1
|
Camci M, Şenol H, Kose A, Karaman Mayack B, Alayoubi MM, Karali N, Gezginci MH. Bioisosteric replacement of the carboxylic acid group in Hepatitis-C virus NS5B thumb site II inhibitors: phenylalanine derivatives. Eur J Med Chem 2024; 279:116832. [PMID: 39288595 DOI: 10.1016/j.ejmech.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Hepatitis C virus (HCV) is a global health concern and the NS5B RNA-dependent RNA polymerase (RdRp) of HCV is an attractive target for drug discovery due to its role in viral replication. This study focuses on NS5B thumb site II inhibitors, specifically phenylalanine derivatives, and explores bioisosteric replacement and prodrug strategies to overcome limitations associated with carboxylic acid functionality. The synthesized compounds demonstrated antiviral activity, with compound 6d showing the most potent activity with an EC50 value of 3.717 μM. The hydroxamidine derivatives 7a-d showed EC50 values ranging from 3.9 μM to 11.3 μM. However, the acidic heterocyclic derivatives containing the oxadiazolone (8a-d) and oxadiazolethione (9a-d) rings did not exhibit measurable activity. A methylated heterocycle 10b showed a hint of activity at 8.09 μM. The pivaloyloxymethyl derivatives 11a and 11b did not show antiviral activity. Further studies are warranted to fully understand the effects of these modifications and to explore additional strategies for developing novel therapeutic options for HCV.
Collapse
Affiliation(s)
- Merve Camci
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey; Graduate School of Health Sciences, Istanbul University, 34126, Istanbul, Turkey.
| | - Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093, Istanbul, Turkey.
| | - Aytekin Kose
- Aksaray University, Faculty of Science and Letters, Department of Chemistry, 68100, Aksaray, Turkey.
| | - Berin Karaman Mayack
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey; Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| | | | - Nilgun Karali
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey.
| | - Mikail Hakan Gezginci
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey.
| |
Collapse
|
2
|
LaPlante SR, Coric P, Bouaziz S, França TCC. NMR spectroscopy can help accelerate antiviral drug discovery programs. Microbes Infect 2024; 26:105297. [PMID: 38199267 DOI: 10.1016/j.micinf.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.
Collapse
Affiliation(s)
- Steven R LaPlante
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Québec, H7V 5B7, Canada; Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France.
| | - Pascale Coric
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Serge Bouaziz
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Tanos C C França
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
3
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
4
|
Giroud M, Kuhn B, Haap W. Drug Discovery Efforts to Identify Novel Treatments for Neglected Tropical Diseases - Cysteine Protease Inhibitors. Curr Med Chem 2024; 31:2170-2194. [PMID: 37916489 DOI: 10.2174/0109298673249097231017051733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Neglected tropical diseases are a severe burden for mankind, affecting an increasing number of people around the globe. Many of those diseases are caused by protozoan parasites in which cysteine proteases play a key role in the parasite's pathogenesis. OBJECTIVE In this review article, we summarize the drug discovery efforts of the research community from 2017 - 2022 with a special focus on the optimization of small molecule cysteine protease inhibitors in terms of selectivity profiles or drug-like properties as well as in vivo studies. The cysteine proteases evaluated by this methodology include Cathepsin B1 from Schistosoma mansoni, papain, cruzain, falcipain, and rhodesain. METHODS Exhaustive literature searches were performed using the keywords "Cysteine Proteases" and "Neglected Tropical Diseases" including the years 2017 - 2022. Overall, approximately 3'000 scientific papers were retrieved, which were filtered using specific keywords enabling the focus on drug discovery efforts. RESULTS AND CONCLUSION Potent and selective cysteine protease inhibitors to treat neglected tropical diseases were identified, which progressed to pharmacokinetic and in vivo efficacy studies. As far as the authors are aware of, none of those inhibitors reached the stage of active clinical development. Either the inhibitor's potency or pharmacokinetic properties or safety profile or a combination thereof prevented further development of the compounds. More efforts with particular emphasis on optimizing pharmacokinetic and safety properties are needed, potentially by collaborations of academic and industrial research groups with complementary expertise. Furthermore, new warheads reacting with the catalytic cysteine should be exploited to advance the research field in order to make a meaningful impact on society.
