1
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
2
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
3
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Tasleem M, Pelletier J, Sévigny J, Hussain Z, Khan A, Al-Harrasi A, El-Kott AF, Taslimi P, Negm S, Shafiq Z, Iqbal J. Synthesis, in vitro, and in silico studies of morpholine-based thiosemicarbazones as ectonucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors. Int J Biol Macromol 2024; 266:131068. [PMID: 38531526 DOI: 10.1016/j.ijbiomac.2024.131068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ± 0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ± 0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.
Collapse
Affiliation(s)
- Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec G1V 4G2, Canada; Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada
| | - Zahid Hussain
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Egypt
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Türkiye
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
5
|
Du B, Ru J, Zhan Z, Lin C, Liu Y, Mao W, Zhang J. Insight into small-molecule inhibitors targeting extracellular nucleotide pyrophosphatase/phosphodiesterase1 for potential multiple human diseases. Eur J Med Chem 2024; 268:116286. [PMID: 38432057 DOI: 10.1016/j.ejmech.2024.116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinxiao Ru
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixuan Zhan
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wuyu Mao
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Guan D, Fang L, Feng M, Guo S, Xie L, Chen C, Sun X, Wu Q, Yuan X, Xie Z, Zhou J, Zhang H. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 inhibitors: Research progress and prospects. Eur J Med Chem 2024; 267:116211. [PMID: 38359537 DOI: 10.1016/j.ejmech.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.
Collapse
Affiliation(s)
- Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Lincheng Fang
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mingshun Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingfeng Xie
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, TongjiaXiang 24, 210009, Nanjing, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
7
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
8
|
Choi J. Small molecule ectonucleotide pyrophosphatase/phosphodiesterase 1 inhibitors in cancer immunotherapy for harnessing innate immunity. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junwon Choi
- Department of Molecular Science and Technology Ajou University Suwon Gyeonggi Republic of Korea
| |
Collapse
|
9
|
Ullah S, Hamid K, Batool A, Pelletier J, Sévigny J, Khan AR, Langer P, Iqbal J. Synthesis of new sulphonate derivatives containing adamantane and 4-chlorophenyl moieties as nucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Arif M, Shabir G, Ejaz SA, Saeed A, Khan SU, Lecka J, Sévigny J, Iqbal J. Diacylhydrazine Derivatives of 2-(5-(Pyridin-3-yl)-2H-Tetrazol-2-yl)Acetohydrazide and 2-(5-(Pyridin-4-yl)-2H-Tetrazol-2-yl)Acetohydrazide as Potential Inhibitors of Nucleotide Pyrophosphatase. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Development of Novel Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Tumor Immunotherapy. Int J Mol Sci 2022; 23:ijms23137104. [PMID: 35806118 PMCID: PMC9266353 DOI: 10.3390/ijms23137104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
The cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes–TANK-binding kinase 1–interferon regulating factor 3 (cGAS-STING-TBK1-IRF3) axis is now acknowledged as the major signaling pathway in innate immune responses. However, 2′,3′-cGAMP as a STING stimulator is easily recognized and degraded by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which reduces the effect of tumor immunotherapy and promotes metastatic progression. In this investigation, the structure-based virtual screening strategy was adopted to discover eight candidate compounds containing zinc-binding quinazolin-4(3H)-one scaffold as ENPP1 inhibitors. Subsequently, these novel inhibitors targeting ENPP1 were synthesized and characterized by NMR and high-resolution mass spectra (HRMS). In bioassays, 7-fluoro-2-(((5-methoxy-1H-imidazo[4,5-b]pyridin-2-yl)thio)methyl)quina-zolin-4(3H)-one(compound 4e) showed excellent activity against the ENPP1 at the molecular and cellular levels, with IC50 values of 0.188 μM and 0.732 μM, respectively. Additionally, compound 4e had superior selectivity towards metastatic breast cancer cells (4T1) than towards normal cells (LO2 and 293T) in comparison with cisplatin, indicating that compound 4e can potentially be used in metastatic breast cancer therapy. On the other hand, compound 4e upgraded the expression levels of IFN-β in vivo by preventing the ENPP1 from hydrolyzing the cGAMP to stimulate a more potent innate immune response. Therefore, this compound might be applied to boost antitumor immunity for cancer immunotherapy. Overall, our work provides a strategy for the development of a promising drug candidate targeting ENPP1 for tumor immunotherapy.
