ depletion was confirmed in vitro to induced ROS accumulation that cause a time-dependent mitochondrial membrane depolarization, leading to ATP loss and cell death.
Collapse
Affiliation(s)
- Simone Fratta
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Paulina Biniecka
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain.
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain.
| |
Collapse
|
12
|
Tang S, Garzon Sanz M, Smith O, Krämer A, Egbase D, Caton PW, Knapp S, Butterworth S. Chemistry-led investigations into the mode of action of NAMPT activators, resulting in the discovery of non-pyridyl class NAMPT activators. Acta Pharm Sin B 2023; 13:709-721. [PMID: 36873168 PMCID: PMC9978853 DOI: 10.1016/j.apsb.2022.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The cofactor nicotinamide adenine dinucleotide (NAD+) plays a key role in a wide range of physiological processes and maintaining or enhancing NAD+ levels is an established approach to enhancing healthy aging. Recently, several classes of nicotinamide phosphoribosyl transferase (NAMPT) activators have been shown to increase NAD+ levels in vitro and in vivo and to demonstrate beneficial effects in animal models. The best validated of these compounds are structurally related to known urea-type NAMPT inhibitors, however the basis for the switch from inhibitory activity to activation is not well understood. Here we report an evaluation of the structure activity relationships of NAMPT activators by designing, synthesising and testing compounds from other NAMPT ligand chemotypes and mimetics of putative phosphoribosylated adducts of known activators. The results of these studies led us to hypothesise that these activators act via a through-water interaction in the NAMPT active site, resulting in the design of the first known urea-class NAMPT activator that does not utilise a pyridine-like warhead, which shows similar or greater activity as a NAMPT activator in biochemical and cellular assays relative to known analogues.
Collapse
Affiliation(s)
- Siyuan Tang
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Miguel Garzon Sanz
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Oliver Smith
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), 60438 Frankfurt Am Main, Germany.,Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt Am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University, 60438 Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), 60596 Frankfurt Am Main, Germany
| | - Daniel Egbase
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Paul W Caton
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), 60438 Frankfurt Am Main, Germany.,Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt Am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University, 60438 Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), 60596 Frankfurt Am Main, Germany
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Bi K, Cheng J, He S, Fang Y, Huang M, Sheng C, Dong G. Discovery of Highly Potent Nicotinamide Phosphoribosyltransferase Degraders for Efficient Treatment of Ovarian Cancer. J Med Chem 2023; 66:1048-1062. [PMID: 36563407 DOI: 10.1021/acs.jmedchem.2c01990] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is identified as a promising target for cancer therapy. However, known NAMPT inhibitors are characterized by weak clinical efficacy and dose-dependent toxicity. There is an urgent need to develop new NAMPT intervention strategies. Using the proteolysis-targeting chimera (PROTAC) technology, we designed and synthesized a series of new von Hippel-Lindau (VHL)-recruiting NAMPT-targeting PROTACs. A highly potent NAMPT degrader (B3) was successfully identified, which displayed excellent degradation activity (DC50 < 0.17 nM, Dmax > 90%) and antiproliferative potency against A2780 cells (IC50 = 1.5 nM). PROTAC B3 induced NAMPT depletion in a concentration- and time-dependent manner through the ubiquitin-proteasome system. Particularly, PROTAC B3 achieved good plasma exposure levels via intravenous injection, gained potent tumor growth inhibition (TGI = 88.1%, 2 μM/kg) in the xenograft model, and demonstrated good biosafety without undesired toxicities. This study provides a highly potent VHL-recruiting NAMPT degrader for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Kaijian Bi
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Junfei Cheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuxin Fang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
14
|
Zhu Y, Xu P, Huang X, Shuai W, Liu L, Zhang S, Zhao R, Hu X, Wang G. From Rate-Limiting Enzyme to Therapeutic Target: The Promise of NAMPT in Neurodegenerative Diseases. Front Pharmacol 2022; 13:920113. [PMID: 35903330 PMCID: PMC9322656 DOI: 10.3389/fphar.2022.920113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD) salvage pathway in mammals. It is of great significance in the metabolic homeostasis and cell survival via synthesizing nicotinamide mononucleotide (NMN) through enzymatic activities, serving as a key protein involved in the host's defense mechanism. The NAMPT metabolic pathway connects NAD-dependent sirtuin (SIRT) signaling, constituting the NAMPT-NAD-SIRT cascade, which is validated as a strong intrinsic defense system. Neurodegenerative diseases belong to the central nervous system (CNS) disease that seriously endangers human health. The World Health Organization (WHO) proposed that neurodegenerative diseases will become the second leading cause of human death in the next two decades. However, effective drugs for neurodegenerative diseases are scant. NAMPT is specifically highly expressed in the hippocampus, which mediates cell self-renewal and proliferation and oligodendrocyte synthesis by inducing the biosynthesis of NAD in neural stem cells/progenitor cells. Owing to the active biological function of NAMPT in neurogenesis, targeting NAMPT may be a powerful therapeutic strategy for neurodegenerative diseases. This study aims to review the structure and biological functions, the correlation with neurodegenerative diseases, and treatment advance of NAMPT, aiming to provide a novel idea for targeted therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yumeng Zhu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Xu
- Emergency Department, Institute of Medical Big Data, Zigong Academy of Big Data for Science and Artificial Intelligence, Zigong Fourth People’s Hospital, Zigong, China
| | - Xuan Huang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Shuai
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zhang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhao
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Wang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Curry A, White D, Cen Y. Small Molecule Regulators Targeting NAD + Biosynthetic Enzymes. Curr Med Chem 2022; 29:1718-1738. [PMID: 34060996 PMCID: PMC8630097 DOI: 10.2174/0929867328666210531144629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD+ also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD+ homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD+ in regulating a broad spectrum of cellular events, small molecules targeting NAD+ metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and agerelated diseases. In this article, small molecule regulators of NAD+ biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials.
