1
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
2
|
A Malik A, Dangroo NA, Kaur P, Attery S, A Rather M, Khan A, Ara T, Nandanwar H. Discovery of novel dihydronaphthalene-imidazole ligands as potential inhibitors of Staphylococcus aureus multidrug resistant NorA efflux pump: A combination of experimental and in silico molecular docking studies. Microb Pathog 2024; 190:106627. [PMID: 38521473 DOI: 10.1016/j.micpath.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Overexpression of the efflux pump is a predominant mechanism by which bacteria show antimicrobial resistance (AMR) and leads to the global emergence of multidrug resistance (MDR). In this work, the inhibitory potential of library of dihydronapthyl scaffold-based imidazole derivatives having structural resemblances with some known efflux pump inhibitors (EPI) were designed, synthesized and evaluated against efflux pump inhibitor against overexpressing bacterial strains to study the synergistic effect of compounds and antibiotics. Out of 15 compounds, four compounds (Dz-1, Dz-3, Dz-7, and Dz-8) were found to be highly active. DZ-3 modulated the MIC of ciprofloxacin, erythromycin, and tetracycline by 128-fold each against 1199B, XU212 and RN4220 strains of S. aureus respectively. DZ-3 also potentiated tetracycline by 64-fold in E. coli AG100 strain. DZ-7 modulated the MIC of both tetracycline and erythromycin 128-fold each in S. aureus XU212 and S. aureus RN4220 strains. DZ-1 and DZ-8 showed the moderate reduction in MIC of tetracycline in E. coli AG100 only by 16-fold and 8-fold, respectively. DZ-3 was found to be the potential inhibitor of NorA as determined by ethidium bromide efflux inhibition and accumulation studies employing NorA overexpressing strain SA-1199B. DZ-3 displayed EPI activity at non-cytotoxic concentration to human cells and did not possess any antibacterial activity. Furthermore, molecular docking studies of DZ-3 was carried out in order to understand the possible binding sites of DZ-3 with the active site of the protein. These studies indicate that dihydronaphthalene scaffolds could serve as valuable cores for the development of promising EPIs.
Collapse
Affiliation(s)
- Asif A Malik
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Nisar A Dangroo
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, J &K, 192122, India.
| | - Parminder Kaur
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Shobit Attery
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, J &K, 192122, India.
| | - Abrar Khan
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Tabassum Ara
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India.
| | - Hemraj Nandanwar
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
3
|
Clay WK, Buck AK, He Y, Hernández Sánchez DN, Ward NA, Lear JM, Nguyen KQ, Clark BH, Sapia RJ, Lalisse RF, Sriraman A, Cadieux CL, McElroy CA, Callam CS, Hadad CM. Treatment of Organophosphorus Poisoning with 6-Alkoxypyridin-3-ol Quinone Methide Precursors: Resurrection of Methylphosphonate-Aged Acetylcholinesterase. Chem Res Toxicol 2024; 37:643-657. [PMID: 38556765 DOI: 10.1021/acs.chemrestox.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 μM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.
Collapse
Affiliation(s)
- William K Clay
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne K Buck
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiran He
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalyanne N Hernández Sánchez
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan A Ward
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy M Lear
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kenny Q Nguyen
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin H Clark
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ryan J Sapia
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aishwarya Sriraman
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - C Linn Cadieux
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Craig A McElroy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Kazmi MZH, Schneider OM, Hall DG. Expanding the Role of Boron in New Drug Chemotypes: Properties, Chemistry, Pharmaceutical Potential of Hemiboronic Naphthoids. J Med Chem 2023; 66:13768-13787. [PMID: 37752013 DOI: 10.1021/acs.jmedchem.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
New chemotypes and bioisosteres can open a new chemical space in drug discovery and help meet an urgent demand for novel agents to fight infections and other diseases. With the aim of identifying new boron-containing drug chemotypes, this article details a comprehensive evaluation of the pseudoaromatic hemiboronic naphthoids, benzoxaza- and benzodiazaborines. Relevant physical properties in aqueous media (acidity, solubility, log P, and stability) of prototypic members of four subclasses were determined. Both scaffolds are amenable to common reactions used in drug discovery, such as chemoselective Suzuki-Miyaura, Chan-Lam, and amidation reactions. Small model libraries were prepared to assess the scope of these transformations, and the entire collection was screened for antifungal (Candida albicans) and antibacterial activity (MRSA, Escherichia coli), unveiling promising benzoxazaborines with low micromolar minimum inhibitory concentration values. Select DMPK assays of representative compounds suggest promising drug-like behavior for all four subclasses. Moreover, several drug isosteres were evaluated for anti-inflammatory and anticancer activity as appropriate.
Collapse
Affiliation(s)
- M Zain H Kazmi
- Department of Chemistry, Centennial Center for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Olivia M Schneider
- Department of Chemistry, Centennial Center for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, Centennial Center for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
Palazzotti D, Felicetti T, Sabatini S, Moro S, Barreca ML, Sturlese M, Astolfi A. Fighting Antimicrobial Resistance: Insights on How the Staphylococcus aureus NorA Efflux Pump Recognizes 2-Phenylquinoline Inhibitors by Supervised Molecular Dynamics (SuMD) and Molecular Docking Simulations. J Chem Inf Model 2023; 63:4875-4887. [PMID: 37515548 PMCID: PMC10428217 DOI: 10.1021/acs.jcim.3c00516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 07/31/2023]
Abstract
The superbug Staphylococcus aureus (S. aureus) exhibits several resistance mechanisms, including efflux pumps, that strongly contribute to antimicrobial resistance. In particular, the NorA efflux pump activity is associated with S. aureus resistance to fluoroquinolone antibiotics (e.g., ciprofloxacin) by promoting their active extrusion from cells. Thus, since efflux pump inhibitors (EPIs) are able to increase antibiotic concentrations in bacteria as well as restore their susceptibility to these agents, they represent a promising strategy to counteract bacterial resistance. Additionally, the very recent release of two NorA efflux pump cryo-electron microscopy (cryo-EM) structures in complex with synthetic antigen-binding fragments (Fabs) represents a real breakthrough in the study of S. aureus antibiotic resistance. In this scenario, supervised molecular dynamics (SuMD) and molecular docking experiments were combined to investigate for the first time the molecular mechanisms driving the interaction between NorA and efflux pump inhibitors (EPIs), with the ultimate goal of elucidating how the NorA efflux pump recognizes its inhibitors. The findings provide insights into the dynamic NorA-EPI intermolecular interactions and lay the groundwork for future drug discovery efforts aimed at the identification of novel molecules to fight antimicrobial resistance.