Collapse
|
12
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
13
|
Groaz E, De Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front Chem 2021; 8:616863. [PMID: 33490040 PMCID: PMC7821050 DOI: 10.3389/fchem.2020.616863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P–O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Kanwal A, Ullah S, Ahmad M, Pelletier J, Aslam S, Sultan S, Sévigny J, Iqbal M, Iqbal J. Synthesis and Nucleotide Pyrophosphatase/Phosphodiesterase Inhibition Studies of Carbohydrazides Based on Benzimidazole‐Benzothiazine Skeleton. ChemistrySelect 2020. [DOI: 10.1002/slct.202003479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afshan Kanwal
- Department of Chemistry Government College University Faisalabad 38000 Pakistan
| | - Saif Ullah
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Matloob Ahmad
- Department of Chemistry Government College University Faisalabad 38000 Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec- Université Laval Québec, QC G1 V 4G2 Canada
| | - Sana Aslam
- Department of Chemistry Government College Women University Faisalabad 38000 Pakistan
| | - Sadia Sultan
- Faculty of Pharmacy Universiti Teknologi MARA, Puncak Alam Campus 42300 Bandar Puncak Alam Selangor Darul Ehsan Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns) Universiti Teknologi MARA, Puncak Alam Campus 42300 Bandar Puncak Alam Selangor Darul Ehsan Malaysia
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec- Université Laval Québec, QC G1 V 4G2 Canada
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine Université Laval Québec, QC G1 V 0 A6 Canada
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Faisalabad 38000 Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| |
Collapse
|
15
|
Ahmad H, Ullah S, Rahman F, Saeed A, Pelletier J, Sévigny J, Hassan A, Iqbal J. Synthesis of biphenyl oxazole derivatives via Suzuki coupling and biological evaluations as nucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors. Eur J Med Chem 2020; 208:112759. [PMID: 32883636 DOI: 10.1016/j.ejmech.2020.112759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
Oxazole derivatives are important medicinal compounds which are inhibitors of various enzymes such as NPP1, NPP2, NPP3, tyrosine kinase, dipeptidyl-peptidase IV, cyclooxygenase-2, and protein tyrosine phosphatase. In this study, an extensive range of new biologically active biphenyl oxazole derivatives was synthesized in high to excellent yields (57-93%) through Suzuki-Miyaura cross-coupling of bromophenyloxazole with different boronic acids. The reaction was carried out in wet toluene under mild conditions. Overexpression of nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and NPP3 has been associated with various health disorders including chondrocalcinosis, cancer, osteoarthritis, and type 2 diabetes. We evaluated the inhibitory potential and selectivity of the synthesized compounds (3a-3q) towards NPP1 and NPP3 at 100 μM concentrations. We found two compounds that were selective and potent inhibitors of these two enzymes on the artificial substrate thymidine 5'-monophosphate para-nitrophenyl ester: compound 3n inhibited NPP1 with an IC50 of 0.15 μM, and compound 3f inhibited NPP3 with an IC50 value of 0.17 μM. The compounds with promising inhibitory potential were docked inside the proteins of NPP1 and NPP3 isozymes to get insight into the plausible binding interactions with active site residues.
Collapse
Affiliation(s)
- Haseen Ahmad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Fouzia Rahman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Julie Pelletier
- Centre de Recherche Du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche Du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de Microbiologie-infectiologie et D'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
16
|
Synthesis and computational studies of highly selective inhibitors of human recombinant tissue non-specific alkaline phosphatase (h-TNAP): A therapeutic target against vascular calcification. Bioorg Chem 2020; 101:103999. [PMID: 32563966 DOI: 10.1016/j.bioorg.2020.103999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
In this study, we have discovered small druglike molecules as selective inhibitors of human tissue-nonspecific alkaline phosphatase (h-TNAP), an enzyme critical for the regulation of extracellular matrix calcification. The upregulation of h-TNAP is associated with various pathologies particularly the vascular calcification (VC). Selective inhibition of h-TNAP over h-NPP1 may serve as a useful therapeutic strategy against vascular calcification. A series of novel triazolyl pyrazole derivatives (10a-y) in which thiol bearing triazole moiety as the zinc binding functional group was introduced to a pyrazole based pharmacophore was synthesized and evaluated as potent and selective inhibitors of h-TNAP over h-NPP1. The biological screening against h-TNAP, h-IAP, h-NPP1 and h-NPP3 showed that many of the synthesized compounds are selective inhibitors of TNAP. Particularly, the compounds 10a-h, 10j, 10m-q, 10u, 10w and 10x displayed high potency and complete selectivity towards h-TNAP over h-NPP1. Compound 10q emerged as a highly potent inhibitor (IC50 = 0.16 µM or 160 nM) against h-TNAP with 127-fold increased inhibition compared to levamisole. On the other hand, compound 10e was found to be most selective inhibitor against the tested APs and NPPs (IC50 = 1.59 ± 0.36 µM). Binding sites architecture analysis, molecular-docking and molecular dynamics simulations (MDS), revealed the basis for h-TNAP and h-IAP ligand selectivity as well as selectivity towards h-TNAP over h-NPP1. These newly discovered inhibitors are believed to represent valuable lead structures to further streamline the generation of candidate compounds to target VC.