Collapse
Affiliation(s)
- Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dawanna White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA;,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA,Address correspondence to this author at the Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Tel: 804-828-7405;
| |
Collapse
|
16
|
Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des Devel Ther 2021; 15:4289-4338. [PMID: 34675489 PMCID: PMC8520849 DOI: 10.2147/dddt.s329547] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Pyridine-based ring systems are one of the most extensively used heterocycles in the field of drug design, primarily due to their profound effect on pharmacological activity, which has led to the discovery of numerous broad-spectrum therapeutic agents. In the US FDA database, there are 95 approved pharmaceuticals that stem from pyridine or dihydropyridine, including isoniazid and ethionamide (tuberculosis), delavirdine (HIV/AIDS), abiraterone acetate (prostate cancer), tacrine (Alzheimer's), ciclopirox (ringworm and athlete's foot), crizotinib (cancer), nifedipine (Raynaud's syndrome and premature birth), piroxicam (NSAID for arthritis), nilvadipine (hypertension), roflumilast (COPD), pyridostigmine (myasthenia gravis), and many more. Their remarkable therapeutic applications have encouraged researchers to prepare a larger number of biologically active compounds decorated with pyridine or dihydropyridine, expandeing the scope of finding a cure for other ailments. It is thus anticipated that myriad new pharmaceuticals containing the two heterocycles will be available in the forthcoming decade. This review examines the prospects of highly potent bioactive molecules to emphasize the advantages of using pyridine and dihydropyridine in drug design. We cover the most recent developments from 2010 to date, highlighting the ever-expanding role of both scaffolds in the field of medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Zhi-You Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
| | - Chun-Lei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Wang
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Pinkerton AB, Sessions EH, Hershberger P, Maloney PR, Peddibhotla S, Hopf M, Sergienko E, Ma CT, Smith LH, Jackson MR, Tanaka J, Tsuji T, Akiu M, Cohen SE, Nakamura T, Gardell SJ. Optimization of a urea-containing series of nicotinamide phosphoribosyltransferase (NAMPT) activators. Bioorg Med Chem Lett 2021; 41:128007. [PMID: 33798699 DOI: 10.1016/j.bmcl.2021.128007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/17/2023]
Abstract
NAD+ is a crucial cellular factor that plays multifaceted roles in wide ranging biological processes. Low levels of NAD+ have been linked to numerous diseases including metabolic disorders, cardiovascular disease, neurodegeneration, and muscle wasting disorders. A novel strategy to boost NAD+ is to activate nicotinamide phosphoribosyltransferase (NAMPT), the putative rate-limiting step in the NAD+ salvage pathway. We previously showed that NAMPT activators increase NAD+ levels in vitro and in vivo. Herein we describe the optimization of our NAMPT activator prototype (SBI-0797812) leading to the identification of 1-(4-((4-chlorophenyl)sulfonyl)phenyl)-3-(oxazol-5-ylmethyl)urea (34) that showed far more potent NAMPT activation and improved oral bioavailability.
Collapse
Affiliation(s)
- Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - E Hampton Sessions
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Patrick R Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Meghan Hopf
- Translational Research Institute. AdventHealth, Orlando, FL 32804, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chen-Ting Ma
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Layton H Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael R Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Tsuji
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Mayuko Akiu
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Steven E Cohen
- Daiichi Sankyo, Inc., Global Business Development, Basking Ridge, NJ 07920, USA
| | - Tsuyoshi Nakamura
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Stephen J Gardell
- Translational Research Institute. AdventHealth, Orlando, FL 32804, USA
| |
Collapse
|
18
|
Rice S, Cox DJ, Marsden SP, Nelson A. Efficient unified synthesis of diverse bridged polycyclic scaffolds using a complexity-generating 'stitching' annulation approach. Chem Commun (Camb) 2021; 57:599-602. [PMID: 33345263 DOI: 10.1039/d0cc06975b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regioselective and stereospecific directed C-H arylation of simple amine substrates, and cyclisation, delivered 30 diverse, three-dimensional scaffolds. The unified approach significantly expanded the range of bridged ring systems that contain both a nitrogen atom and an aromatic ring.
Collapse
Affiliation(s)
- Scott Rice
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel J Cox
- Redbrick Molecular, The Innovation Centre, 217 Portobello, Sheffield, S1 4DP, UK
| | | | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
19
|
Smalley JP, Cowley SM, Hodgkinson JT. Bifunctional HDAC Therapeutics: One Drug to Rule Them All? Molecules 2020; 25:E4394. [PMID: 32987782 PMCID: PMC7583022 DOI: 10.3390/molecules25194394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.
Collapse
Affiliation(s)
- Joshua P. Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| | - Shaun M. Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK;
| | - James T. Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
20
|
Tanuma SI, Katsuragi K, Oyama T, Yoshimori A, Shibasaki Y, Asawa Y, Yamazaki H, Makino K, Okazawa M, Ogino Y, Sakamoto Y, Nomura M, Sato A, Abe H, Nakamura H, Takahashi H, Tanuma N, Uchiumi F. Structural Basis of Beneficial Design for Effective Nicotinamide Phosphoribosyltransferase Inhibitors. Molecules 2020; 25:molecules25163633. [PMID: 32785052 PMCID: PMC7464552 DOI: 10.3390/molecules25163633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic strategy for targeting cancer metabolism. So far, many potent NAMPT inhibitors have been developed and shown to bind to two unique tunnel-shaped cavities existing adjacent to each active site of a NAMPT homodimer. However, cytotoxicities and resistances to NAMPT inhibitors have become apparent. Therefore, there remains an urgent need to develop effective and safe NAMPT inhibitors. Thus, we designed and synthesized two close structural analogues of NAMPT inhibitors, azaindole-piperidine (3a)- and azaindole-piperazine (3b)-motif compounds, which were modified from the well-known NAMPT inhibitor FK866 (1). Notably, 3a displayed considerably stronger enzyme inhibitory activity and cellular potency than did 3b and 1. The main reason for this phenomenon was revealed to be due to apparent electronic repulsion between the replaced nitrogen atom (N1) of piperazine in 3b and the Nδ atom of His191 in NAMPT by our in silico binding mode analyses. Indeed, 3b had a lower binding affinity score than did 3a and 1, although these inhibitors took similar stable chair conformations in the tunnel region. Taken together, these observations indicate that the electrostatic enthalpy potential rather than entropy effects inside the tunnel cavity has a significant impact on the different binding affinity of 3a from that of 3b in the disparate enzymatic and cellular potencies. Thus, it is better to avoid or minimize interactions with His191 in designing further effective NAMPT inhibitors.