Collapse
Affiliation(s)
- Deborah Palazzotti
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Tommaso Felicetti
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Stefano Sabatini
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Stefano Moro
- Molecular
Modeling Section (MMS), Department of Pharmaceutical and Pharmacological
Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Maria Letizia Barreca
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Mattia Sturlese
- Molecular
Modeling Section (MMS), Department of Pharmaceutical and Pharmacological
Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Andrea Astolfi
- Department
of Pharmaceutical Sciences, Department of Excellence 2018−2022, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
6
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
7
|
Yu Y, Zhao Y, He Y, Pang J, Yang Z, Zheng M, Yin R. Inhibition of efflux pump encoding genes and biofilm formation by sub-lethal photodynamic therapy in methicillin susceptible and resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2022; 39:102900. [PMID: 35525433 DOI: 10.1016/j.pdpdt.2022.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective method to inactivate microorganisms based on reactive oxygen species (ROS) generated by photosensitizer and light at certain wavelength. Exposure to sub-lethal dose of PDT (sPDT) could activate the regulatory systems in the surviving bacteria in response to oxidative stress. This study aimed to evaluate the effect of sPDT on efflux pump and biofilm formation in Staphylococcus aureus (S. aureus), which are two important virulence related factors. METHODS Different light irradiation time and toluidine blue O (TBO) concentrations were tested to select a sPDT in methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA). Efflux function was evaluated with EtBr efflux experiment. Biofilm formation was evaluated by crystal violet staining. Gene expressions of norA, norB, sepA, mepA and mdeA following sPDT were analyzed with real-time PCR. RESULTS Sub-lethal PDT was set at 40 J/cm2 associated with 0.5 μM TBO. Efflux function was significantly inhibited in both strains. The average expression levels of mdeA and mepA in MSSA and MRSA were increased by (3.09, 1.77, 1.57) and (3,44, 1.59, 6.29) fold change respectively, norB and sepA were decreased by (3.77, 6.14) and (3.02, 3.47) fold change respectively. Expression level of norA was decreased by 5.44-fold change in MSSA but increased by 2.80-fold change in MRSA. Biofilm formation in both strains was impeded. CONCLUSIONS TBO-mediated sPDT could inhibit efflux pump function, alter efflux pump encoding gene expression levels and retard biofilm formation in MSSA and MRSA. Therefore, sPDT is proposed as a potential adjuvant therapy for infections.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yan Zhao
- Department of Microbiology,Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Jiayin Pang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| |
Collapse
|
8
|
Bhattacharjee B, Das A, Das G, Ramesh A. Urea-Based Ligand as an Efflux Pump Inhibitor: Warhead to Counter Ciprofloxacin Resistance and Inhibit Collagen Adhesion by MRSA. ACS APPLIED BIO MATERIALS 2022; 5:1710-1720. [PMID: 35344332 DOI: 10.1021/acsabm.2c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a frontline human pathogen in which efflux pump activity confers high levels of antibiotic-resistance and poses a therapeutic challenge in the clinics. The present study illustrates the potential of urea-based ligand as an efflux pump inhibitor (EPI) in order to restore the efficacy of ciprofloxacin (CPX) against MRSA. Among eight structurally varying urea-based ligands, the ligand C8 could significantly inhibit efflux pump activity in the clinical MRSA strain S. aureus 4s and was superior to the known EPI reserpine. In combinatorial treatment, C8 enhanced cellular accumulation of CPX, rendered a 16× decrease in the MIC of CPX, and restored the susceptibility of S. aureus 4s to CPX. Notably, C8 downregulated the expression of norA gene coding for the efflux pump in MRSA and treatment with 10 μM C8 and 2.0 μM CPX prevented emergence of the CPX resistance trait and suppressed MRSA cell growth till 120 generations. For potential anti-MRSA therapy, C8-loaded poly(d,l-lactide-co-glycolide) nanocarrier (C8-PNC) was generated, which facilitated facile release of C8 in physiologically relevant fluid. C8-PNC (loaded with 50 μM C8) rendered efflux pump inhibition and eliminated MRSA in combination with only 2.0 μM CPX. Treatment with the non-toxic C8-PNC (loaded with 50 μM C8) and CPX (2.0 μM) also hindered MRSA adhesion on collagen manifold higher as compared to cells treated with 32 μM CPX and significantly downregulated norA gene expression in non-adhered MRSA cells. The urea-based ligand presented herein is a promising biocompatible therapeutic material for effective mitigation of MRSA infections.
Collapse
Affiliation(s)
- Basu Bhattacharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
9
|
Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel) 2022; 15:ph15040393. [PMID: 35455389 PMCID: PMC9029892 DOI: 10.3390/ph15040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.
Collapse
|
10
|
Wu Y, Hu C, Wang T, Eberle L, Hashmi ASK. Gold‐Catalyzed Reaction of Anthranils with Alkynyl Sulfones for the Regioselective Formation of 3‐Hydroxyquinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufeng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 People's Republic of China
| | - Chao Hu
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tao Wang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science King Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|
11
|
Masih PJ, Kesharwani T, Rodriguez E, Vertudez MA, Motakhaveri ML, Le TK, Tran MKT, Cloyd MR, Kornman CT, Phillips AM. Synthesis and Evaluation of 3-Halobenzo[ b]thiophenes as Potential Antibacterial and Antifungal Agents. Pharmaceuticals (Basel) 2021; 15:39. [PMID: 35056096 PMCID: PMC8780876 DOI: 10.3390/ph15010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
The global health concern of antimicrobial resistance has harnessed research interest to find new classes of antibiotics to combat disease-causing pathogens. In our studies, 3-halobenzo[b]thiophene derivatives were synthesized and tested for their antimicrobial activities using the broth microdilution susceptibility method. The 3-halo substituted benzo[b]thiophenes were synthesized starting from 2-alkynyl thioanisoles using a convenient electrophilic cyclization methodology that utilizes sodium halides as the source of electrophilic halogens when reacted along with copper(II) sulfate. This environmentally benign methodology is facile, uses ethanol as the solvent, and results in 3-halo substituted benzo[b]thiophene structures in very high yields. The cyclohexanol-substituted 3-chloro and 3-bromobenzo[b]thiophenes resulted in a low MIC of 16 µg/mL against Gram-positive bacteria and yeast. Additionally, in silico absorption, distribution, metabolism, and excretion (ADME) properties of the compounds were determined. The compounds with the lowest MIC values showed excellent drug-like properties with no violations to Lipinski, Veber, and Muegge filters. The time-kill curve was obtained for cyclohexanol-substituted 3-chlorobenzo[b]thiophenes against Staphylococcus aureus, which showed fast bactericidal activity at MIC.