Collapse
|
17
|
Das S, Banerjee A, Kamran M, Ejazi SA, Asad M, Ali N, Chakrabarti S. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. J Biol Chem 2020; 295:9934-9947. [PMID: 32471865 DOI: 10.1074/jbc.ra120.014587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of resistance to available antileishmanial drugs advocates identification of new drug targets and their inhibitors for visceral leishmaniasis. Here, we identified Leishmania donovani heat shock protein 78 (LdHSP78), a putative caseinolytic protease, as important for parasite infection of host macrophages and a potential therapeutic target. Enrichment of LdHSP78 in infected humans, hamsters, and parasite amastigotes suggested its importance for disease persistence. Heterozygous knockouts of L. donovani HSP78 (LdHSP78+/-) and Leishmania mexicana HSP78 (LmxHSP78+/-) were generated using a flanking UTR-based multifragment ligation strategy and the CRISPR-Cas9 technique, respectively to investigate the significance of HSP78 for disease manifestation. The LdHSP78+/- parasite burden was dramatically reduced in both murine bone marrow-derived macrophages and hamsters, in association with enrichment of proinflammatory cytokines and NO. This finding implies that LdHSP78+/- parasites cannot suppress immune activation and escape NO-mediated toxicity in macrophages. Furthermore, phosphorylation of the mitogen-activated protein kinase p38 was enhanced and phosphorylation of extracellular signal-regulated kinase 1/2 was decreased in cells infected with LdHSP78+/- parasites, compared with WT parasites. Virulence of the LdHSP78+/- strain was restored by episomal addition of the LdHSP78 gene. Finally, using high-throughput virtual screening, we identified P 1,P 5-di(adenosine-5')-pentaphosphate (Ap5A) ammonium salt as an LdHSP78 inhibitor. It selectively induced amastigote death at doses similar to amphotericin B doses, while exhibiting much less cytotoxicity to healthy macrophages than amphotericin B. In summary, using both a genetic knockout approach and pharmacological inhibition, we establish LdHSP78 as a drug target and Ap5A as a potential lead for improved antileishmanial agents.
Collapse
Affiliation(s)
- Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Anindyajit Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Salt Lake, Kolkata, West Bengal, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
18
|
Onyedibe KI, Wang M, Sintim HO. ENPP1, an Old Enzyme with New Functions, and Small Molecule Inhibitors-A STING in the Tale of ENPP1. Molecules 2019; 24:molecules24224192. [PMID: 31752288 PMCID: PMC6891441 DOI: 10.3390/molecules24224192] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1) was identified several decades ago as a type II transmembrane glycoprotein with nucleotide pyrophosphatase and phosphodiesterase enzymatic activities, critical for purinergic signaling. Recently, ENPP1 has emerged as a critical phosphodiesterase that degrades the stimulator of interferon genes (STING) ligand, cyclic GMP-AMP (cGAMP). cGAMP or analogs thereof have emerged as potent immunostimulatory agents, which have potential applications in immunotherapy. This emerging role of ENPP1 has placed this "old" enzyme at the frontier of immunotherapy. This review highlights the roles played by ENPP1, the mechanism of cGAMP hydrolysis by ENPP1, and small molecule inhibitors of ENPP1 with potential applications in diverse disease states, including cancer.
Collapse
Affiliation(s)
- Kenneth I. Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; (K.I.O.); (M.W.)
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN 47907, USA
| | - Modi Wang
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; (K.I.O.); (M.W.)
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; (K.I.O.); (M.W.)
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-(765)-496-6078; Fax: +1-(765)-494-0239
| |
Collapse
|
19
|
Structure-activity relationship study of NPP1 inhibitors based on uracil-N1-(methoxy)ethyl-β-phosphate scaffold. Eur J Med Chem 2019; 184:111754. [PMID: 31610377 DOI: 10.1016/j.ejmech.2019.111754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Overexpression of ecto-nucleotide pyrophosphatase-1 (NPP1) is associated with diseases such as calcium pyrophosphate dihydrate deposition disease, calcific aortic valve disease, and type 2 diabetes. In this context, NPP1 inhibitors are potential drug candidates for the treatment of these diseases. The present study focuses on the analysis of the structure-activity relationship of NPP1 inhibitors based on acyclic uracil-nucleotides. For this purpose, we synthesized acyclic uridine-monophosphate analogs, 10-11, uridine-diphosphate analogs, 12-14, and uridine-Pα,α-dithio-triphosphate analogs, 15-17. We evaluated their inhibitory activity and selectivity towards NPP1, -3, NTPDase1, -2, -3, and -8, and P2Y2,4,6 receptors. Analogs 16 and 17 were the most selective and potent NPP1 inhibitors (Ki 0.94 and 0.73 μM, respectively) among the tested molecules. Analogs 10-17 had only minute effect on uracil-nucleotide responding P2Y2,4,6 receptors. Analog 17 (100 μM) displayed 96% inhibition of NPPase activity in osteoarthritic human chondrocytes. Analogs 14-17 displayed weak inhibitory effect on alkaline phosphatase activity at equimolar concentrations in human chondrocytes. All tested analogs showed no toxicity at human chondrocytes. We concluded that ribose-ring to chain transformation, as well as the type of the nucleobase, are parameters of minor significance to NPP1 inhibition, whereas the major parameter is Pα-dithio-substitution. In addition, the length of the phosphate chain also significantly affects inhibition. Overall, the experimental results were well reproduced by molecular docking. A correlation was observed between the activities of the compounds and the number of H-bonds and salt bridges formed between the inhibitors and NPP1 binding site residues. Uracil-N1-(methoxy)ethyl-β-Pα,α-dithio, Pβ,γ-methylene tri-phosphate, 17, was identified as the most potent, selective, and non-toxic NPP1 inhibitor among the tested analogs, and may be used as a lead structure for further drug development.