Collapse
Affiliation(s)
- Maude Giroud
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| | - Wolfgang Haap
- Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland
| |
Collapse
|
5
|
Mishra K, Guyon D, San Martin J, Yan Y. Chiral Perovskite Nanocrystals for Asymmetric Reactions: A Highly Enantioselective Strategy for Photocatalytic Synthesis of N-C Axially Chiral Heterocycles. J Am Chem Soc 2023; 145:17242-17252. [PMID: 37499231 PMCID: PMC10926773 DOI: 10.1021/jacs.3c04593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Catalytic approaches to generate enantiospecific chiral centers are the major premise of modern organic chemistry. Heterogeneous catalysis is responsible for the vast majority of chemical transformations, yet the direct employment of chiral solid catalysts for asymmetric synthesis is mostly overlooked. Here, we demonstrated that a heterogeneous metal-halide perovskite nanocrystal (NC) catalyst is active for asymmetric organic synthesis under visible-light activation. Chiral 1-phenylethylamine (PEA)-hybridized perovskite PEA/CsPbBr3 NC photocatalysts exhibit an enantioselective (up to 99% enantiomer excess, ee) avenue to produce N-C axially chiral N-heterocycles, i.e., N-arylindoles from N-arylamine photo-oxidation. Mechanistic investigation indicated a discriminated prochiral binding of the N-arylamine substrates onto the chiral-NC surface with ca. -2.4 kcal/mol enantiodifferentiation. Our perovskite NC heterogeneous catalytic system not only demonstrates a promising strategy to address the long-term challenges in atroposelective pharmaceutical scaffold synthesis but also paves the road to directly employ chiral solids for asymmetric synthesis.
Collapse
Affiliation(s)
- Kanchan Mishra
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Dylana Guyon
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
6
|
Baker KM, Agostino CJ, Orloff EA, Battistoni LD, Hughes RR, McHugh EM, Shaw MP, Nafie J, Mulcahy SP. Design, Synthesis, and Physicochemical Studies of Configurationally Stable β-Carboline Atropisomers. J Org Chem 2022; 87:14068-14077. [PMID: 36174244 DOI: 10.1021/acs.joc.2c01675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Axially chiral atropisomers have energetic barriers to rotation, ΔGrot, that prevent racemization of the respective enantiomers. We used computational modeling to develop a suite of 10 bio-inspired 1-aryl-β-carbolines with varying ΔGrot, from which a strong structure-activity relationship was observed for 2-substituted-1-naphthyl substituents. We then synthesized two of these atropisomers, 1d and 1f, by a four-step racemic synthesis and resolved the enantiomers via chiral chromatography. Racemization studies revealed experimental ΔGrot values of 39.5 and 33.0 kcal/mol for 1d and 1f, respectively, which were consistent with our computational results. These atropisomers exhibited long half-lives, which allowed for their physicochemical characterization and stereochemical assignment via UV-vis spectroscopy, fluorescence spectroscopy, electronic circular dichroism, and vibrational circular dichroism.
Collapse
Affiliation(s)
- Kristen M Baker
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Colby J Agostino
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Emily A Orloff
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Lorenzo D Battistoni
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Riley R Hughes
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Erin M McHugh
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Michael P Shaw
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Jordan Nafie
- BioTools, Inc., 17546 Bee Line Highway, Jupiter, Florida33478, United States
| | - Seann P Mulcahy
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| |
Collapse
|
7
|
Liu K, Li D, Zheng W, Shi M, Chen Y, Tang M, Yang T, Zhao M, Deng D, Zhang C, Liu J, Yuan X, Yang Z, Chen L. Discovery, Optimization, and Evaluation of Quinazolinone Derivatives with Novel Linkers as Orally Efficacious Phosphoinositide-3-Kinase Delta Inhibitors for Treatment of Inflammatory Diseases. J Med Chem 2021; 64:8951-8970. [PMID: 34138567 DOI: 10.1021/acs.jmedchem.1c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Guided by molecular docking, a commonly used open-chain linker was cyclized into a five-membered pyrrolidine to lock the overall conformation of the propeller-shaped molecule. Different substituents were introduced into the pyrrolidine moiety to block oxidative metabolism. Surprisingly, it was found that a small methyl substituent could be used to alleviate the oxidative metabolism of pyrrolidine while maintaining or enhancing potency, which could be described as a "magic methyl". Further optimization around the "3rd blade" of the propeller led to identification of a series of potent and selective PI3Kδ inhibitors. Among them, compound 50 afforded an optimum balance of PK profiles and potency. Oral administration of 50 attenuated the arthritis severity in a dose-dependent manner in a collagen-induced arthritis model without obvious toxicity. Furthermore, 50 demonstrated excellent pharmacokinetic properties with high bioavailability, suggesting that 50 might be an acceptable candidate for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wei Zheng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jiang Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
8
|
De Cesare S, McKenna CA, Mulholland N, Murray L, Bella J, Campopiano DJ. Direct monitoring of biocatalytic deacetylation of amino acid substrates by 1H NMR reveals fine details of substrate specificity. Org Biomol Chem 2021; 19:4904-4909. [PMID: 33998641 DOI: 10.1039/d1ob00122a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that the l-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range of N-acyl-amino acid substrates. This activity was revealed by 1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.