Collapse
Affiliation(s)
- Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Elivet Rodriguez
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Mia A Vertudez
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Mina L Motakhaveri
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Terelan K Le
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Minh Kieu T Tran
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Matthew R Cloyd
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Cory T Kornman
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Aimee M Phillips
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| |
Collapse
|
12
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
13
|
Cedraro N, Cannalire R, Astolfi A, Mangiaterra G, Felicetti T, Vaiasicca S, Cernicchi G, Massari S, Manfroni G, Tabarrini O, Cecchetti V, Barreca ML, Biavasco F, Sabatini S. From Quinoline to Quinazoline-Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem 2021; 16:3044-3059. [PMID: 34032014 PMCID: PMC8518402 DOI: 10.1002/cmdc.202100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance breakers, such as efflux pump inhibitors (EPIs), represent a powerful alternative to the development of new antimicrobials. Recently, by using previously described EPIs, we developed pharmacophore models able to identify inhibitors of NorA, the most studied efflux pump of Staphylococcus aureus. Herein we report the pharmacophore-based virtual screening of a library of new potential NorA EPIs generated by an in-silico scaffold hopping approach of the quinoline core. After chemical synthesis and biological evaluation of the best virtual hits, we found the quinazoline core as the best performing scaffold. Accordingly, we designed and synthesized a series of functionalized 2-arylquinazolines, which were further evaluated as NorA EPIs. Four of them exhibited a strong synergism with ciprofloxacin and a good inhibition of ethidium bromide efflux on resistant S. aureus strains coupled with low cytotoxicity against human cell lines, thus highlighting a promising safety profile.
Collapse
Affiliation(s)
- Nicholas Cedraro
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Rolando Cannalire
- Current address: Department of PharmacyUniversity of Napoli “Federico II”via D. Montesano 4980131NapoliItaly
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Andrea Astolfi
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Gianmarco Mangiaterra
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Tommaso Felicetti
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Salvatore Vaiasicca
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Giada Cernicchi
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Serena Massari
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Giuseppe Manfroni
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Oriana Tabarrini
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Violetta Cecchetti
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Maria Letizia Barreca
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| | - Francesca Biavasco
- Department of Life and Environmental SciencesUniversità Politecnica delle Marchevia Brecce Bianche60131AnconaItaly
| | - Stefano Sabatini
- Department of Pharmaceutical SciencesUniversità degli Studi di Perugiavia del Liceo 106123PerugiaItaly
| |
Collapse
|
14
|
Thamilselvan G, Sarveswari HB, Vasudevan S, Stanley A, Shanmugam K, Vairaprakash P, Solomon AP. Development of an Antibiotic Resistance Breaker to Resensitize Drug-Resistant Staphylococcus aureus: In Silico and In Vitro Approach. Front Cell Infect Microbiol 2021; 11:700198. [PMID: 34485178 PMCID: PMC8415528 DOI: 10.3389/fcimb.2021.700198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Efflux pumps are one of the predominant microbial resistant mechanisms leading to the development of multidrug resistance. In Staphylococcus aureus, overexpression of NorA protein enables the efflux of antibiotics belonging to the class of fluoroquinolones and, thus, makes S. aureus resistant. Hence, NorA efflux pumps are being extensively exploited as the potential drug target to evade bacterial resistance and resensitize bacteria to the existing antibiotics. Although several molecules are reported to inhibit NorA efflux pump effectively, boronic acid derivatives were shown to have promising NorA efflux pump inhibition. In this regard, the current study exploits 6-(3-phenylpropoxy)pyridine-3-boronic acid to further improve the activity and reduce cytotoxicity using the bioisostere approach, a classical medicinal chemistry concept. Using the SWISS-Bioisostere online tool, from the parent compound, 42 compounds were obtained upon the replacement of the boronic acid. The 42 compounds were docked with modeled NorA protein, and key molecular interactions of the prominent compounds were assessed. The top hit compounds were further analyzed for their drug-like properties using ADMET studies. The identified potent lead, 5-nitro-2-(3-phenylpropoxy)pyridine (5-NPPP), was synthesized, and in vitro efficacy studies have been proven to show enhanced efflux inhibition, thus acting as a potent antibiotic breaker to resensitize S. aureus without elucidating any cytotoxic effect to the host Hep-G2 cell lines.
Collapse
Affiliation(s)
- Gopalakrishnan Thamilselvan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Alex Stanley
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
15
|
1,3,4-oxadiazole conjugates of capsaicin as potent NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg Chem 2021; 113:105031. [PMID: 34089943 DOI: 10.1016/j.bioorg.2021.105031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
NorA efflux pump pertaining to the major facilitator superfamily (MFS) is known to play a key role in antibiotic and biocide resistance in Staphylococcus aureus (S. aureus). It accounts for the extrusion of antibiotics like fluoroquinolones (e.g. ciprofloxacin). Several compounds including synthetic and natural products have been identified as potential NorA efflux pump inhibitors (EPIs) and found to restore the antibacterial activity of antibiotics. However, none of the reported EPIs have reached to clinical approval probably due to their high toxicity profiles. Considering the NorA efflux pump inhibitory potential of capsaicin, a series of capsaicin-based 1,3,4 oxadiazole conjugates were prepared and evaluated for ciprofloxacin activity potentiating effect. Among the new capsaicinoids tested, 17i displayed a minimum effective concentration (MEC) of 12.5 µg/mL against NorA overexpressing S. aureus strain (SA1199B), whereas capsaicin showed MEC of 50 µg/mL. The kill kinetics curve for the combination showed that ciprofloxacin at a sub-inhibitory concentration (0.25 × MIC) was equipotent in effect, to its MIC. 17i has significantly decreased the ethidium bromide efflux confirming NorA inhibition as the mode of action. Mutation prevention concentration of the ciprofloxacin was reduced in combination with 17i.In silico studies revealed the binding efficiency and binding affinity of 17i with NorA. This compound may serve as a template for the further drug discovery.
Collapse
|
16
|
Monteiro KLC, de Aquino TM, Mendonça Junior FJB. An Update on Staphylococcus aureus NorA Efflux Pump Inhibitors. Curr Top Med Chem 2021; 20:2168-2185. [PMID: 32621719 DOI: 10.2174/1568026620666200704135837] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Methicillin-resistant and vancomycin-resistant Staphylococcus aureus are pathogens causing severe infectious diseases that pose real public health threats problems worldwide. In S. aureus, the most efficient multidrug-resistant system is the NorA efflux pump. For this reason, it is critical to identify efflux pump inhibitors. OBJECTIVE In this paper, we present an update of the new natural and synthetic compounds that act as modulators of antibiotic resistance through the inhibition of the S. aureus NorA efflux pump. RESULTS Several classes of compounds capable of restoring the antibiotic activity have been identified against resistant-S. aureus strains, acting as NorA efflux pump inhibitors. The most promising classes of compounds were quinolines, indoles, pyridines, phenols, and sulfur-containing heterocycles. However, the substantial degree structural diversity of these compounds makes it difficult to establish good structure- activity correlations that allow the design of compounds with more promising activities and properties. CONCLUSION Despite substantial efforts put forth in the search for new antibiotic adjuvants that act as efflux pump inhibitors, and despite several promising results, there are currently no efflux pump inhibitors authorized for human or veterinary use, or in clinical trials. Unfortunately, it appears that infection control strategies have remained the same since the discovery of penicillin, and that most efforts remain focused on discovering new classes of antibiotics, rather than trying to prolong the life of available antibiotics, and simultaneously fighting mechanisms of bacterial resistance.