Collapse
|
20
|
Kawaguchi M, Han X, Hisada T, Nishikawa S, Kano K, Ieda N, Aoki J, Toyama T, Nakagawa H. Development of an ENPP1 Fluorescence Probe for Inhibitor Screening, Cellular Imaging, and Prognostic Assessment of Malignant Breast Cancer. J Med Chem 2019; 62:9254-9269. [DOI: 10.1021/acs.jmedchem.9b01213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Xiang Han
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tomoka Hisada
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Sayaka Nishikawa
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tatsuya Toyama
- Graduate School of Medical Sciences, Department of Breast Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
21
|
Nassir M, Arad U, Lee SY, Journo S, Mirza S, Renn C, Zimmermann H, Pelletier J, Sévigny J, Müller CE, Fischer B. Identification of adenine-N9-(methoxy)ethyl-β-bisphosphonate as NPP1 inhibitor attenuates NPPase activity in human osteoarthritic chondrocytes. Purinergic Signal 2019; 15:247-263. [PMID: 31025169 DOI: 10.1007/s11302-019-09649-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Overproduction of extracellular diphosphate due to hydrolysis of ATP by NPP1 leads to pathological calcium diphosphate (pyrophosphate) dihydrate deposition (CPPD) in cartilage, resulting in a degenerative joint disease that today lacks a cure. Here, we targeted the identification of novel NPP1 inhibitors as potential therapeutic agents for CPPD deposition disease. Specifically, we synthesized novel analogs of AMP (NPP1 reaction product) and ADP (NPP1 inhibitor). These derivatives incorporate several chemical modifications of the natural nucleotides including (1) a methylene group replacing the Pα,β-bridging oxygen atom to provide metabolic resistance, (2) sulfonate group(s) replacing phosphonate(s) to improve binding to NPP1's catalytic zinc ions, (3) an acyclic nucleotide analog to allow flexible binding in the NPP1 catalytic site, and (4) a benzimidazole base replacing adenine. Among the investigated compounds, adenine-N9-(methoxy)ethyl-β-bisphosphonate, 10, was identified as an NPP1 inhibitor (Ki 16.3 μM vs. the artificial substrate p-nitrophenyl thymidine-5'-monophosphate (p-Nph-5'-TMP), and 9.60 μM vs. the natural substrate, ATP). Compound 10 was selective for NPP1 vs. human NPP3, human CD39, and tissue non-specific alkaline phosphatase (TNAP), but also inhibited human CD73 (Ki 12.6 μM). Thus, 10 is a dual NPP1/CD73 inhibitor, which could not only be of interest for treating CPPD deposition disease and calcific aortic valve disease but may also be considered for the immunotherapy of cancer. Compound 10 proved to be a promising inhibitor, which almost completely reduces NPPase activity in human osteoarthritic chondrocytes at a concentration of 100 μM.
Collapse
Affiliation(s)
- Molhm Nassir
- Department of Chemistry, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Uri Arad
- Department of Rheumatology, Tel Aviv Medical Center and the Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Shani Journo
- Department of Rheumatology, Tel Aviv Medical Center and the Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| |
Collapse
|
22
|
Jin Y, Cong Q, Gvozdenovic-Jeremic J, Hu J, Zhang Y, Terkeltaub R, Yang Y. Enpp1 inhibits ectopic joint calcification and maintains articular chondrocytes by repressing hedgehog signaling. Development 2018; 145:dev.164830. [PMID: 30111653 DOI: 10.1242/dev.164830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
The differentiated phenotype of articular chondrocytes of synovial joints needs to be maintained throughout life. Disruption of the articular cartilage, frequently associated with chondrocyte hypertrophy and calcification, is a central feature in osteoarthritis (OA). However, the molecular mechanisms whereby phenotypes of articular chondrocytes are maintained and pathological calcification is inhibited remain poorly understood. Recently, the ecto-enzyme Enpp1, a suppressor of pathological calcification, was reported to be decreased in joint cartilage with OA in both human and mouse, and Enpp1 deficiency causes joint calcification. Here, we found that hedgehog (Hh) signaling activation contributes to ectopic joint calcification in the Enpp1-/- mice. In the Enpp1-/- joints, Hh signaling was upregulated. Further activation of Hh signaling by removing the patched 1 gene in the Enpp1-/- mice enhanced ectopic joint calcification, whereas removing Gli2 partially rescued the ectopic calcification phenotype. In addition, reduction of Gαs in the Enpp1-/- mice enhanced joint calcification, suggesting that Enpp1 inhibits Hh signaling and chondrocyte hypertrophy by activating Gαs-PKA signaling. Our findings provide new insights into the mechanisms underlying Enpp1 regulation of joint integrity.