Collapse
Affiliation(s)
- Silvia De Cesare
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Catherine A McKenna
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | | | - Lorna Murray
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Juraj Bella
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
9
|
Franzini R, Pierini M, Mazzanti A, Iazzetti A, Ciogli A, Villani C. Molecular Recognition of the HPLC Whelk-O1 Selector towards the Conformational Enantiomers of Nevirapine and Oxcarbazepine. Int J Mol Sci 2020; 22:ijms22010144. [PMID: 33375681 PMCID: PMC7796420 DOI: 10.3390/ijms22010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023] Open
Abstract
The presence of stereogenic elements is a common feature in pharmaceutical compounds, and affording optically pure stereoisomers is a frequent issue in drug design. In this context, the study of the chiral molecular recognition mechanism fundamentally supports the understanding and optimization of chromatographic separations with chiral stationary phases. We investigated, with molecular docking, the interactions between the chiral HPLC selector Whelk-O1 and the stereoisomers of two bioactive compounds, the antiviral Nevirapine and the anticonvulsant Oxcarbazepine, both characterized by two stereolabile conformational enantiomers. The presence of fast-exchange enantiomers and the rate of the interconversion process were studied using low temperature enantioselective HPLC and VT-NMR with Whelk-O1 applied as chiral solvating agent. The values of the energetic barriers of interconversion indicate, for the single enantiomers of both compounds, half-lives sufficiently long enough to allow their separation only at critically sub-ambient temperatures. The chiral selector Whelk-O1 performed as a strongly selective discriminating agent both when applied as a chiral stationary phase (CSP) in HPLC and as CSA in NMR spectroscopy.
Collapse
Affiliation(s)
- Roberta Franzini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (A.I.); (A.C.)
- Correspondence: (R.F.); (C.V.)
| | - Marco Pierini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (A.I.); (A.C.)
| | - Andrea Mazzanti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, V. Risorgimento 4, 40136 Bologna, Italy;
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (A.I.); (A.C.)
| | - Alessia Ciogli
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (A.I.); (A.C.)
| | - Claudio Villani
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (A.I.); (A.C.)
- Correspondence: (R.F.); (C.V.)
| |
Collapse
|
10
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
11
|
Toenjes ST, Garcia V, Maddox SM, Dawson GA, Ortiz MA, Piedrafita FJ, Gustafson JL. Leveraging Atropisomerism to Obtain a Selective Inhibitor of RET Kinase with Secondary Activities toward EGFR Mutants. ACS Chem Biol 2019; 14:1930-1939. [PMID: 31424197 DOI: 10.1021/acschembio.9b00407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Unstable atropisomerism is innate in many common scaffolds in drug discovery, commonly existing as freely rotating aryl-aryl bonds. Such compounds can access the majority of dihedral conformations around the bond axis; however, most small molecules bind their target within a narrow range of these available conformations. The remaining accessible conformations can interact with other proteins leading to compound promiscuity. Herein, we leverage atropisomerism to restrict the accessible low-energy dihedral conformations available to a promiscuous kinase inhibitor and achieve highly selective and potent inhibitors of the oncogenic target rearranged during transfection (RET) kinase. We then evaluate our lead inhibitor against kinases that were predicted to bind compounds in a similar conformational window to RET, discovering a potent inhibitor of drug-resistant epidermal growth factor receptor (EGFR) mutants including L858R/T790M/C797S EGFR. Leveraging atropisomerism to restrict accessible conformational space should be a generally applicable strategy due to the prevalence of unstable atropisomerism in drug discovery.