Collapse
Affiliation(s)
- Sei-ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Correspondence:
| | - Kiyotaka Katsuragi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., Fujisawa, Kanagawa 251-0012, Japan;
| | - Yuri Shibasaki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hiroaki Yamazaki
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| |
Collapse
|
21
|
Howard RT, Hemsley P, Petteruti P, Saunders CN, Molina Bermejo JA, Scott JS, Johannes JW, Tate EW. Structure-Guided Design and In-Cell Target Profiling of a Cell-Active Target Engagement Probe for PARP Inhibitors. ACS Chem Biol 2020; 15:325-333. [PMID: 32017532 PMCID: PMC7146755 DOI: 10.1021/acschembio.9b00963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Inhibition of the
poly(ADP-ribose) polymerase (PARP) family of
enzymes has become an attractive therapeutic strategy in oncology
and beyond; however, chemical tools to profile PARP engagement in
live cells are lacking. Herein, we report the design and application
of PARPYnD, the first photoaffinity probe (AfBP) for
PARP enzymes based on triple PARP1/2/6 inhibitor AZ9482, which induces multipolar spindle (MPS) formation in breast cancer
cells. PARPYnD is a robust tool for profiling PARP1/2
and is used to profile clinical PARP inhibitor olaparib, identifying
several novel off-target proteins. Surprisingly, while PARPYnD can enrich recombinant PARP6 spiked into cellular lysates and inhibits
PARP6 in cell-free assays, it does not label PARP6 in intact cells.
These data highlight an intriguing biomolecular disparity between
recombinant and endogenous PARP6. PARPYnD provides a
new approach to expand our knowledge of the targets of this class
of compounds and the mechanisms of action of PARP inhibitors in cancer.
Collapse
Affiliation(s)
- Ryan T. Howard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Paul Hemsley
- Oncology, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Philip Petteruti
- Oncology, R&D, AstraZeneca, Boston, Waltham, Massachusetts 02451, United States
| | - Charlie N. Saunders
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Javier A. Molina Bermejo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - James S. Scott
- Oncology, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Jeffrey W. Johannes
- Oncology, R&D, AstraZeneca, Boston, Waltham, Massachusetts 02451, United States
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
22
|
Ozgencil F, Eren G, Ozkan Y, Guntekin-Ergun S, Cetin-Atalay R. Identification of small-molecule urea derivatives as novel NAMPT inhibitors via pharmacophore-based virtual screening. Bioorg Med Chem 2020; 28:115217. [PMID: 31818629 DOI: 10.1016/j.bmc.2019.115217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-prophosphate (PRPP) to yield nicotinamide mononucleotide (NMN), a rate limiting enzyme in a mammalian salvage pathway of nicotinamide adenine dinucleotide (NAD+) synthesis. Recently, intracellular NAD+ has received substantial attention due to the recent discovery that several enzymes including poly(ADP-ribose) polymerases (PARPs), mono(ADP-ribose) transferases (ARTs), and sirtuins (SIRTs), use NAD+ as a substrate, suggesting that intracellular NAD+ level may regulate cytokine production, metabolism, and aging through these enzymes. NAMPT is found to be upregulated in various types of cancer, and given its importance in the NAD+ salvage pathway, NAMPT is considered as an attractive target for the development of new cancer therapies. In this study, the reported NAMPT inhibitors bearing amide, cyanoguanidine, and urea scaffolds were used to generate pharmacophore models and pharmacophore-based virtual screening studies were performed against ZINC database. Following the filtering steps, ten hits were identified and evaluated for their in vitro NAMPT inhibitory effects. Compounds GF4 (NAMPT IC50 = 2.15 ± 0.22 μM) and GF8 (NAMPT IC50 = 7.31 ± 1.59 μM) were identified as new urea-typed inhibitors of NAMPT which also displayed cytotoxic activities against human HepG2 hepatocellular carcinoma cell line with IC50 values of 15.20 ± 1.28 and 24.28 ± 6.74 μM, respectively.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Gokcen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Yesim Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Sezen Guntekin-Ergun
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
23
|
Boosting NAD + with a small molecule that activates NAMPT. Nat Commun 2019; 10:3241. [PMID: 31324777 PMCID: PMC6642140 DOI: 10.1038/s41467-019-11078-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Pharmacological strategies that boost intracellular NAD+ are highly coveted for their therapeutic potential. One approach is activation of nicotinamide phosphoribosyltransferase (NAMPT) to increase production of nicotinamide mononucleotide (NMN), the predominant NAD+ precursor in mammalian cells. A high-throughput screen for NAMPT activators and hit-to-lead campaign yielded SBI-797812, a compound that is structurally similar to active-site directed NAMPT inhibitors and blocks binding of these inhibitors to NAMPT. SBI-797812 shifts the NAMPT reaction equilibrium towards NMN formation, increases NAMPT affinity for ATP, stabilizes phosphorylated NAMPT at His247, promotes consumption of the pyrophosphate by-product, and blunts feedback inhibition by NAD+. These effects of SBI-797812 turn NAMPT into a “super catalyst” that more efficiently generates NMN. Treatment of cultured cells with SBI-797812 increases intracellular NMN and NAD+. Dosing of mice with SBI-797812 elevates liver NAD+. Small molecule NAMPT activators such as SBI-797812 are a pioneering approach to raise intracellular NAD+ and realize its associated salutary effects. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate determining step for NAD+ synthesis and is of interest as a drug target. Here the authors identify and characterize a small molecule NAMPT activator SBI-797812, elucidate its mode of action and show that it increases intracellular NMN and NAD+ levels in cultured cells and elevates liver NAD+ in mice.
Collapse
|
24
|
Aliwaini S, Awadallah AM, Morjan RY, Ghunaim M, Alqaddi H, Abuhamad AY, Awadallah EA, Abughefra YM. Novel imidazo[1,2-a]pyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol Lett 2019; 18:830-837. [PMID: 31289560 PMCID: PMC6540349 DOI: 10.3892/ol.2019.10341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the anti-cancer activity of imidazo[1,2-a]pyridine 5–7 in the A375 and WM115 melanoma and HeLa cervical cancer cell lines. The viability of cancer cells was analyzed by the MTT assay. Apoptosis was quantified by flow cytometry following staining of the cells with AnnexinV/propidium iodide (PI). The cell cycle was evaluated by flow cytometry after staining of cells with PI. The three compounds inhibited the proliferation of all cells for half maximal inhibitory concentration ranging from 9.7 to 44.6 µM following 48-h treatment. In addition, all cancer cells were more sensitive to compound 6 compared with the other compounds. Treatment with compound 6 induced G2/M cell cycle arrest and a significant increased level of intrinsic apoptosis in all tested cells. Furthermore, compound 6 reduced the levels of phospho (p)-protein kinase B and p-mechanistic target of rapamycin, and increased levels of the cell cycle inhibitors p53 and p21 and of the apoptosis-associated proteins BCL2 associated X protein and active caspase-9. Silencing p53 in A375 melanoma cells reduced compound 6-induced apoptosis, which suggested that compound 6 may induce p53-partially mediated apoptosis. These results demonstrated that imidazo[1,2-a]pyridines 5–7 are potential effective compounds in the treatment of melanoma and cervical cancers.