Collapse
Affiliation(s)
- Yunyun Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | | | - Jiajie Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Yiqun Zhang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Robert Terkeltaub
- Department of Medicine, Veterans Affairs Healthcare System, University of California San Diego, 111K, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
23
|
Takeda TA, Miyazaki S, Kobayashi M, Nishino K, Goto T, Matsunaga M, Ooi M, Shirakawa H, Tani F, Kawamura T, Komai M, Kambe T. Zinc deficiency causes delayed ATP clearance and adenosine generation in rats and cell culture models. Commun Biol 2018; 1:113. [PMID: 30271993 PMCID: PMC6123718 DOI: 10.1038/s42003-018-0118-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Zinc deficiency causes myriad pathophysiological symptoms, but why distinct phenotypes are generated by zinc deficiency remains unclear. Considering that several ectoenzymes involved in purinergic signaling through extracellular adenine-nucleotide hydrolysis possess zinc ions in their active sites, and disorders in purinergic signaling result in diverse diseases that are frequently similar to those caused by zinc deficiency, herein we examine whether zinc deficiency affects extracellular adenine-nucleotide metabolism. Zinc deficiency severely impairs the activities of major ectoenzymes (ENPP1, ENPP3, NT5E/CD73, and TNAP), and also strongly suppresses adenine-nucleotide hydrolysis in cell-membrane preparations or rat plasma, thereby increasing ATP and ADP levels and decreasing adenosine levels. Thus, zinc deficiency delays both extracellular ATP clearance and adenosine generation, and zinc modulates extracellular adenine-nucleotide metabolism. Since the finely tuned balance between extracellular adenine nucleotides and adenosine is critical for purinergic signaling, these findings provide a novel insight into why zinc deficiency results in diverse symptoms. Taka-aki Takeda et al. find that zinc deficiency impairs adenine nucleotide metabolism in both cell and rat models leading to delays in extracellular ATP clearance and adenosine generation. The results show that zinc deficiency affects purinergic signaling and may explain why zinc deficiency in humans results in diverse symptoms.
Collapse
Affiliation(s)
- Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Shiho Miyazaki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miki Kobayashi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Katsutoshi Nishino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Tomoko Goto
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.,Faculty of Human Life Science, Miyagi Gakuin Women's University, Sendai, 981-8557, Japan
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Minami Ooi
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Hitoshi Shirakawa
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Fumito Tani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Michio Komai
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
24
|
Channar PA, Afzal S, Ejaz SA, Saeed A, Larik FA, Mahesar PA, Lecka J, Sévigny J, Erben MF, Iqbal J. Exploration of carboxy pyrazole derivatives: Synthesis, alkaline phosphatase, nucleotide pyrophosphatase/phosphodiesterase and nucleoside triphosphate diphosphohydrolase inhibition studies with potential anticancer profile. Eur J Med Chem 2018; 156:461-478. [DOI: 10.1016/j.ejmech.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
|
25
|
Deazapurine Analogues Bearing a 1 H-Pyrazolo[3,4- b]pyridin-3(2 H)-one Core: Synthesis and Biological Activity. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Gorelik A, Randriamihaja A, Illes K, Nagar B. Structural basis for nucleotide recognition by the ectoenzyme CD203c. FEBS J 2018; 285:2481-2494. [PMID: 29717535 DOI: 10.1111/febs.14489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) enzyme family modulates purinergic signaling by degrading extracellular nucleotides. CD203c (NPP3, ENPP3) regulates the inflammatory response of basophils via ATP hydrolysis and is a marker for allergen sensitivity on the surface of these cells. Multiple other roles and substrates have also been proposed for this protein. In order to gain insight into its molecular functions, we determined the crystal structure of human NPP3 as well as its complex with an ATP analog. The enzyme exhibits little preference for nucleobase type, and forms specific contacts with the alpha and beta phosphate groups of its ligands. Dimerization of the protein does not affect its catalytic activity. These findings expand our understanding of substrate recognition within the NPP family. DATABASE Structural data are available in the Protein Data Bank under the accession numbers 6C01 (human NPP3) and 6C02 (human NPP3 T205A N594S with AMPCPP).