Collapse
|
12
|
Abstract
In this paper, theories on anisotropic crystal growth and crystallization of atropisomers are reviewed and a model for anisotropic crystal growth from solution containing slow inter-converting conformers is presented. The model applies to systems with growth-dominated crystallization from solutions and assumes that only one conformation participates in the solute integration step and is present in the crystal lattice. Other conformers, defined as the wrong conformers, must convert to the right conformer before they can assemble to the crystal lattice. The model presents a simple implicit method for evaluating the growth inhibition effect by the wrong conformers. The crystal growth model applies to anisotropic growth in two main directions, namely a slow-growing face and a fast-growing face and requires the knowledge of solute crystal face integration coefficients in both directions. A parameter estimation algorithm was derived to extract those coefficients from data about temporal concentration and crystal size during crystallization and was designed to have a short run time, while providing a high-resolution estimation. The model predicts a size-dependent growth rate and simulations indicated that for a given seed size and solvent system and for an isothermal anti-solvent addition crystallization, the seed loading and the supersaturation at seeding are the main factors impacting the final aspect ratio. The model predicts a decrease of the growth inhibition effect by the wrong conformer with increasing temperature, likely due to faster equilibration between conformers and/or a decrease of the population of the wrong conformer, if of low energy, at elevated temperatures. Finally, the model predicts that solute surface integration becomes the rate-limiting mechanism for high solute integration activation energies, resulting in no impact of the WC on the overall crystal growth process.
Collapse
|
13
|
Wang ZS, Chen W, Jiang HY, Gao F, Zhou XL. Semi-synthesis and structural elucidation of brevicanines A-D, four new C 19-diterpenoid alkaloids with rotameric phenomenon from Aconitum brevicalcaratum. Fitoterapia 2019; 134:404-410. [PMID: 30898729 DOI: 10.1016/j.fitote.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
Four new C19-diterpenoid alkaloids brevicanines A-D (1-4) with rotameric phenomenon were isolated from Aconitum brevicalcaratum. They all possessed an unusual axial chiral phenyl-quinazoline side chain and their structures were elucidated by extensive spectroscopic analysis and chemical methods. Meanwhile, brevicanines A and B were semi-synthesized from their parent compound scaconine to further confirm their structures. Variable-temperature NMR spectroscopy was also used to investigate the atropisomers of brevicanine A, in which two sets of signals in 1H NMR spectra were observed at room temperature and coalesced over 140 °C. It's the first time to determine the atropisomeric preference of diterpenoid alkaloids.
Collapse
Affiliation(s)
- Zhong-Sheng Wang
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wei Chen
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hai-Yue Jiang
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Feng Gao
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Xian-Li Zhou
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
14
|
He W, Mazzuca P, Yuan W, Varney K, Bugatti A, Cagnotto A, Giagulli C, Rusnati M, Marsico S, Diomede L, Salmona M, Caruso A, Lu W, Caccuri F. Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochim Biophys Acta Gen Subj 2018; 1863:13-24. [PMID: 30248376 DOI: 10.1016/j.bbagen.2018.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND HIV-1 matrix protein p17 variants (vp17s) detected in HIV-1-infected patients with non-Hodgkin's lymphoma (HIV-NHL) display, differently from the wild-type protein (refp17), B cell growth-promoting activity. Biophysical analysis revealed that vp17s are destabilized as compared to refp17, motivating us to explore structure-function relationships. METHODS We used: biophysical techniques (circular dichroism (CD), nuclear magnetic resonance (NMR) and thermal/GuHCL denaturation) to study protein conformation and stability; Surface plasmon resonance (SPR) to study interactions; Western blot to investigate signaling pathways; and Colony Formation and Soft Agar assays to study B cell proliferation and clonogenicity. RESULTS By forcing the formation of a disulfide bridge between Cys residues at positions 57 and 87 we obtained a destabilized p17 capable of promoting B cell proliferation. This finding prompted us to dissect refp17 to identify the functional epitope. A synthetic peptide (F1) spanning from amino acid (aa) 2 to 21 was found to activate Akt and promote B cell proliferation and clonogenicity. Three positively charged aa (Arg15, Lys18 and Arg20) proved critical for sustaining the proliferative activity of both F1 and HIV-NHL-derived vp17s. Lack of any interaction of F1 with the known refp17 receptors suggests an alternate one involved in cell proliferation. CONCLUSIONS The molecular reasons for the proliferative activity of vp17s, compared to refp17, relies on the exposure of a functional epitope capable of activating Akt. GENERAL SIGNIFICANCE Our findings pave the way for identifying the receptor(s) responsible for B cell proliferation and offer new opportunities to identify novel treatment strategies in combating HIV-related NHL.