Collapse
Affiliation(s)
- Saeb Aliwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, 108 Gaza, Palestine
| | - Adel M Awadallah
- Department of Chemistry, Islamic University of Gaza, 108 Gaza, Palestine
| | - Rami Y Morjan
- Department of Chemistry, Islamic University of Gaza, 108 Gaza, Palestine
| | - Mariam Ghunaim
- Department of Biology and Biotechnology, Islamic University of Gaza, 108 Gaza, Palestine
| | - Hala Alqaddi
- Department of Biology and Biotechnology, Islamic University of Gaza, 108 Gaza, Palestine
| | - Asmaa Y Abuhamad
- Department of Biology and Biotechnology, Islamic University of Gaza, 108 Gaza, Palestine
| | - Enas A Awadallah
- Department of Biology and Biotechnology, Islamic University of Gaza, 108 Gaza, Palestine
| | - Yasmin M Abughefra
- Department of Biology and Biotechnology, Islamic University of Gaza, 108 Gaza, Palestine
| |
Collapse
|
25
|
Machine Learning Models for the Prediction of Chemotherapy-Induced Peripheral Neuropathy. Pharm Res 2019; 36:35. [DOI: 10.1007/s11095-018-2562-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023]
|
26
|
Crystal structure-based comparison of two NAMPT inhibitors. Acta Pharmacol Sin 2018; 39:294-301. [PMID: 28858298 DOI: 10.1038/aps.2017.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is a novel strategy for cancer therapy, but only two inhibitors of NAMPT (FK866 and CHS828) have progressed into clinical trials. This study seeks to compare a novel potent NAMPT inhibitor, MS0, with a classical inhibitor FK866 in their biological activity and molecular binding mode, thereby contributing to future chemical optimization and a further understanding of the action mode of NAMPT inhibitors. The IC50 values of MS0 and FK866 in inhibition of recombinant human NAMPT activity were 9.08±0.90 and 1.60±0.32 nmol/L, respectively. Consistently, FK866 exerted better antiproliferation in 6 human cancer cell lines (HepG2, A2780, 95-D, A549, U2OS and U266) than MS0 with IC50 values nearly 12-fold to 225-fold lower than those of MS0. Co-crystal structures of wild-type human NAMPT complexed with MS0 or FK866 were elucidated, which revealed that MS0 did not interact with Ser241. The hydrogen bond mediated by crystallographic water between MS0 and His191 or Val350 of NAMPT did not exist in FK866. Instead, FK866 exhibited hydrophobic interactions with Arg349. Based on the activity assays and crystal structure analyses, we elaborate the reason why the antiproliferation activity of MS0 was not as good as that of FK866, which would contributes to the current understanding of the mode of action of NAMPT inhibitors and will also contribute to further development of anticancer drugs in the future.
Collapse
|
27
|
Palacios DS, Meredith E, Kawanami T, Adams C, Chen X, Darsigny V, Geno E, Palermo M, Baird D, Boynton G, Busby SA, George EL, Guy C, Hewett J, Tierney L, Thigale S, Weihofen W, Wang L, White N, Yin M, Argikar UA. Structure based design of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors from a phenotypic screen. Bioorg Med Chem Lett 2018; 28:365-370. [DOI: 10.1016/j.bmcl.2017.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
|
28
|
Dong G, Chen W, Wang X, Yang X, Xu T, Wang P, Zhang W, Rao Y, Miao C, Sheng C. Small Molecule Inhibitors Simultaneously Targeting Cancer Metabolism and Epigenetics: Discovery of Novel Nicotinamide Phosphoribosyltransferase (NAMPT) and Histone Deacetylase (HDAC) Dual Inhibitors. J Med Chem 2017; 60:7965-7983. [DOI: 10.1021/acs.jmedchem.7b00467] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Wei Chen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Xia Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Xinglin Yang
- MOE Key Laboratory of Protein Sciences,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tianying Xu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chaoyu Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
29
|
SAR and characterization of non-substrate isoindoline urea inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Bioorg Med Chem Lett 2017; 27:3317-3325. [DOI: 10.1016/j.bmcl.2017.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023]
|
30
|
Kesherwani M, Raghavan S, Gunasekaran K, Velmurugan D. Identification of novel Nicotinamide Phosphoribosyltransferase (NAMPT) inhibitors using computational approaches. J Biomol Struct Dyn 2017; 36:1306-1328. [PMID: 28514875 DOI: 10.1080/07391102.2017.1322004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nicotinamide Phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of NAD. Cancer cells have elevated poly [ADP-Ribose] polymerase 1 (PARP) activity as well as the immense necessity of ATP: thereby consuming NAD at a higher rate than normal tissues. The perturbation of these intracellular processes is more sensitive and highly dependent on NAMPT to maintain the required NAD levels. Functional inhibition of NAMPT is, therefore, a promising drug target in therapeutic oncology. In this study, the importance of intermolecular contacts was realized based on contact occupancy and favorable energetic from molecular dynamic simulation to discern non-critical contacts of four different classes of potential NAMPT inhibitor bound complexes. Further, pharmacophore modeling, molecular docking, a quantum mechanical properties and MD simulation, as well as active site residual network communication were employed to identify potential leads. Present studies identified two leads, 2 and 3 which have better binding free energy compared to known inhibitors and showed stable hydrogen bonding and hydrophobic contacts with β barrel cavity lining residues in the active site of the dimer interface (A'B). Lead 2 containing fluorene as central core and lead 3 having phenyl-benzamide as a core showed stable moiety which was observed from electronic property analysis. Active site residual communication in identified leads bound complex also showed similarity to known inhibitor complexes. Compounds containing these moieties were not reported until now against NAMPT inhibition and can be considered as novel cores for future development of drugs to inhibit NAMPT function.