Collapse
Affiliation(s)
- Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Antsa Randriamihaja
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Zelikman V, Pelletier J, Simhaev L, Sela A, Gendron FP, Arguin G, Senderowitz H, Sévigny J, Fischer B. Highly Selective and Potent Ectonucleotide Pyrophosphatase-1 (NPP1) Inhibitors Based on Uridine 5'-P α,α-Dithiophosphate Analogues. J Med Chem 2018; 61:3939-3951. [PMID: 29681152 DOI: 10.1021/acs.jmedchem.7b01906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) hydrolyzes phosphodiester bonds of nucleotides such as ATP, resulting mainly in the formation of AMP and pyrophosphate. NPP1 activity plays a deleterious function in calcified aortic valve disease and calcium pyrophosphate deposition disease. Thus, inhibitors of NPP1 represent a medical need. We developed novel NPP1 inhibitors based on uridine 5'-Pα,α-dithiophosphate analogues, 9-12. All these analogues potently inhibited hNPP1 (80-100% inhibition) at 100 μM, with no, or minimal, inhibition of NPP3 and other ectonucleotidases (NTPDase1,2,3,8). These compounds showed nearly no activity at uracil-nucleotide sensitive P2Y2,4,6-receptors and thus represent highly selective NPP1 inhibitors. The most promising inhibitor was diuridine 5'-Pα,α,5″-Pα,α-tetrathiotetraphosphate, 12, exhibiting Ki of 27 nM. Analogues 9-12 proved to be highly stable to air oxidation and to acidic and basic pH. Docking simulations suggested that the enhanced NPP1 inhibitory activity and selectivity of analogue 12 could be attributed to the simultaneous occupancy of two sites (the AMP site and an alternative site) of NPP1 by this compound.
Collapse
Affiliation(s)
- Vadim Zelikman
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec, Université Laval , Québec , QC , Canada
| | - Luba Simhaev
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Aviad Sela
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cellular Biology , Université de Sherbrooke , 3201 Rue Jean-Mignault , Sherbrooke , QC J1E 4K8 , Canada
| | - Guillaume Arguin
- Department of Anatomy and Cellular Biology , Université de Sherbrooke , 3201 Rue Jean-Mignault , Sherbrooke , QC J1E 4K8 , Canada
| | - Hanoch Senderowitz
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval , Québec , QC , Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine , Université Laval , Pavillon CHUL, 2705 Boulevard Laurier, Local T1-49 , Québec , QC G1V 4G2 , Canada
| | - Bilha Fischer
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| |
Collapse
|
28
|
Al-Rashida M, Qazi SU, Batool N, Hameed A, Iqbal J. Ectonucleotidase inhibitors: a patent review (2011-2016). Expert Opin Ther Pat 2017; 27:1291-1304. [PMID: 28870136 DOI: 10.1080/13543776.2017.1369958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Ectonucleotidases are a broad family of metallo-ectoenzymes that are responsible for hydrolysing a variety of nucleotides to nucleosides, hence orchestrating the activation of P1 and P2 cell receptors via controlled release of nucleotides and nucleosides. Many disorders such as impaired calcification including aortic calcification, neurological and immunological disorders, platelet aggregation, cell proliferation and metastasis. are characterized by an increase in expression of these ectonucleotidases. Consequently, selective inhibitors of ectonucleotidases are required for therapeutic intervention. Area covered: Several classes of compounds such as purine, nucleotide derivatives (e.g., ARL67156) and monoclonal antibodies, have shown promising ectonucleotidase inhibitory potential. This review discusses chemistry and therapeutic applications of ectonucleotidase inhibitors patented from 2011 to 2016. Expert opinion: All eukaryotic cells express nucleotide and nucleoside receptors on their cell surface and are capable of releasing extracellular nucleotides. Ectonucleotidases are a broad family of metallo-ectoenzymes that hydrolyze a variety of nucleotides to nucleosides. These extracellular nucleotides and nucleosides are important cell signalling molecules and mediate a variety of (patho)physiological processes by acting upon their respective P1 and/or P2 receptors. Discovery of molecules that can selectively inhibit or activate ectonucleotidases is crucial from therapeutic point of view, since it allows human intervention into purinergic cell signalling, thereby allowing us to modulate related (patho)physiological processes as desired.