Collapse
Affiliation(s)
- Wangxiao He
- Center for Translational Medicine, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.
| | - Pietro Mazzuca
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| | - Kristen Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Alfredo Cagnotto
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Luisa Diomede
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Mario Salmona
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Wuyuan Lu
- Center for Translational Medicine, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| |
Collapse
|
15
|
Liang MM, Ma YY, Zhu L, Jia YJ, Zhu HJ, Li W, Zhou BD. Experimental and theoretical investigation of stable diastereomeric conformations of biscarboline amides in solution. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Hasegawa F, Yasukawa Y, Kawamura K, Tsuchikawa H, Murata M. Highly Efficient Syntheses of C−N Axially Chiral 1‐(
ortho
‐hydroxyaryl)uracil using a Chiral Auxiliary and a Chiral Base. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Futoshi Hasegawa
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yoshifumi Yasukawa
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kazushi Kawamura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Michio Murata
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
17
|
Giroud M, Dietzel U, Anselm L, Banner D, Kuglstatter A, Benz J, Blanc JB, Gaufreteau D, Liu H, Lin X, Stich A, Kuhn B, Schuler F, Kaiser M, Brun R, Schirmeister T, Kisker C, Diederich F, Haap W. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors. J Med Chem 2018; 61:3350-3369. [DOI: 10.1021/acs.jmedchem.7b01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uwe Dietzel
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Lilli Anselm
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - David Banner
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Baptiste Blanc
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Delphine Gaufreteau
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Haixia Liu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - Xianfeng Lin
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - August Stich
- Department of Tropical Medicine, Medical Mission Institute, Salvatorstrasse 7, 97074 Würzburg, Germany
| | - Bernd Kuhn
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Haap
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
18
|
Abstract
Atropisomerism is a dynamic type of axial chirality that is ubiquitous in medicinal chemistry. There are several examples of stable atropisomeric US FDA-approved drugs and experimental compounds, and in each case the atropisomers of these compounds possess drastically different biological activities. Rapidly interconverting atropisomerism is even more prevalent, and while such compounds are typically considered achiral, they bind their protein targets in an atroposelective fashion, with the nonrelevant atropisomer contributing little to the desired activities. It has been recently demonstrated that various properties of an interconverting atropisomer can be modulated through the synthesis of atropisomer stable and pure analogs. Herein we discuss examples of atropisomerism in drug discovery as well as challenges and opportunities moving forward.
Collapse
|
19
|
Glunz PW. Recent encounters with atropisomerism in drug discovery. Bioorg Med Chem Lett 2018; 28:53-60. [DOI: 10.1016/j.bmcl.2017.11.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|
20
|
Lodola A, Bertolini S, Biagetti M, Capacchi S, Facchinetti F, Gallo PM, Pappani A, Mor M, Pala D, Rivara S, Visentini F, Corsi M, Capelli AM. Atropisomerism and Conformational Equilibria: Impact on PI3Kδ Inhibition of 2-((6-Amino-9H-purin-9-yl)methyl)-5-methyl-3-(o-tolyl)quinazolin-4(3H)-one (IC87114) and Its Conformationally Restricted Analogs. J Med Chem 2017; 60:4304-4315. [DOI: 10.1021/acs.jmedchem.7b00247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - Serena Bertolini
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Matteo Biagetti
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Silvia Capacchi
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Fabrizio Facchinetti
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Paola Maria Gallo
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Alice Pappani
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Pala
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | | | - Mauro Corsi
- Aptuit s.r.l., Via Fleming 4, 37135 Verona, Italy
| | - Anna Maria Capelli
- Chemistry
Research and Drug Design Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| |
Collapse
|
21
|
Aliagas I, Berger R, Goldberg K, Nishimura RT, Reilly J, Richardson P, Richter D, Sherer EC, Sparling BA, Bryan MC. Sustainable Practices in Medicinal Chemistry Part 2: Green by Design. J Med Chem 2017; 60:5955-5968. [DOI: 10.1021/acs.jmedchem.6b01837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ignacio Aliagas
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Raphaëlle Berger
- MRL, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kristin Goldberg
- Innovative Medicines Unit, AstraZeneca, Building 310, Milton Science Park, Cambridge, CB4 0FZ, U.K
| | - Rachel T. Nishimura
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - John Reilly
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paul Richardson
- Pfizer Global Research and Development, 10777 Science Center Drive (CB2), San Diego, California 92121, United States
| | - Daniel Richter
- Pfizer Global Research and Development, 10777 Science Center Drive (CB2), San Diego, California 92121, United States