Collapse
Affiliation(s)
- Manish Kesherwani
- a Centre of Advanced Study in Crystallography and Biophysics, University of Madras , Guindy Campus, Chennai , India
| | - Sriram Raghavan
- a Centre of Advanced Study in Crystallography and Biophysics, University of Madras , Guindy Campus, Chennai , India
| | - Krishnasamy Gunasekaran
- a Centre of Advanced Study in Crystallography and Biophysics, University of Madras , Guindy Campus, Chennai , India.,b Bioinformatics Infrastructure Facility , University of Madras , Guindy Campus, Chennai , India
| | - Devadasan Velmurugan
- a Centre of Advanced Study in Crystallography and Biophysics, University of Madras , Guindy Campus, Chennai , India
| |
Collapse
|
31
|
Wilsbacher JL, Cheng M, Cheng D, Trammell SAJ, Shi Y, Guo J, Koeniger SL, Kovar PJ, He Y, Selvaraju S, Heyman HR, Sorensen BK, Clark RF, Hansen TM, Longenecker KL, Raich D, Korepanova AV, Cepa S, Towne DL, Abraham VC, Tang H, Richardson PL, McLoughlin SM, Badagnani I, Curtin ML, Michaelides MR, Maag D, Buchanan FG, Chiang GG, Gao W, Rosenberg SH, Brenner C, Tse C. Discovery and Characterization of Novel Nonsubstrate and Substrate NAMPT Inhibitors. Mol Cancer Ther 2017; 16:1236-1245. [PMID: 28468779 DOI: 10.1158/1535-7163.mct-16-0819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/17/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
Cancer cells are highly reliant on NAD+-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme. Here, we identified two novel types of NAM-competitive NAMPT inhibitors, only one of which contains a modifiable, aromatic nitrogen that could be a phosphoribosyl acceptor. Both types of compound effectively deplete cellular NAD+, and subsequently ATP, and produce cell death when NAMPT is inhibited in cultured cells for more than 48 hours. Careful characterization of the kinetics of NAMPT inhibition in vivo allowed us to optimize dosing to produce sufficient NAD+ depletion over time that resulted in efficacy in an HCT116 xenograft model. Our data demonstrate that direct phosphoribosylation of competitive inhibitors by the NAMPT enzyme is not required for potent in vitro cellular activity or in vivo antitumor efficacy. Mol Cancer Ther; 16(7); 1236-45. ©2017 AACR.
Collapse
Affiliation(s)
| | - Min Cheng
- AbbVie Inc., North Chicago, Illinois
| | | | - Samuel A J Trammell
- Department of Biochemistry Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Yan Shi
- AbbVie Inc., North Chicago, Illinois
| | - Jun Guo
- AbbVie Inc., North Chicago, Illinois
| | | | | | - Yupeng He
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | - Hua Tang
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | - Charles Brenner
- Department of Biochemistry Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Chris Tse
- AbbVie Inc., North Chicago, Illinois
| |
Collapse
|
32
|
Pennington LD, Moustakas DT. The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. J Med Chem 2017; 60:3552-3579. [PMID: 28177632 DOI: 10.1021/acs.jmedchem.6b01807] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a continued desire in biomedical research to reduce the number and duration of design cycles required to optimize lead compounds into high-quality chemical probes or safe and efficacious drug candidates. The insightful application of impactful molecular design elements is one approach toward achieving this goal. The replacement of a CH group with a N atom in aromatic and heteroaromatic ring systems can have many important effects on molecular and physicochemical properties and intra- and intermolecular interactions that can translate to improved pharmacological profiles. In this Perspective, the "necessary nitrogen atom" is shown to be a versatile high-impact design element for multiparameter optimization, wherein ≥10-, 100-, or 1000-fold improvement in a variety of key pharmacological parameters can be realized.
Collapse
Affiliation(s)
- Lewis D Pennington
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| | - Demetri T Moustakas
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| |
Collapse
|
33
|
Saturated Heterocycles with Applications in Medicinal Chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/bs.aihch.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Zak M, Yuen PW, Liu X, Patel S, Sampath D, Oeh J, Liederer BM, Wang W, O’Brien T, Xiao Y, Skelton N, Hua R, Sodhi J, Wang Y, Zhang L, Zhao G, Zheng X, Ho YC, Bair KW, Dragovich PS. Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. J Med Chem 2016; 59:8345-68. [DOI: 10.1021/acs.jmedchem.6b00697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark Zak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-wai Yuen
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Xiongcai Liu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Snahel Patel
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Oeh
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bianca M. Liederer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas O’Brien
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yang Xiao
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Skelton
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rongbao Hua
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Jasleen Sodhi
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yunli Wang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Lei Zhang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Guiling Zhao
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaozhang Zheng
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Yen-Ching Ho
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Kenneth W. Bair
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
35
|
Bai J, Liao C, Liu Y, Qin X, Chen J, Qiu Y, Qin D, Li Z, Tu ZC, Jiang S. Structure-Based Design of Potent Nicotinamide Phosphoribosyltransferase Inhibitors with Promising in Vitro and in Vivo Antitumor Activities. J Med Chem 2016; 59:5766-79. [PMID: 27224875 DOI: 10.1021/acs.jmedchem.6b00324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) has the potential to directly limit NAD production in cancer cells and is an effective strategy for cancer treatment. Using a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of NAMPT. Several designed compounds showed promising antiproliferative activities in vitro. (E)-N-(5-((4-(((2-(1H-Indol-3-yl)ethyl)(isopropyl)amino)methyl)phenyl)amino)pentyl)-3-(pyridin-3-yl)acrylamide, 30, bearing an indole moiety, has an IC50 of 25.3 nM for binding to the NAMPT protein and demonstrated promising inhibitory activities in the nanomolar range against several cancer cell lines (MCF-7 GI50 = 0.13 nM; MDA-MB-231 GI50 = 0.15 nM). Triple-negative breast cancer is the most malignant subtype of breast cancer with no effective targeted treatments currently available. Significant antitumor efficacy of compound 30 was achieved (TGI was 73.8%) in an orthotopic MDA-MB-231 triple-negative breast cancer xenograft tumor model. This paper reports promising lead molecules for the inhibition of NAMPT which could serve as a basis for further investigation.