Collapse
Affiliation(s)
- Mariya Al-Rashida
- a Department of Chemistry , Forman Christian College (A Chartered University) , Lahore , Pakistan
| | - Syeda Uroos Qazi
- b H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Nayab Batool
- c Institute of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Abdul Hameed
- b H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Jamshed Iqbal
- d Centre for Advanced Drug Research, COMSATS Institute of Information Technology , Abbottabad , Pakistan
| |
Collapse
|
29
|
Lee SY, Müller CE. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MEDCHEMCOMM 2017; 8:823-840. [PMID: 30108800 PMCID: PMC6072468 DOI: 10.1039/c7md00015d] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, EC 3.1.4.1) is a metalloenzyme that belongs to the NPP family, which comprises seven subtypes (NPP1-7). NPP1 hydrolyzes a wide range of phosphodiester bonds, e.g. in nucleoside triphosphates, (cyclic) dinucleotides, and nucleotide sugars yielding nucleoside 5'-monophosphates as products. Its main substrate is ATP which is cleaved to AMP and diphosphate. The enzyme is involved in various biological processes including bone mineralization, soft-tissue calcification, insulin receptor signalling, cancer cell proliferation and immune modulation. Therefore, NPP1 inhibitors have potential as novel drugs, e.g. for (immuno)oncology. In the last two decades several inhibitors of NPP1 derived from nucleotide- or non-nucleotide scaffolds have been developed. The most potent and selective NPP1-inhibitory substrate analog is adenosine 5'-α,β-methylene-γ-thiotriphosphate (Ki = 20 nM vs. p-Nph-5'-TMP, human membrane-bound NPP1). Non-nucleotide-derived NPP1 inhibitors comprise polysulfonates, polysaccharides, polyoxometalates and small heterocyclic compounds. The polyoxometalate [TiW11CoO40]8- (PSB-POM141) is the most potent and selective NPP1 inhibitor described to date (Ki = 1.46 nM vs. ATP, human soluble NPP1); it displays an allosteric mechanism of inhibition and represents a useful pharmacological tool for evaluating the potential of NPP1 as a novel drug target.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| | - Christa E Müller
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| |
Collapse
|
30
|
Lee SY, Sarkar S, Bhattarai S, Namasivayam V, De Jonghe S, Stephan H, Herdewijn P, El-Tayeb A, Müller CE. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Front Pharmacol 2017; 8:54. [PMID: 28261095 PMCID: PMC5309242 DOI: 10.3389/fphar.2017.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Steven De Jonghe
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research Leuven, Belgium
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Dresden, Germany
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research Leuven, Belgium
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| |
Collapse
|
31
|
Barbeau X, Mathieu P, Paquin JF, Lagüe P. Characterization of the structure, dynamics and allosteric pathways of human NPP1 in its free form and substrate-bound complex from molecular modeling. MOLECULAR BIOSYSTEMS 2017; 13:1058-1069. [DOI: 10.1039/c7mb00095b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report 3D structure modeling and extensive molecular dynamics simulations of NPP1 complemented with a dynamical network analysis.
Collapse
Affiliation(s)
- Xavier Barbeau
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | | | - Jean-François Paquin
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | - Patrick Lagüe
- PROTEO
- The Quebec Network for Research on Protein Function
- Engineering
- and Applications
- Canada
| |
Collapse
|
32
|
Namasivayam V, Lee SY, Müller CE. The promiscuous ectonucleotidase NPP1: molecular insights into substrate binding and hydrolysis. Biochim Biophys Acta Gen Subj 2016; 1861:603-614. [PMID: 28011303 DOI: 10.1016/j.bbagen.2016.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany.
| |
Collapse
|
33
|
Ausekle E, Ejaz SA, Khan SU, Ehlers P, Villinger A, Lecka J, Sévigny J, Iqbal J, Langer P. New one-pot synthesis of N-fused isoquinoline derivatives by palladium-catalyzed C-H arylation: potent inhibitors of nucleotide pyrophosphatase-1 and -3. Org Biomol Chem 2016; 14:11402-11414. [PMID: 27858054 DOI: 10.1039/c6ob02236g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Various N-fused isoquinoline derivatives were synthesized using a new one-pot reaction of 1-bromo-2-(2,2-difluorovinyl)benzenes with N-H group containing heterocycles followed by intramolecular palladium-catalyzed C-H arylation. The method described gives convenient access to diverse structures of N-fused polycyclic isoquinolines. Sixteen of the synthesized compounds were screened as potential human nucleotide pyrophosphatase/phosphodiesterase 1 and 3 (h-NPP-1 and h-NPP-3) inhibitors. The most effective h-NPP-1 inhibitor showed an IC50 value as high as 0.36 ± 0.06 μM, whereas the most potent h-NPP-3 inhibitor posessed an inhibitory value of 0.48 ± 0.01 μM. Kinetic and molecular docking studies of both most effective inhibitors were carried out.
Collapse
Affiliation(s)
- Elina Ausekle
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee SY, Perotti A, De Jonghe S, Herdewijn P, Hanck T, Müller CE. Thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives: Structure-activity relationships of selective nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors. Bioorg Med Chem 2016; 24:3157-65. [PMID: 27265686 DOI: 10.1016/j.bmc.2016.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 02/03/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) is the most important member of the NPP family, which consists of seven closely related proteins (NPP1-NPP7). This glycoprotein is a membrane-associated or secreted enzyme, which catalyzes the hydrolysis of a wide range of phosphodiester bonds, e.g., in nucleoside triphosphates, dinucleotides and nucleotide sugars. NPP1 plays a crucial role in various physiological functions including bone mineralization, soft-tissue calcification, and insulin receptor signaling. Recently, an upregulated expression of NPP1 has been observed in astrocytic brain cancers. Therefore, NPP1 has been proposed as a novel drug target for the treatment of glioblastoma. Despite their therapeutic potential, only few NPP1 inhibitors have been reported to date, which are in most cases non- or only moderately selective. The best investigated NPP1 inhibitors so far are nucleotide derivatives and analogs, however they are not orally bioavailable due to their high polarity. We identified thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives as a new class of NPP1 inhibitors with drug-like properties. Among the 25 derivatives investigated in the present study, 2-[(5-iodo-2-furanyl)methylene]thiazolo[3,2-a]benzimidazol-3(2H)-one (17) was found to be the most potent NPP1 inhibitor with a Ki value of 467nM versus ATP as a substrate and an un-competitive mechanism of inhibition. Compound 17 did not inhibit other human ecto-nucleotidases, including NTPDase1 (CD39), NTPDases2-3, NPP2, NPP3, tissue-nonspecific alkaline phosphatase (TNAP), and ecto-5'-nucleotidase (eN, CD73), and is thus highly selective for NPP1.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Arianna Perotti
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Theodor Hanck
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
35
|
Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). Bioorg Med Chem Lett 2016; 26:1371-5. [PMID: 26856922 DOI: 10.1016/j.bmcl.2016.01.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/07/2023]
Abstract
The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol.