| | - Edward C. Sherer
- MRL, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Brian A. Sparling
- Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Dai J, Wang C, Traeger SC, Discenza L, Obermeier MT, Tymiak AA, Zhang Y. The role of chromatographic and chiroptical spectroscopic techniques and methodologies in support of drug discovery for atropisomeric drug inhibitors of Bruton’s tyrosine kinase. J Chromatogr A 2017; 1487:116-128. [DOI: 10.1016/j.chroma.2017.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
|
23
|
Smith NA, Zhang P, Salassa L, Habtemariam A, Sadler PJ. Synthesis, characterisation and dynamic behavior of photoactive bipyridyl ruthenium(II)-nicotinamide complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Patel L, Chandrasekhar J, Evarts J, Forseth K, Haran AC, Ip C, Kashishian A, Kim M, Koditek D, Koppenol S, Lad L, Lepist EI, McGrath ME, Perreault S, Puri KD, Villaseñor AG, Somoza JR, Steiner BH, Therrien J, Treiberg J, Phillips G. Discovery of Orally Efficacious Phosphoinositide 3-Kinase δ Inhibitors with Improved Metabolic Stability. J Med Chem 2016; 59:9228-9242. [DOI: 10.1021/acs.jmedchem.6b01169] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Leena Patel
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Jerry Evarts
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Kristen Forseth
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Aaron C. Haran
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Carmen Ip
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Adam Kashishian
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Musong Kim
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - David Koditek
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Sandy Koppenol
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Latesh Lad
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eve-Irene Lepist
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Mary E. McGrath
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephane Perreault
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Kamal D. Puri
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Armando G. Villaseñor
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - John R. Somoza
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Bart H. Steiner
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Joseph Therrien
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jennifer Treiberg
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gary Phillips
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
25
|
Bootsma AN, Anderson CE. Computational and experimental evaluation of α-(N-2-quinolonyl)ketones: a new class of nonbiaryl atropisomers. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Chatterjee S, Butterfoss GL, Mandal M, Paul B, Gupta S, Bonneau R, Jaisankar P. Racemization barriers of atropisomeric 3,3′-bipyrroles: an experimental study with theoretical verification. RSC Adv 2016. [DOI: 10.1039/c6ra07585a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activation barrier of racemization was determined for atropisomeric 3,3′-bipyrroles and they are found to be configurationally stable.
Collapse
Affiliation(s)
- Sourav Chatterjee
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata – 700 032
- India
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology
- New York University Abu Dhabi
- Abu Dhabi-129188
- United Arab Emirates
| | - Madhumita Mandal
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata – 700 032
- India
| | - Bishwajit Paul
- Brigham and Women's Hospital
- Harvard Medical School
- Boston
- USA
| | - Sreya Gupta
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata – 700 032
- India
| | - Richard Bonneau
- Center for Genomics and Systems Biology
- New York University
- New York
- USA
| | - Parasuraman Jaisankar
- Laboratory of Catalysis and Chemical Biology
- Department of Organic and Medicinal Chemistry
- CSIR-Indian Institute of Chemical Biology
- Kolkata – 700 032
- India
| |
Collapse
|
27
|
Diener ME, Metrano AJ, Kusano S, Miller SJ. Enantioselective synthesis of 3-arylquinazolin-4(3H)-ones via peptide-catalyzed atroposelective bromination. J Am Chem Soc 2015; 137:12369-77. [PMID: 26343278 PMCID: PMC5134330 DOI: 10.1021/jacs.5b07726] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a tertiary amine-containing β-turn peptide that catalyzes the atroposelective bromination of pharmaceutically relevant 3-arylquinazolin-4(3H)-ones (quinazolinones) with high levels of enantioinduction over a broad substrate scope. The structure of the free catalyst and the peptide-substrate complex were explored using X-ray crystallography and 2D-NOESY experiments. Quinazolinone rotational barriers about the chiral anilide axis were also studied using density functional theory calculations and are discussed in light of the high enantioselectivities observed. Mechanistic studies also suggest that the initial bromination event is stereodetermining, and the major monobromide intermediate is an atropisomerically stable, mono-ortho-substituted isomer. The observation of stereoisomerically stable monobromides stimulated the conversion of the tribromide products to other atropisomerically defined products of interest. For example, (1) a dehalogenation Suzuki-Miyaura cross-coupling sequence delivers ortho-arylated derivatives, and (2) a regioselective Buchwald-Hartwig amination procedure installs para-amine functionality. Stereochemical information was retained during these subsequent transformations.