Collapse
|
17
|
Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. ENVIRONMENTAL RESEARCH 2021; 195:110897. [PMID: 33617866 DOI: 10.1016/j.envres.2021.110897] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 05/19/2023]
Abstract
Disinfectants are widely acknowledged for removing microorganisms from the surface of the objects and transmission media. However, the emergence of disinfectant resistance has become a severe threat to the safety of life and health and the rational allocation of resources due to the reduced disinfectant effectiveness. The horizontal gene transfer (HGT) of disinfectant resistance genes has also expanded the resistant flora, making the situation worse. This review focused on the resistance mechanisms of disinfectant resistant bacteria on biofilms, cell membrane permeability, efflux pumps, degradable enzymes, and disinfectant targets. Efflux can be the fastest and most effective resistance mechanism for bacteria to respond to stress. The qac genes, located on some plasmids which can transmit resistance through conjugative transfer, are the most commonly reported in the study of disinfectant resistance genes. Whether the qac genes can be transferred through transformation or transduction is still unclear. Studying the factors affecting the resistance of bacteria to disinfectants can find breakthrough methods to more adequately deal with the problem of reduced disinfectant effectiveness. It has been confirmed that the interaction of probiotics and bacteria or the addition of 4-oxazolidinone can inhibit the formation of biofilms. Chemicals such as eugenol and indole derivatives can increase bacterial sensitivity by reducing the expression of efflux pumps. The role of these findings in anti-disinfectant resistance has proved invaluable.
Collapse
Affiliation(s)
- Chaoyu Tong
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Hong Hu
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Gang Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhengyan Li
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Aifeng Li
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jianye Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
18
|
|
19
|
Siqueira MMR, Freire PDTC, Cruz BG, de Freitas TS, Bandeira PN, Silva Dos Santos H, Nogueira CES, Teixeira AMR, Pereira RLS, Xavier JDC, Campina FF, Dos Santos Barbosa CR, Neto JBDA, da Silva MMC, Siqueira-Júnior JP, Douglas Melo Coutinho H. Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. Eur J Pharm Sci 2020; 158:105695. [PMID: 33383131 DOI: 10.1016/j.ejps.2020.105695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4'-aminophenyl)-3-(phenyl)‑prop-2-en-1-one (APCHAL), and (2E)-1-(4'-aminophenyl)-3-(4-chlorophenyl)‑prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.
Collapse
Affiliation(s)
| | - Paulo de Tarso Cavalcante Freire
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Paulo Nogueira Bandeira
- Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Carlos Emidío Sampaio Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | | | - Jayze da Cunha Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Oliveira-Tintino CDDM, Muniz DF, Barbosa CRDS, Pereira RLS, Begnini IM, Rebelo RA, Silva LED, Mireski SL, Nasato MC, Krautler MIL, Pereira PS, Costa JGMD, Rodrigues FFG, Teixeira AMR, Ribeiro-Filho J, Tintino SR, de Menezes IRA, Coutinho HDM, Silva TGD. The 1,8-naphthyridines sulfonamides are NorA efflux pump inhibitors. J Glob Antimicrob Resist 2020; 24:233-240. [PMID: 33385589 DOI: 10.1016/j.jgar.2020.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Efflux pumps are transmembrane proteins associated with bacterial resistance mechanisms. Bacteria use these proteins to actively transport antibiotics to the extracellular medium, preventing the pharmacological action of these drugs. This study aimed to evaluate in vitro the antibacterial activity of 1,8-naphthyridines sulfonamides, as well as their ability to inhibit efflux systems of Staphylococcus aureus strains expressing different levels of the NorA efflux pump. METHODS The broth microdilution test was performed to assess antibacterial activity. Efflux pump inhibition was evaluated in silico by molecular docking and in vitro by fluorometric tests, and the minimum inhibitory concentration (MIC) was determined. The MIC was determined in the association between 1,8-naphthyridine and norfloxacin or ethidium bromide. RESULTS The 1,8-naphthyridines did not show direct antibacterial activity. However, they effectively reduced the MIC of multidrug-resistant bacteria by associating with norfloxacin and ethidium bromide, in addition to increasing the fluorescence emission. In silico analysis addressing the binding between NorA and 1,8-naphthyridines suggests that hydrogen bonds and hydrophilic interactions represent the interactions with the most favourable binding energy, corroborating the experimental data. CONCLUSION Our data suggest that 1,8-naphthyridines sulfonamides inhibit bacterial resistance through molecular mechanisms associated with inhibition of the NorA efflux pump in S. aureus strains.
Collapse
Affiliation(s)
| | - Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Iêda Maria Begnini
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sandro Lucio Mireski
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | - Michele Caroline Nasato
- Department of Chemistry, Regional University of Blumenau, FURB, Itoupava Seca, 89030-903, Blumenau, SC, Brazil
| | | | - Pedro Silvino Pereira
- Laboratory of Pharmatoxicological Prospecting of Bioactive Products, Department of Antibiotics, Federal University of Pernambuco, UFPE, Recife, PE, Brazil
| | - José Galberto Martins da Costa
- Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Alexandre Magno Rodrigues Teixeira
- Laboratory of simulations and molecular spectroscopy, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Jaime Ribeiro-Filho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, IGM-Fiocruz, Salvador, BA, Brazil
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Pharmatoxicological Prospecting of Bioactive Products, Department of Antibiotics, Federal University of Pernambuco, UFPE, Recife, PE, Brazil
| |
Collapse
|
21
|
Cruz CD, Wrigstedt P, Moslova K, Iashin V, Mäkkylä H, Ghemtio L, Heikkinen S, Tammela P, Perea-Buceta JE. Installation of an aryl boronic acid function into the external section of N-aryl-oxazolidinones: Synthesis and antimicrobial evaluation. Eur J Med Chem 2020; 211:113002. [PMID: 33223262 DOI: 10.1016/j.ejmech.2020.113002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
N-aryl-oxazolidinones is a prominent family of antimicrobials used for treating infections caused by clinically prevalent Gram-positive bacteria. Recently, boron-containing compounds have displayed intriguing potential in the antibiotic discovery setting. Herein, we report the unprecedented introduction of a boron-containing moiety such as an aryl boronic acid in the external region of the oxazolidinone structure via a chemoselective acyl coupling reaction. As a result, we accessed a series of analogues with a distal aryl boronic pharmacophore on the oxazolidinone scaffold. We identified that a peripheric linear conformation coupled with freedom of rotation and no further substitution on the external aryl boronic ring, an amido linkage with hydrogen bonding character, in addition to a para-relative disposition between boronic group and linker, are the optimal combination of structural features in this series for antimicrobial activity. In comparison to linezolid, the analogue comprising all those features, compound 20b, displayed levels of antimicrobial activity augmented by an eight-fold to a thirty-two-fold against a panel of Gram-positive strains, and a near one hundred-fold against Escherichia coli JW5503, a Gram-negative mutant strain with a defective efflux capability.