Collapse
|
36
|
Jafari B, Yelibayeva N, Ospanov M, Ejaz SA, Afzal S, Khan SU, Abilov ZA, Turmukhanova MZ, Kalugin SN, Safarov S, Lecka J, Sévigny J, Rahman Q, Ehlers P, Iqbal J, Langer P. Synthesis of 2-arylated thiadiazolopyrimidones by Suzuki–Miyaura cross-coupling: a new class of nucleotide pyrophosphatase (NPPs) inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra22750c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over expression of nucleotide pyrophosphatase (NPPs) activity is associated with chondrocalcinosis, osteoarthritis, type 2 diabetes, neurodegenerative diseases, allergies and cancer metastasis.
Collapse
|
37
|
Chang L, Lee SY, Leonczak P, Rozenski J, De Jonghe S, Hanck T, Müller CE, Herdewijn P. Imidazopyridine- and purine-thioacetamide derivatives: potent inhibitors of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). J Med Chem 2014; 57:10080-100. [PMID: 25372276 DOI: 10.1021/jm501434y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) belongs to the family of ecto-nucleotidases, which control extracellular nucleotide, nucleoside, and (di)phosphate levels. To study the (patho)physiological roles of NPP1 potent and selective inhibitors with drug-like properties are required. Therefore, a compound library was screened for NPP1 inhibitors using a colorimetric assay with p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as an artificial substrate. This led to the discovery of 2-(3H-imidazo[4,5-b]pyridin-2-ylthio)-N-(3,4-dimethoxyphenyl)acetamide (5a) as a hit compound with a Ki value of 217 nM. Subsequent structure-activity relationship studies led to the development of purine and imidazo[4,5-b]pyridine analogues with high inhibitory potency (Ki values of 5.00 nM and 29.6 nM, respectively) when assayed with p-Nph-5'-TMP as a substrate. Surprisingly, the compounds were significantly less potent when tested versus ATP as a substrate, with Ki values in the low micromolar range. A prototypic inhibitor was investigated for its mechanism of inhibition and found to be competitive versus both substrates.
Collapse
Affiliation(s)
- Lei Chang
- Interface Valorisation Platform, KU Leuven , Kapucijnenvoer 33, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nadel Y, Lecka J, Gilad Y, Ben-David G, Förster D, Reiser G, Kenigsberg S, Camden J, Weisman GA, Senderowitz H, Sévigny J, Fischer B. Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase I inhibitors based on an adenosine 5'-(α or γ)-thio-(α,β- or β,γ)-methylenetriphosphate scaffold. J Med Chem 2014; 57:4677-91. [PMID: 24846781 DOI: 10.1021/jm500196c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is associated with chondrocalcinosis, osteoarthritis, and type 2 diabetes. The potential of NPP1 inhibitors as therapeutic agents, and the scarceness of their structure-activity relationship, encouraged us to develop new NPP1 inhibitors. Specifically, we synthesized ATP-α-thio-β,γ-CH2 (1), ATP-α-thio-β,γ-CCl2 (2), ATP-α-CH2-γ-thio (3), and 8-SH-ATP (4) and established their resistance to hydrolysis by NPP1,3 and NTPDase1,2,3,8 (<5% hydrolysis) (NTPDase = ectonucleoside triphosphate diphosphohydrolase). Analogues 1-3 at 100 μM inhibited thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis by NPP1 and NPP3 by >90% and 23-43%, respectively, and only slightly affected (0-40%) hydrolysis of ATP by NTPDase1,2,3,8. Analogue 3 is the most potent NPP1 inhibitor currently known, Ki = 20 nM and IC50 = 0.39 μM. Analogue 2a is a selective NPP1 inhibitor with Ki = 685 nM and IC50 = 0.57 μM. Analogues 1-3 were found mostly to be nonagonists of P2Y1/P2Y2/P2Y11 receptors. Docking analogues 1-3 into the NPP1 model suggested that activity correlates with the number of H-bonds with binding site residues. In conclusion, we propose analogues 2a and 3 as highly promising NPP1 inhibitors.
Collapse
Affiliation(s)
- Yael Nadel
- Department of Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|