Collapse
Affiliation(s)
| | | | | | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
| |
Collapse
|
28
|
Smith DE, Marquez I, Lokensgard ME, Rheingold AL, Hecht DA, Gustafson JL. Exploiting Atropisomerism to Increase the Target Selectivity of Kinase Inhibitors. Angew Chem Int Ed Engl 2015; 54:11754-9. [DOI: 10.1002/anie.201506085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Davis E. Smith
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182‐1030 (USA)
| | - Isaac Marquez
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182‐1030 (USA)
| | - Melissa E. Lokensgard
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182‐1030 (USA)
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093‐0385 (USA)
| | - David A. Hecht
- School of Mathematics, Science & Engineering, Southwestern College, 900 Otay Lakes Rd, Chula Vista, CA 91910 (USA)
| | - Jeffrey L. Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182‐1030 (USA)
| |
Collapse
|
29
|
Smith DE, Marquez I, Lokensgard ME, Rheingold AL, Hecht DA, Gustafson JL. Exploiting Atropisomerism to Increase the Target Selectivity of Kinase Inhibitors. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Lanyon-Hogg T, Ritzefeld M, Masumoto N, Magee AI, Rzepa HS, Tate EW. Modulation of Amide Bond Rotamers in 5-Acyl-6,7-dihydrothieno[3,2-c]pyridines. J Org Chem 2015; 80:4370-7. [PMID: 25713927 DOI: 10.1021/acs.joc.5b00205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Substituted N-acyl-piperidine is a widespread and important structural motif, found in approximately 500 currently available structures, and present in nearly 30 pharmaceutically active compounds. Restricted rotation of the acyl substituent in such molecules can give rise to two distinct chemical environments. Here we demonstrate, using NMR studies and density functional theory modeling of the lowest energy structures of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine derivatives, that the amide E:Z equilibrium is affected by non-covalent interactions between the amide oxygen and adjacent aromatic protons. Structural predictions were used to design molecules that promote either the E- or Z-amide conformation, enabling preparation of compounds with a tailored conformational ratio, as proven by NMR studies. Analysis of the available X-ray data of a variety of published N-acyl-piperidine-containing compounds further indicates that these molecules are also clustered in the two observed conformations. This finding emphasizes that directed conformational isomerism has significant implications for the design of both small molecules and larger amide-containing molecular architectures.
Collapse
Affiliation(s)
| | - Markus Ritzefeld
- †Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Naoko Masumoto
- †Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Anthony I Magee
- ‡National Heart and Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - Henry S Rzepa
- †Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Edward W Tate
- †Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
31
|
Vlach J, Saad JS. Structural and molecular determinants of HIV-1 Gag binding to the plasma membrane. Front Microbiol 2015; 6:232. [PMID: 25852680 PMCID: PMC4367181 DOI: 10.3389/fmicb.2015.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023] Open
Abstract
Targeting of the Gag polyprotein to the plasma membrane (PM) for assembly is a critical event in the late phase of immunodeficiency virus type-1 (HIV-1) infection. Gag binding to the PM is mediated by interactions between the myristoylated matrix (MA) domain and PM lipids. Despite the extensive biochemical and in vitro studies of Gag and MA binding to membranes over the last two decades, the discovery of the role of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in Gag binding to the PM has sparked a string of studies aimed at elucidating the molecular mechanism of retroviral Gag–PM binding. Electrostatic interactions between a highly conserved basic region of MA and acidic phospholipids have long been thought to be the main driving force for Gag–membrane interactions. However, recent studies suggest that the mechanism is rather complex since other factors such as the hydrophobicity of the membrane interior represented by the acyl chains and cholesterol also play important roles. Here we summarize the current understanding of HIV-1 Gag–membrane interactions at the molecular and structural levels and briefly discuss the underlying forces governing interactions of other retroviral MA proteins with the PM.
Collapse
Affiliation(s)
- Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
32
|
Deshmukh L, Ghirlando R, Clore GM. Conformation and dynamics of the Gag polyprotein of the human immunodeficiency virus 1 studied by NMR spectroscopy. Proc Natl Acad Sci U S A 2015; 112:3374-9. [PMID: 25713345 PMCID: PMC4371905 DOI: 10.1073/pnas.1501985112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Assembly and maturation of the human immunodeficiency virus type 1 (HIV-1) are governed by the Gag polyprotein. Here we study the conformation and dynamics of a large HIV-1 Gag fragment comprising the matrix, capsid, spacer peptide 1 and nucleocapsid domains (referred to as ΔGag) by heteronuclear multidimensional NMR spectroscopy. In solution, ΔGag exists in a dynamic equilibrium between monomeric and dimeric states. In the presence of nucleic acids and at low ionic strength ΔGag assembles into immature virus-like particles. The structured domains of ΔGag (matrix, the N- and C-terminal domains of capsid, and the N- and C-terminal zinc knuckles of nucleocapsid) retain their fold and reorient semi-independently of one another; the linkers connecting the structural domains, including spacer peptide 1 that connects capsid to nucleocapsid, are intrinsically disordered. Structural changes in ΔGag upon proteolytic processing by HIV-1 protease, monitored by NMR in real-time, demonstrate that the conformational transition of the N-terminal 13 residues of capsid from an intrinsically disordered coil to a β-hairpin upon cleavage at the matrix|capsid junction occurs five times faster than cleavage at the capsid|spacer peptide 1 junction. Finally, nucleic acids interact with both nucleocapsid and matrix domains, and proteolytic processing at the spacer peptide 1|nucleocapsid junction by HIV-1 protease is accelerated in the presence of single-stranded DNA.