Collapse
Affiliation(s)
- Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Pauli Wrigstedt
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Karina Moslova
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Vladimir Iashin
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Heidi Mäkkylä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Léo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Sami Heikkinen
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Jesus E Perea-Buceta
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland.
| |
Collapse
|
22
|
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz M, Lewandowski W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4454. [PMID: 33049979 PMCID: PMC7579235 DOI: 10.3390/ma13194454] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
Collapse
Affiliation(s)
- Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Aleksandra Golonko
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02–532 Warsaw, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland;
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| |
Collapse
|
23
|
Cannalire R, Mangiaterra G, Felicetti T, Astolfi A, Cedraro N, Massari S, Manfroni G, Tabarrini O, Vaiasicca S, Barreca ML, Cecchetti V, Biavasco F, Sabatini S. Structural Modifications of the Quinolin-4-yloxy Core to Obtain New Staphylococcus aureus NorA Inhibitors. Int J Mol Sci 2020; 21:ijms21197037. [PMID: 32987835 PMCID: PMC7582826 DOI: 10.3390/ijms21197037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Tackling antimicrobial resistance (AMR) represents a social responsibility aimed at renewing the antimicrobial armamentarium and identifying novel therapeutical approaches. Among the possible strategies, efflux pumps inhibition offers the advantage to contrast the resistance against all drugs which can be extruded. Efflux pump inhibitors (EPIs) are molecules devoid of any antimicrobial activity, but synergizing with pumps-substrate antibiotics. Herein, we performed an in silico scaffold hopping approach starting from quinolin-4-yloxy-based Staphylococcus aureus NorA EPIs by using previously built pharmacophore models for NorA inhibition activity. Four scaffolds were identified, synthesized, and modified with appropriate substituents to obtain new compounds, that were evaluated for their ability to inhibit NorA and synergize with the fluoroquinolone ciprofloxacin against resistant S. aureus strains. The two quinoline-4-carboxamide derivatives 3a and 3b showed the best results being synergic (4-fold MIC reduction) with ciprofloxacin at concentrations as low as 3.13 and 1.56 µg/mL, respectively, which were nontoxic for human THP-1 and A549 cells. The NorA inhibition was confirmed by SA-1199B ethidium bromide efflux and checkerboard assays against the isogenic pair SA-K2378 (norA++)/SA-K1902 (norA-). These in vitro results indicate the two compounds as valuable structures for designing novel S. aureus NorA inhibitors to be used in association with fluoroquinolones.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.M.); (N.C.); (S.V.)
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
- Correspondence: (T.F.); (F.B.)
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.M.); (N.C.); (S.V.)
| | - Serena Massari
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| | - Salvatore Vaiasicca
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.M.); (N.C.); (S.V.)
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.M.); (N.C.); (S.V.)
- Correspondence: (T.F.); (F.B.)
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; (R.C.); (A.A.); (S.M.); (G.M.); (O.T.); (M.L.B.); (V.C.); (S.S.)
| |
Collapse
|
24
|
AlMatar M, Albarri O, Makky EA, Köksal F. Efflux pump inhibitors: new updates. Pharmacol Rep 2020; 73:1-16. [PMID: 32946075 DOI: 10.1007/s43440-020-00160-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
The discovery of antibiotics ought to have ended the issue of bacterial infections, but this was not the case as it has led to the evolution of various mechanisms of bacterial resistance against various antibiotics. The efflux pump remains one of the mechanisms through which organisms develop resistance against antibiotics; this is because organisms can extrude most of the clinically relevant antibiotics from the interior cell environment to the exterior environment via the efflux pumps. Efflux pumps are thought to contribute significantly to biofilm formation as highlighted by various studies. Therefore, the inhibition of these efflux pumps can be a potential way of improving the activity of antibiotics, particularly now that the discovery of novel antibiotics is becoming tedious. Efflux pump inhibitors (EPIs) are molecules that can inhibit efflux pumps; they have been considered potential therapeutic agents for rejuvenating the activity of antibiotics that have already lost their activity against bacteria. However, studies are yet to determine the specific substrates for such pumps; the effect of altered efflux activity of these pumps on biofilm formation is still being investigated. A clear knowledge of the involvement of efflux pumps in biofilm development could aid in developing new agents that can interfere with their function and help to prevent biofilms formation; thereby, improving the outcome of treatment strategies. This review focuses on the novel update of EPIs and discusses the evidence of the roles of efflux pumps in biofilm formation; the potential approaches towards overcoming the increasing problem of biofilm-based infections are also discussed.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Malaysia.
| | - Osman Albarri
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü), Çukurova University, Adana, Turkey
| | - Essam A Makky
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Malaysia.
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
25
|
Üstündağ FD, Ünal İ, Cansız D, Üstündağ ÜV, Subaşat HK, Alturfan AA, Tiber PM, Emekli-Alturfan E. 3-Pyridinylboronic acid normalizes the effects of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in zebrafish embryos. Drug Chem Toxicol 2020; 45:947-954. [PMID: 32693643 DOI: 10.1080/01480545.2020.1795189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 μM); MPTP + Low Dose 3-Pyridinylboronic acid (50 μM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 μM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.
Collapse
Affiliation(s)
- Fümet Duygu Üstündağ
- Faculty of Medicine, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Faculty of Medicine, Medical Biochemistry, Department Medipol University, Istanbul, Turkey
| | - Hülya Kara Subaşat
- Graduate School of Natural and Applied Sciences, Department of Energy, Mugla Sıtkı Kocman University, Muğla, Turkey
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pınar Mega Tiber
- Faculty of Medicine, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
26
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
27
|
Figueredo FG, Ramos ITL, Paz JA, Silva TMS, Câmara CA, de Morais Oliveira-Tintino CD, Tintino SR, de Farias PAM, Menezes IRAD, Coutinho HDM, Fonteles MMDF. Effect of hydroxyamines derived from lapachol and norlachol against Staphylococcus aureus strains carrying the NorA efflux pump. INFECTION GENETICS AND EVOLUTION 2020; 84:104370. [PMID: 32445918 DOI: 10.1016/j.meegid.2020.104370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Isolated substances and those organically synthesized have stood out over the years for their therapeutic properties, including their antibacterial activity. These compounds may be an alternative to the production of new antibiotics or may have the ability to potentiate the action of preexisting ones. In this context, the objective of this study was to evaluate the in vitro antibacterial and efflux pump inhibitory activity of hydroxyamines derived from lapachol and norlachol, more specifically the compounds 2-(2-Hydroxyethylamino)-3-(3-methyl-2-butenyl)-1,4 dihydro-1,4-naphthalenedione, 2-(2-Hydroxyethylamino)-3-(2-methyl-propenyl)[1,4]naphthoquinone and 2-(3-Hydroxypropylamino)-3-(3-methyl-2-butenyl)-[1,4]naphthoquinone, against Staphylococcus aureus strains carrying the NorA efflux pump mechanism. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol, obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. All three molecules underwent a virtual structure-based analysis (docking). The antibacterial activity of the substances was measured by determining their Minimum Inhibitory Concentration (MIC) and a microdilution assay was performed to verify efflux pump inhibition using the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis using an analysis of variance (ANOVA) followed by Bonferroni's post hoc test. The substances obtained MIC values ≥1024 μg/mL, however, a significant reduction of their MICs was observed when the substances were associated with norfloxacin and ethidium bromide, with this effect being attributed to efflux pump inhibition. Following a virtual analysis based on its structure (docking), information regarding the affinity of new ligands for the ABC efflux pump were observed, thus contributing to the understanding of their mechanism of molecular interactions and the discovery of functional ligands associated with a reduction in bacterial resistance.