Collapse
Affiliation(s)
- Jinhong Bai
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Chenzhong Liao
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, China
| | - Yanghan Liu
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Xiaochu Qin
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Jiaxuan Chen
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Yatao Qiu
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Dongguang Qin
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China.,ABA Chemicals Corporation , Shanghai 200063, China
| | - Zheng Li
- The Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Zheng-Chao Tu
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Sheng Jiang
- Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences , 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| |
Collapse
|
36
|
Identification of benzothiophene amides as potent inhibitors of human nicotinamide phosphoribosyltransferase. Bioorg Med Chem Lett 2016; 26:765-768. [DOI: 10.1016/j.bmcl.2015.12.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023]
|
37
|
Lin W, Yang L, Chai SC, Lu Y, Chen T. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor. Eur J Med Chem 2015; 108:505-528. [PMID: 26717202 DOI: 10.1016/j.ejmech.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Yan Lu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States.
| |
Collapse
|
38
|
Wang X, Xu TY, Liu XZ, Zhang SL, Wang P, Li ZY, Guan YF, Wang SN, Dong GQ, Zhuo S, Le YY, Sheng CQ, Miao CY. Discovery of Novel Inhibitors and Fluorescent Probe Targeting NAMPT. Sci Rep 2015; 5:12657. [PMID: 26227784 PMCID: PMC4521150 DOI: 10.1038/srep12657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a promising antitumor target. Novel NAMPT inhibitors with diverse chemotypes are highly desirable for development of antitumor agents. Using high throughput screening system targeting NAMPT on a chemical library of 30000 small-molecules, we found a non-fluorescent compound F671-0003 and a fluorescent compound M049-0244 with excellent in vitro activity (IC50: 85 nM and 170 nM respectively) and anti-proliferative activity against HepG2 cells. These two compounds significantly depleted cellular NAD levels. Exogenous NMN rescued their anti-proliferative activity against HepG2 cells. Structure-activity relationship study proposed a binding mode for NAMPT inhibitor F671-0003 and highlighted the importance of hydrogen bonding, hydrophobic and π-π interactions in inhibitor binding. Imaging study provided the evidence that fluorescent compound M049-0244 (3 μM) significantly stained living HepG2 cells. Cellular fluorescence was further verified to be NAMPT dependent by using RNA interference and NAMPT over expression transgenic mice. Our findings provide novel antitumor lead compounds and a "first-in-class" fluorescent probe for imaging NAMPT.
Collapse
Affiliation(s)
- Xia Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xin-Zhu Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yun-Feng Guan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Guo-Qiang Dong
- Department of Medicinal Chemistry, Second Military Medical University, Shanghai, China
| | - Shu Zhuo
- 1] Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. [2] Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Ying-Ying Le
- 1] Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. [2] Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Chun-Quan Sheng
- Department of Medicinal Chemistry, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Sampath D, Zabka TS, Misner DL, O’Brien T, Dragovich PS. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol Ther 2015; 151:16-31. [DOI: 10.1016/j.pharmthera.2015.02.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
|
40
|
Xu TY, Zhang SL, Dong GQ, Liu XZ, Wang X, Lv XQ, Qian QJ, Zhang RY, Sheng CQ, Miao CY. Discovery and characterization of novel small-molecule inhibitors targeting nicotinamide phosphoribosyltransferase. Sci Rep 2015; 5:10043. [PMID: 26040985 PMCID: PMC4603696 DOI: 10.1038/srep10043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/26/2015] [Indexed: 01/15/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a promising anticancer target. Using high throughput screening system targeting NAMPT, we obtained a potent NAMPT inhibitor MS0 (China Patent ZL201110447488.9) with excellent in vitro activity (IC50 = 9.87 ± 1.15nM) and anti-proliferative activity against multiple human cancer cell lines including stem-like cancer cells. Structure-activity relationship studies yielded several highly effective analogues. These inhibitors specifically bound NAMPT, rather than downstream NMNAT. We provided the first chemical case using cellular thermal shift assay to explain the difference between in vitro and cellular activity; MS7 showed best in vitro activity (IC50 = 0.93 ± 0.29 nM) but worst cellular activity due to poor target engagement in living cells. Site-directed mutagenesis studies identified important residues for NAMPT catalytic activity and inhibitor binding. The present findings contribute to deep understanding the action mode of NAMPT inhibitors and future development of NAMPT inhibitors as anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi-Jun Qian
- Eastern Hepatobiliary Surgical Hospital &Institute, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
41
|
Measuring NAD(+) levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis 2015; 6:1445-57. [PMID: 25046046 DOI: 10.4155/bio.14.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NAD(+) is an endogenous analyte and is unstable during blood sample collection, both of which present obstacles for quantitation. Moreover, current procedures for NAD(+) sample collection require onsite treatment with strong acid to stabilize the NAD(+) in mouse blood cells. RESULTS NAD(+) can be stabilized by addition of acid before the frozen mouse blood sample was thawed. A simple sample collection procedure was proposed to facilitate the analysis of NAD(+) in mouse blood and tissue samples. A LC-MS/MS method was developed for quantifying NAD(+) in mouse blood and various tissue samples. The described method was used to measure endogenous NAD(+) levels in mouse blood following oral administration of the nicotinamide phosphoribosyltransferase inhibitor GNE-617. CONCLUSION This study presents a suitable assay and sample collection procedure for high throughput screening of NAD(+) samples in preclinical discovery studies.
Collapse
|
42
|
Rane RA, Naphade SS, Bangalore PK, Palkar MB, Patel HM, Shaikh MS, Alwan WS, Karpoormath R. Synthesis of Novel Hybrids Inspired from Bromopyrrole Alkaloids Inhibiting MMP-2 and -12 as Antineoplastic Agents. Chem Biol Drug Des 2014; 86:210-22. [DOI: 10.1111/cbdd.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 11/16/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Rajesh A. Rane
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | | | - Pavan Kumar Bangalore
- S. P. P. School of Pharmacy and Technology Management; NMIMS University; Vile Parle, Mumbai India
| | - Mahesh B. Palkar
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Harun M. Patel
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Mahamadhanif S. Shaikh
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Wesam S. Alwan
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Rajshekhar Karpoormath
- Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| |
Collapse
|
43
|
Zak M, Liederer BM, Sampath D, Yuen PW, Bair KW, Baumeister T, Buckmelter AJ, Clodfelter KH, Cheng E, Crocker L, Fu B, Han B, Li G, Ho YC, Lin J, Liu X, Ly J, O'Brien T, Reynolds DJ, Skelton N, Smith CC, Tay S, Wang W, Wang Z, Xiao Y, Zhang L, Zhao G, Zheng X, Dragovich PS. Identification of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with no evidence of CYP3A4 time-dependent inhibition and improved aqueous solubility. Bioorg Med Chem Lett 2014; 25:529-41. [PMID: 25556090 DOI: 10.1016/j.bmcl.2014.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Herein we report the optimization efforts to ameliorate the potent CYP3A4 time-dependent inhibition (TDI) and low aqueous solubility exhibited by a previously identified lead compound from our NAMPT inhibitor program (1, GNE-617). Metabolite identification studies pinpointed the imidazopyridine moiety present in 1 as the likely source of the TDI signal, and replacement with other bicyclic systems was found to reduce or eliminate the TDI finding. A strategy of reducing the number of aromatic rings and/or lowering cLogD7.4 was then employed to significantly improve aqueous solubility. These efforts culminated in the discovery of 42, a compound with no evidence of TDI, improved aqueous solubility, and robust efficacy in tumor xenograft studies.