Collapse
Affiliation(s)
| | - Rodolfo Ghirlando
- Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | | |
Collapse
|
33
|
Berber H, Lameiras P, Denhez C, Antheaume C, Clayden J. Atropisomerism about Aryl–Csp3 Bonds: The Electronic and Steric Influence of ortho-Substituents on Conformational Exchange in Cannabidiol and Linderatin Derivatives. J Org Chem 2014; 79:6015-27. [DOI: 10.1021/jo5006069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hatice Berber
- ICMR, CNRS UMR
7312, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France
| | - Pedro Lameiras
- ICMR, CNRS UMR
7312, Université de Reims Champagne-Ardenne, Moulin de la Housse, Bâtiment
18, BP 1039, F-51687 Reims Cedex 2, France
| | - Clément Denhez
- ICMR, CNRS UMR
7312, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France
- Multiscale
Molecular Modeling Platform, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, F-51687 Reims Cedex
2, France
| | - Cyril Antheaume
- Faculté de
Pharmacie, Service Commun d’Analyse, 74 route du Rhin, BP 60024, F-67401 Illkirch Cedex, France
| | - Jonathan Clayden
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
34
|
Barrett KT, Metrano AJ, Rablen PR, Miller SJ. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 2014; 509:71-5. [PMID: 24747399 PMCID: PMC4008667 DOI: 10.1038/nature13189] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/26/2014] [Indexed: 12/23/2022]
Abstract
One of the most well-recognized stereogenic elements in a chiral molecule is an sp(3)-hybridized carbon atom that is connected to four different substituents. Axes of chirality can also exist about bonds with hindered barriers of rotation; molecules containing such axes are known as atropisomers. Understanding the dynamics of these systems can be useful, for example, in the design of single-atropisomer drugs or molecular switches and motors. For molecules that exhibit a single axis of chirality, rotation about that axis leads to racemization as the system reaches equilibrium. Here we report a two-axis system for which an enantioselective reaction produces four stereoisomers (two enantiomeric pairs): following a catalytic asymmetric transformation, we observe a kinetically controlled product distribution that is perturbed from the system's equilibrium position. As the system undergoes isomerization, one of the diastereomeric pairs drifts spontaneously to a higher enantiomeric ratio. In a compensatory manner, the enantiomeric ratio of the other diastereomeric pair decreases. These observations are made for a class of unsymmetrical amides that exhibits two asymmetric axes--one axis is defined through a benzamide substructure, and the other axis is associated with differentially N,N-disubstituted amides. The stereodynamics of these substrates provides an opportunity to observe a curious interplay of kinetics and thermodynamics intrinsic to a system of stereoisomers that is constrained to a situation of partial equilibrium.
Collapse
Affiliation(s)
- Kimberly T. Barrett
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107
| | - Anthony J. Metrano
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107
| | - Paul R. Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, Swarthmore, PA 19081-1397
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107
| |
Collapse
|
35
|
Lazerwith SE, Lew W, Zhang J, Morganelli P, Liu Q, Canales E, Clarke MO, Doerffler E, Byun D, Mertzman M, Ye H, Chong L, Xu L, Appleby T, Chen X, Fenaux M, Hashash A, Leavitt SA, Mabery E, Matles M, Mwangi JW, Tian Y, Lee YJ, Zhang J, Zhu C, Murray BP, Watkins WJ. Discovery of GS-9669, a Thumb Site II Non-Nucleoside Inhibitor of NS5B for the Treatment of Genotype 1 Chronic Hepatitis C Infection. J Med Chem 2013; 57:1893-901. [DOI: 10.1021/jm401420j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Scott E. Lazerwith
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Willard Lew
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jennifer Zhang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Philip Morganelli
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Qi Liu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eda Canales
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Michael O. Clarke
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Edward Doerffler
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Daniel Byun
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Michael Mertzman
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Hong Ye
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Lee Chong
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Lianhong Xu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Todd Appleby
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Xiaowu Chen
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Martijn Fenaux
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Ahmad Hashash
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephanie A. Leavitt
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric Mabery
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Mike Matles
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Judy W. Mwangi
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yang Tian
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yu-Jen Lee
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jingyu Zhang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Christine Zhu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Bernard P. Murray
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - William J. Watkins
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|