Collapse
Affiliation(s)
- Fernando Gomes Figueredo
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Ceará, CEP 60.430-370, Fortaleza, CE, Brazil; Department of Microbiology, Faculdade de Medicina Estácio de Juazeiro do Norte- CEP 63048-080, Juazeiro do Norte, CE, Brazil
| | - Ingrid T L Ramos
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Josinete A Paz
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Tania M S Silva
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Celso A Câmara
- Department of Chemistry, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri, CEP, 63105-000 - Crato, CE, Brazil
| | - Pablo Antônio Maia de Farias
- Department of Microbiology, Faculdade de Medicina Estácio de Juazeiro do Norte- CEP 63048-080, Juazeiro do Norte, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Department of of Biological Chemistry, Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri, CEP, 63105-000 - Crato, CE, Brazil.
| | | | - Marta Maria de F Fonteles
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Ceará, CEP 60.430-370, Fortaleza, CE, Brazil
| |
Collapse
|
28
|
Cruz RMD, Zelli R, Benhsain S, Cruz RMD, Siqueira‐Júnior JP, Décout J, Mingeot‐Leclercq M, Mendonça‐Junior FJB. Synthesis and Evaluation of 2‐Aminothiophene Derivatives as
Staphylococcus aureus
Efflux Pump Inhibitors. ChemMedChem 2020; 15:716-725. [DOI: 10.1002/cmdc.201900688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rayssa M. D. Cruz
- Department of Biological Sciences State University of Paraiba Laboratory of Synthesis and Drug Delivery João Pessoa PB Brazil
- Department of Pharmaceutical Sciences Federal University of Paraiba Post-Graduation Program in Natural and Synthetic Bioactive Products João Pessoa PB Brazil
- Département de Pharmacochimie Moléculaire University Grenoble Alpes CNRS Grenoble France
- Department of Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Louvain Drug Research Institute Brussels Belgium
| | - Renaud Zelli
- Département de Pharmacochimie Moléculaire University Grenoble Alpes CNRS Grenoble France
| | - Sarah Benhsain
- Department of Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Louvain Drug Research Institute Brussels Belgium
| | - Ryldene M. D. Cruz
- Department of Pharmaceutical Sciences Federal University of Paraiba Post-Graduation Program in Natural and Synthetic Bioactive Products João Pessoa PB Brazil
| | - José P. Siqueira‐Júnior
- Department of Molecular Biology Federal University of Paraiba Laboratory of Microorganism Genetics João Pessoa/PB Brazil
| | - Jean‐Luc Décout
- Département de Pharmacochimie Moléculaire University Grenoble Alpes CNRS Grenoble France
| | - Marie‐Paule Mingeot‐Leclercq
- Department of Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Louvain Drug Research Institute Brussels Belgium
| | - Francisco J. B. Mendonça‐Junior
- Department of Biological Sciences State University of Paraiba Laboratory of Synthesis and Drug Delivery João Pessoa PB Brazil
- Department of Pharmaceutical Sciences Federal University of Paraiba Post-Graduation Program in Natural and Synthetic Bioactive Products João Pessoa PB Brazil
| |
Collapse
|
29
|
Functional and Structural Roles of the Major Facilitator Superfamily Bacterial Multidrug Efflux Pumps. Microorganisms 2020; 8:microorganisms8020266. [PMID: 32079127 PMCID: PMC7074785 DOI: 10.3390/microorganisms8020266] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogenic microorganisms that are multidrug-resistant can pose severe clinical and public health concerns. In particular, bacterial multidrug efflux transporters of the major facilitator superfamily constitute a notable group of drug resistance mechanisms primarily because multidrug-resistant pathogens can become refractory to antimicrobial agents, thus resulting in potentially untreatable bacterial infections. The major facilitator superfamily is composed of thousands of solute transporters that are related in terms of their phylogenetic relationships, primary amino acid sequences, two- and three-dimensional structures, modes of energization (passive and secondary active), and in their mechanisms of solute and ion translocation across the membrane. The major facilitator superfamily is also composed of numerous families and sub-families of homologous transporters that are conserved across all living taxa, from bacteria to humans. Members of this superfamily share several classes of highly conserved amino acid sequence motifs that play essential mechanistic roles during transport. The structural and functional importance of multidrug efflux pumps that belong to the major facilitator family and that are harbored by Gram-negative and -positive bacterial pathogens are considered here.
Collapse
|
30
|
Zimmermann S, Klinger-Strobel M, Bohnert JA, Wendler S, Rödel J, Pletz MW, Löffler B, Tuchscherr L. Clinically Approved Drugs Inhibit the Staphylococcus aureus Multidrug NorA Efflux Pump and Reduce Biofilm Formation. Front Microbiol 2019; 10:2762. [PMID: 31849901 PMCID: PMC6901667 DOI: 10.3389/fmicb.2019.02762] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus has acquired resistance to antibiotics since their first use. The S. aureus protein NorA, an efflux pump belonging to the major facilitator superfamily (MFS), contributes to resistance to fluoroquinolones (e.g., ciprofloxacin), biocides, dyes, quaternary ammonium compounds, and antiseptics. Different compounds have been identified as potential efflux pump inhibitors (EPIs) of NorA that result in increased intracellular concentration of antibiotics, restoring their antibacterial activity and cell susceptibility. However, none of the currently known EPIs have been approved for clinical use, probably due to their toxicity profiles. In the present study, we screened approved drugs for possible efflux pump inhibition. By screening a compound library of approximately 1200 different drugs, we identified nilotinib, a tyrosine kinase inhibitor, as showing the best efflux pump inhibitory activity, with a fractional inhibitory concentration index of 0.1875, indicating synergism with ciprofloxacin, and a minimum effective concentration as low as 0.195 μM. Moreover, at 0.39 μM, nilotinib, in combination with 8 μg/mL of ciprofloxacin, led to a significant reduction in biofilm formation and preformed mature biofilms. This is the first description of an approved drug that can be used as an efflux pump inhibitor and to reduce biofilms formation at clinically achievable concentrations.