Collapse
Affiliation(s)
- Mark Zak
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Po-Wai Yuen
- Pharmaron Beijing Co. Ltd, 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Kenneth W Bair
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Timm Baumeister
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | | | - Karl H Clodfelter
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Eric Cheng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lisa Crocker
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bang Fu
- Pharmaron Beijing Co. Ltd, 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Bingsong Han
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Guangkun Li
- Pharmaron Beijing Co. Ltd, 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Yen-Ching Ho
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Jian Lin
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Xiongcai Liu
- Pharmaron Beijing Co. Ltd, 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Justin Ly
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thomas O'Brien
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Chase C Smith
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Suzanne Tay
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Weiru Wang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhongguo Wang
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Yang Xiao
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lei Zhang
- Pharmaron Beijing Co. Ltd, 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Guiling Zhao
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaozhang Zheng
- Forma Therapeutics Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | | |
Collapse
|
44
|
Wang W, Elkins K, Oh A, Ho YC, Wu J, Li H, Xiao Y, Kwong M, Coons M, Brillantes B, Cheng E, Crocker L, Dragovich PS, Sampath D, Zheng X, Bair KW, O'Brien T, Belmont LD. Structural basis for resistance to diverse classes of NAMPT inhibitors. PLoS One 2014; 9:e109366. [PMID: 25285661 PMCID: PMC4186856 DOI: 10.1371/journal.pone.0109366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023] Open
Abstract
Inhibiting NAD biosynthesis by blocking the function of nicotinamide phosphoribosyl transferase (NAMPT) is an attractive therapeutic strategy for targeting tumor metabolism. However, the development of drug resistance commonly limits the efficacy of cancer therapeutics. This study identifies mutations in NAMPT that confer resistance to a novel NAMPT inhibitor, GNE-618, in cell culture and in vivo, thus demonstrating that the cytotoxicity of GNE-618 is on target. We determine the crystal structures of six NAMPT mutants in the apo form and in complex with various inhibitors and use cellular, biochemical and structural data to elucidate two resistance mechanisms. One is the surprising finding of allosteric modulation by mutation of residue Ser165, resulting in unwinding of an α-helix that binds the NAMPT substrate 5-phosphoribosyl-1-pyrophosphate (PRPP). The other mechanism is orthosteric blocking of inhibitor binding by mutations of Gly217. Furthermore, by evaluating a panel of diverse small molecule inhibitors, we unravel inhibitor structure activity relationships on the mutant enzymes. These results provide valuable insights into the design of next generation NAMPT inhibitors that offer improved therapeutic potential by evading certain mechanisms of resistance.
Collapse
Affiliation(s)
- Weiru Wang
- Genentech, Inc., South San Francisco, California, United States of America
| | - Kristi Elkins
- Genentech, Inc., South San Francisco, California, United States of America
| | - Angela Oh
- Genentech, Inc., South San Francisco, California, United States of America
| | - Yen-Ching Ho
- Forma Therapeutics, Inc., Watertown, Massachusetts, United States of America
| | - Jiansheng Wu
- Genentech, Inc., South San Francisco, California, United States of America
| | - Hong Li
- Genentech, Inc., South San Francisco, California, United States of America
| | - Yang Xiao
- Genentech, Inc., South San Francisco, California, United States of America
| | - Mandy Kwong
- Genentech, Inc., South San Francisco, California, United States of America
| | - Mary Coons
- Genentech, Inc., South San Francisco, California, United States of America
| | - Bobby Brillantes
- Genentech, Inc., South San Francisco, California, United States of America
| | - Eric Cheng
- Genentech, Inc., South San Francisco, California, United States of America
| | - Lisa Crocker
- Genentech, Inc., South San Francisco, California, United States of America
| | - Peter S. Dragovich
- Genentech, Inc., South San Francisco, California, United States of America
| | - Deepak Sampath
- Genentech, Inc., South San Francisco, California, United States of America
| | - Xiaozhang Zheng
- Forma Therapeutics, Inc., Watertown, Massachusetts, United States of America
| | - Kenneth W. Bair
- Forma Therapeutics, Inc., Watertown, Massachusetts, United States of America
| | - Thomas O'Brien
- Genentech, Inc., South San Francisco, California, United States of America
| | - Lisa D. Belmont
- Genentech, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models. Neoplasia 2014; 15:1314-29. [PMID: 24403854 DOI: 10.1593/neo.131718] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 09/30/2013] [Accepted: 11/13/2013] [Indexed: 01/29/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a metabolite essential for cell survival and generated de novo from tryptophan or recycled from nicotinamide (NAM) through the nicotinamide phosphoribosyltransferase (NAMPT)-dependent salvage pathway. Alternatively, nicotinic acid (NA) is metabolized to NAD through the nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1)-dependent salvage pathway. Tumor cells are more reliant on the NAMPT salvage pathway making this enzyme an attractive therapeutic target. Moreover, the therapeutic index of NAMPT inhibitors may be increased by in NAPRT-deficient tumors by NA supplementation as normal tissues may regenerate NAD through NAPRT1. To confirm the latter, we tested novel NAMPT inhibitors, GNE-617 and GNE-618, in cell culture- and patient-derived tumor models. While NA did not protect NAPRT1-deficient tumor cell lines from NAMPT inhibition in vitro, it rescued efficacy of GNE-617 and GNE-618 in cell culture- and patient-derived tumor xenografts in vivo. NA co-treatment increased NAD and NAM levels in NAPRT1-deficient tumors to levels that sustained growth in vivo. Furthermore, NAM co-administration with GNE-617 led to increased tumor NAD levels and rescued in vivo efficacy as well. Importantly, tumor xenografts remained NAPRT1-deficient in the presence of NA, indicating that the NAPRT1-dependent pathway is not reactivated. Protection of NAPRT1-deficient tumors in vivo may be due to increased circulating levels of metabolites generated by mouse liver, in response to NA or through competitive reactivation of NAMPT by NAM. Our results have important implications for the development of NAMPT inhibitors when considering NA co-treatment as a rescue strategy.
Collapse
|
46
|
Oh A, Ho YC, Zak M, Liu Y, Chen X, Yuen PW, Zheng X, Liu Y, Dragovich PS, Wang W. Structural and biochemical analyses of the catalysis and potency impact of inhibitor phosphoribosylation by human nicotinamide phosphoribosyltransferase. Chembiochem 2014; 15:1121-30. [PMID: 24797455 DOI: 10.1002/cbic.201402023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Indexed: 11/11/2022]
Abstract
Prolonged inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is a strategy for targeting cancer metabolism. Many NAMPT inhibitors undergo NAMPT-catalyzed phosphoribosylation (pRib), a property often correlated with their cellular potency. To understand this phenomenon and facilitate drug design, we analyzed a potent cellularly active NAMPT inhibitor (GNE-617). A crystal structure of pRib-GNE-617 in complex with NAMPT protein revealed a relaxed binding mode. Consistently, the adduct formation resulted in tight binding and strong product inhibition. In contrast, a biochemically equipotent isomer of GNE-617 (GNE-643) also formed pRib adducts but displayed significantly weaker cytotoxicity. Structural analysis revealed an altered ligand conformation of GNE-643, thus suggesting weak association of the adducts with NAMPT. Our data support a model for cellularly active NAMPT inhibitors that undergo NAMPT-catalyzed phosphoribosylation to produce pRib adducts that retain efficient binding to the enzyme.
Collapse
Affiliation(s)
- Angela Oh
- Genentech, Inc., Department of Structural Biology, 1 DNA Way, South San Francisco, California 94080 (USA)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Giannetti AM, Zheng X, Skelton NJ, Wang W, Bravo BJ, Bair KW, Baumeister T, Cheng E, Crocker L, Feng Y, Gunzner-Toste J, Ho YC, Hua R, Liederer BM, Liu Y, Ma X, O'Brien T, Oeh J, Sampath D, Shen Y, Wang C, Wang L, Wu H, Xiao Y, Yuen PW, Zak M, Zhao G, Zhao Q, Dragovich PS. Fragment-based identification of amides derived from trans-2-(pyridin-3-yl)cyclopropanecarboxylic acid as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). J Med Chem 2014; 57:770-92. [PMID: 24405419 DOI: 10.1021/jm4015108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Potent, trans-2-(pyridin-3-yl)cyclopropanecarboxamide-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using fragment-based screening and structure-based design techniques. Multiple crystal structures were obtained of initial fragment leads, and this structural information was utilized to improve the biochemical and cell-based potency of the associated molecules. Many of the optimized compounds exhibited nanomolar antiproliferative activities against human tumor lines in in vitro cell culture experiments. In a key example, a fragment lead (13, KD = 51 μM) was elaborated into a potent NAMPT inhibitor (39, NAMPT IC50 = 0.0051 μM, A2780 cell culture IC50 = 0.000 49 μM) which demonstrated encouraging in vivo efficacy in an HT-1080 mouse xenograft tumor model.
Collapse
Affiliation(s)
- Anthony M Giannetti
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zheng X, Baumeister T, Buckmelter AJ, Caligiuri M, Clodfelter KH, Han B, Ho YC, Kley N, Lin J, Reynolds DJ, Sharma G, Smith CC, Wang Z, Dragovich PS, Oh A, Wang W, Zak M, Wang Y, Yuen PW, Bair KW. Discovery of potent and efficacious cyanoguanidine-containing nicotinamide phosphoribosyltransferase (Nampt) inhibitors. Bioorg Med Chem Lett 2014; 24:337-43. [DOI: 10.1016/j.bmcl.2013.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 11/16/2022]
|
49
|
Dragovich PS, Zhao G, Baumeister T, Bravo B, Giannetti AM, Ho YC, Hua R, Li G, Liang X, Ma X, O'Brien T, Oh A, Skelton NJ, Wang C, Wang W, Wang Y, Xiao Y, Yuen PW, Zak M, Zhao Q, Zheng X. Fragment-based design of 3-aminopyridine-derived amides as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorg Med Chem Lett 2013; 24:954-62. [PMID: 24433859 DOI: 10.1016/j.bmcl.2013.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 01/26/2023]
Abstract
The fragment-based identification of two novel and potent biochemical inhibitors of the nicotinamide phosphoribosyltransferase (NAMPT) enzyme is described. These compounds (51 and 63) incorporate an amide moiety derived from 3-aminopyridine, and are thus structurally distinct from other known anti-NAMPT agents. Each exhibits potent inhibition of NAMPT biochemical activity (IC50=19 and 15 nM, respectively) as well as robust antiproliferative properties in A2780 cell culture experiments (IC50=121 and 99 nM, respectively). However, additional biological studies indicate that only inhibitor 51 exerts its A2780 cell culture effects via a NAMPT-mediated mechanism. The crystal structures of both 51 and 63 in complex with NAMPT are also independently described.
Collapse
Affiliation(s)
| | - Guiling Zhao
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Timm Baumeister
- Forma Therapeutics, Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Brandon Bravo
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Yen-Ching Ho
- Forma Therapeutics, Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | - Rongbao Hua
- Pharmaron Beijing, Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Guangkun Li
- Pharmaron Beijing, Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Xiaorong Liang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaolei Ma
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thomas O'Brien
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Angela Oh
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Chengcheng Wang
- Crown Bioscience, Science & Technology Innovation Park, No.6 Beijing West Road, Taicang City, Jiangsu Province, PR China
| | - Weiru Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yunli Wang
- Pharmaron Beijing, Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Yang Xiao
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Po-wai Yuen
- Pharmaron Beijing, Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Mark Zak
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Qiang Zhao
- Crown Bioscience, Science & Technology Innovation Park, No.6 Beijing West Road, Taicang City, Jiangsu Province, PR China
| | - Xiaozhang Zheng
- Forma Therapeutics, Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| |
Collapse
|
50
|
Dragovich PS, Bair KW, Baumeister T, Ho YC, Liederer BM, Liu X, Liu Y, O’Brien T, Oeh J, Sampath D, Skelton N, Wang L, Wang W, Wu H, Xiao Y, Yuen PW, Zak M, Zhang L, Zheng X. Identification of 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived ureas as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorg Med Chem Lett 2013; 23:4875-85. [DOI: 10.1016/j.bmcl.2013.06.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 01/06/2023]
|