Collapse
Affiliation(s)
- Saskia Zimmermann
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mareike Klinger-Strobel
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Jürgen A Bohnert
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Institute of Medical Microbiology, Greifswald University Hospital, Greifswald, Germany
| | - Sindy Wendler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
31
|
Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2019; 140:104433. [PMID: 31760066 DOI: 10.1016/j.fitote.2019.104433] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics, considered as a backbone of modern clinical-medicines, are facing serious threats from emerging antimicrobial-resistance (AMR) in several bacteria from nosocomial and community origins and is posing a serious human-health concern. Recent commitment by the Heads of States at the United Nations General Assembly (UNGA, 2016) for coordinated efforts to curb such infections illustrates the scale of this problem. Amongst the drug-resistant microbes, major threat is posed by the group named as ESKAPEE, an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli, comprising high to critical drug-resistant, World Health Organization Critical Priority I and II pathogens. The drying pipeline of effective and new antibiotics has worsened the situation with looming threat of heading to a 'post-antibiotic era'. This necessitates novel and effective approaches to combat this life-threatening issue. Medicinal and aromatic plants are hailed as the reservoir of bioactive compounds and can serve as a source of antimicrobial compounds, and some recent leads show that essential oils (EOs) may provide an effective solution for tackling AMR. EOs have shown wide-spectrum antimicrobial potentials via targeting the major determinants of pathogenicity, drug-resistance and its spread including cell membrane, drug efflux pumps, quorum sensing, biofilms and R-plasmids. Latest reports confirm the EOs having strong direct-killing or re-sensitizing potentials to replace or rejuvenate otherwise fading antibiotics arsenal. We discuss herein possibilities of using EOs directly for antimicrobial potentials or in combination with antibiotics to potentiate the later for combating AMR in ESKAPEE pathogens. The current understandings, success stories and challenges for translational success have also been discussed.
Collapse
Affiliation(s)
- Zhihui Yu
- Jilin Agricultural Science and Technology College, School of Agronomy, Jilin 132101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jie Tang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
32
|
Palazzotti D, Bissaro M, Bolcato G, Astolfi A, Felicetti T, Sabatini S, Sturlese M, Cecchetti V, Barreca ML, Moro S. Deciphering the Molecular Recognition Mechanism of Multidrug Resistance Staphylococcus aureus NorA Efflux Pump Using a Supervised Molecular Dynamics Approach. Int J Mol Sci 2019; 20:E4041. [PMID: 31430864 PMCID: PMC6719125 DOI: 10.3390/ijms20164041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/01/2022] Open
Abstract
The use and misuse of antibiotics has resulted in critical conditions for drug-resistant bacteria emergency, accelerating the development of antimicrobial resistance (AMR). In this context, the co-administration of an antibiotic with a compound able to restore sufficient antibacterial activity may be a successful strategy. In particular, the identification of efflux pump inhibitors (EPIs) holds promise for new antibiotic resistance breakers (ARBs). Indeed, bacterial efflux pumps have a key role in AMR development; for instance, NorA efflux pump contributes to Staphylococcus aureus (S. aureus) resistance against fluoroquinolone antibiotics (e.g., ciprofloxacin) by promoting their active extrusion from the cells. Even though NorA efflux pump is known to be a potential target for EPIs development, the absence of structural information about this protein and the little knowledge available on its mechanism of action have strongly hampered rational drug discovery efforts in this area. In the present work, we investigated at the molecular level the substrate recognition pathway of NorA through a Supervised Molecular Dynamics (SuMD) approach, using a NorA homology model. Specific amino acids were identified as playing a key role in the efflux pump-mediated extrusion of its substrate, paving the way for a deeper understanding of both the mechanisms of action and the inhibition of such efflux pumps.
Collapse
Affiliation(s)
- Deborah Palazzotti
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
- Department of Pharmaceutical Sciences, “Department of excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Giovanni Bolcato
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, “Department of excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, “Department of excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, “Department of excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, “Department of excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, “Department of excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
33
|
Lowrence RC, Subramaniapillai SG, Ulaganathan V, Nagarajan S. Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Crit Rev Microbiol 2019; 45:334-353. [PMID: 31248314 DOI: 10.1080/1040841x.2019.1607248] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug resistance is a serious concern in a clinical setting jeopardizing treatment for both infectious agents and cancers alike. The wide-spread emergence of multi-drug resistant (MDR) phenotypes from bacteria to cancerous cells necessitates the need to target resistance mechanisms and prevent the emergence of resistant mutants. Drug efflux seems to be one of the preferred approaches embraced by both microbial and mammalian cells alike, to thwart the action of chemotherapeutic agents thereby leading to a drug resistant phenotype. Relative to microbes, which predominantly employs proton motive force (PMF) powered, Major Facilitator Superfamily (MFS)/Resistance Nodulation and Division (RND) classes of efflux pumps to efflux drugs, cancerous cells preferentially use ATP fuelled ATP binding cassette (ABC) transporters to extrude chemotherapeutic agents. The prevalence, evolutionary characteristics and overlapping functions of ABC transporters have been highlighted in this review. Additionally, we outline the role of ABC pumps in conferring MDR phenotype to both bacteria and cancerous cells and underscore the importance of efflux pump inhibitors (EPI) to mitigate drug resistance. Based on the literature reports and analysis, we reason out feasibility of employing bacteria as a tool to screen for EPI's targeting ABC pumps of cancerous cells.
Collapse
Affiliation(s)
- Rene Christena Lowrence
- a Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield , UK
| | | | | | - Saisubramanian Nagarajan
- c Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University , Thanjavur , India
| |
Collapse
|
34
|
Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 2019; 39:2460-2504. [PMID: 31004360 DOI: 10.1002/med.21591] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022]
Abstract
Bacterial infections are an increasingly serious issue worldwide. The inability of existing therapies to treat multidrug-resistant pathogens has been recognized as an important challenge of the 21st century. Efflux pumps are important in both intrinsic and acquired bacterial resistance and identification of small molecule efflux pump inhibitors (EPIs), capable of restoring the effectiveness of available antibiotics, is an active research field. In the last two decades, much effort has been made to identify novel EPIs. However, none of them has so far been approved for therapeutic use. In this article, we explore different structural families of currently known EPIs for multidrug resistance efflux systems in the most extensively studied pathogens (NorA in Staphylococcus aureus, AcrAB-TolC in Escherichia coli, and MexAB-OprM in Pseudomonas aeruginosa). Both synthetic and natural compounds are described, with structure-activity relationship studies and optimization processes presented systematically for each family individually. In vitro activities against selected test strains are presented in a unifying manner for all the EPIs described, together with the most important toxicity, pharmacokinetic and in vivo efficacy data. A critical evaluation of lead-likeness characteristics and the potential for clinical development of the most promising inhibitors of the three efflux systems is described. This overview of EPIs is a good starting point for the identification of novel effective antibacterial drugs.
Collapse
Affiliation(s)
- Andraž Lamut
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Danijel Kikelj
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol 2018; 125:398-408. [PMID: 29655267 DOI: 10.1111/jam.13780] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
AIM The objective of this study was to determine the efficacy and mechanisms of inactivation of two clinically relevant ESKAPE bacteria namely Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus by atmospheric pressure cold plasma. METHODS AND RESULTS Plasma was generated between two brass grids by applying a radiofrequency electric field to a flow of helium. Intracellular generation of reactive species, alterations in cell membrane, and inactivation of bacteria in planktonic or biofilm growth were studied. Results were compared with commonly used antimicrobial drugs. Plasma exposure generated reactive oxygen and nitrogen species in bacteria, disrupted membrane integrity and reduced bacterial load. The efficacy in bacterial inactivation was comparable to antibiotics but exhibited a quicker killing rate. The antibacterial effect of plasma synergistically increased in association with antibiotics and did not diminish over repeated exposures, suggesting no development in bacterial resistance. CONCLUSIONS Through generation of reactive species, cold plasma altered cell membrane and effectively inactivated clinically important bacteria, both in suspension and in biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY As cold plasma damages different targets in bacterial cells, it emerges as an effective strategy used alone or in combination with antimicrobial drugs to control microbial infections and prevent the selection of resistant bacterial strains.
Collapse
Affiliation(s)
- P Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - G Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - C Marchiori
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - M Scarpa
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - M Zuin
- Consorzio RFX, Padova, Italy
| | | | | | | |
Collapse
|
36
|
Carta D, Brun P, Dal Pra M, Bernabè G, Castagliuolo I, Ferlin MG. Synthesis and preliminary anti-inflammatory and anti-bacterial evaluation of some diflunisal aza-analogs. MEDCHEMCOMM 2018; 9:1017-1032. [PMID: 30108991 DOI: 10.1039/c8md00139a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Our aim was to identify new multi-target compounds endowed with both anti-inflammatory and anti-bacterial activities for treatment of human infections. Diflunisal, a nonsteroidal anti-inflammatory agent, has recently been repurposed for its anti-virulence properties against methicillin-resistant Staphylococcus aureus. Effective synthesis of some aza-analogs of the anti-inflammatory drug diflunisal was carried out following the route involving key oxazole intermediates to obtain o- and m-hydroxypyridinecarboxylic acid derivatives. The newly synthesized diflunisal aza-analogs did not exhibit cytotoxic activity up to 80 μM and some of them exhibited anti-inflammatory activities, decreasing the levels of pro-inflammatory cytokines and prostaglandins induced by bacterial lipopolysaccharide in human primary macrophages. Ten of the diflunisal aza-analogs were found to have interesting antibacterial activity, sensitizing S. aureus, Streptococcus pyogenes, Enterococcus faecium, and Pseudomonas aeruginosa to the antibacterial effects of beta-lactam antibiotics and protein synthesis inhibitors.
Collapse
Affiliation(s)
- Davide Carta
- Department of Pharmaceutical and , Pharmacological Sciences , University of Padova , 35131 Padova , Italy .
| | - Paola Brun
- Department of Molecular Medicine , University of Padova , 35131 Padova , Italy
| | - Matteo Dal Pra
- Department of Pharmaceutical and , Pharmacological Sciences , University of Padova , 35131 Padova , Italy .
| | - Giulia Bernabè
- Department of Molecular Medicine , University of Padova , 35131 Padova , Italy
| | | | - Maria Grazia Ferlin
- Department of Pharmaceutical and , Pharmacological Sciences , University of Padova , 35131 Padova , Italy .
| |
Collapse
|
37
|
de Morais Oliveira-Tintino CD, Tintino SR, Limaverde PW, Figueredo FG, Campina FF, da Cunha FAB, da Costa RHS, Pereira PS, Lima LF, de Matos YMLS, Coutinho HDM, Siqueira-Júnior JP, Balbino VQ, da Silva TG. Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chem 2018; 262:72-77. [PMID: 29751924 DOI: 10.1016/j.foodchem.2018.04.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
This study was carried out to test the essential oil from C. ambrosioides leaves and its main constituent, α-Terpinene, in an antibacterial activity assay. As well, it was evaluated ability reduce resistance to norfloxacin and ethidium bromide was compared the Staphylococcus aureus 1199B whith 1199 wild type strain. The MIC of the C. ambrosioides essential oil and α-Terpinene were determined by microdilution method. The MIC of the essential oil and α-Terpinene presented a value ≥ 1024 μg/mL. However, when associated with antibacterials, the essential oil from C. ambrosioides leaves significantly reduced the MIC of antibiotics and ethidium bromide, characterizing an efflux pump inhibition. The C. ambrosioides essential oil, despite having no direct antibacterial activity against the S. aureus 1199B strain, showed a potentiating action when associated with antibacterial agents, this being attributed to an inhibition of efflux pumps.
Collapse
Affiliation(s)
- Cícera Datiane de Morais Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil; Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Paulo W Limaverde
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Fernando G Figueredo
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Fábia F Campina
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Francisco A B da Cunha
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Roger H S da Costa
- Pharmacology and Medicinal Chemistry Laboratory, Department of Chemical Biology, Regional University of Cariri, Crato, Ceara, Brazil
| | - Pedro Silvino Pereira
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Luciene F Lima
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Yedda M L S de Matos
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Chemical Biology, Regional University of Cariri, Crato, Brazil.
| | - José P Siqueira-Júnior
- Laboratory of Microrganisms Genetics (LGM), Department of Molecular Biology - CCEN, UFPB, Brazil
| | - Valdir Q Balbino
- Evolutionary Biology and Bioinformatics Laboratory (LABBE), Department of Genetics - CCB, UFPE, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
38
|
Lekshmi M, Ammini P, Adjei J, Sanford LM, Shrestha U, Kumar S, Varela MF. Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiol 2018; 4:1-18. [PMID: 31294201 PMCID: PMC6605029 DOI: 10.3934/microbiol.2018.1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Variants of the microorganism Staphylococcus aureus which are resistant to antimicrobial agents exist as causative agents of serious infectious disease and constitute a considerable public health concern. One of the main antimicrobial resistance mechanisms harbored by S. aureus pathogens is exemplified by integral membrane transport systems that actively remove antimicrobial agents from bacteria where the cytoplasmic drug targets reside, thus allowing the bacteria to survive and grow. An important class of solute transporter proteins, called the major facilitator superfamily, includes related and homologous passive and secondary active transport systems, many of which are antimicrobial efflux pumps. Transporters of the major facilitator superfamily, which confer antimicrobial efflux and bacterial resistance in S. aureus, are good targets for development of resistance-modifying agents, such as efflux pump inhibition. Such modulatory action upon these antimicrobial efflux systems of the major facilitator superfamily in S. aureus may circumvent resistance and restore the clinical efficacy of therapy towards S. aureus infection.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Harvest and Post Harvest Technology Division, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Parvathi Ammini
- CSIR-National Institute of Oceanography (NIO), Regional Centre, Dr. Salim Ali Road, Kochi, 682018, India
| | - Jones Adjei
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Ugina Shrestha
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Division, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Manuel F Varela
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| |
Collapse
|
39
|
Wang R, Hou S, Dong X, Chen D, Shao L, Qian L, Li Z, Xu X. Synergism of fused bicyclic 2-aminothiazolyl compounds with polymyxin B against Klebsiella pneumoniae. MEDCHEMCOMM 2017; 8:2060-2066. [PMID: 30108723 PMCID: PMC6071964 DOI: 10.1039/c7md00354d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
A series of fused bicyclic 2-aminothiazolyl compounds were synthesized and evaluated for their synergistic effects with polymyxin B (PB) against Klebsiella pneumoniae (SIPI-KPN-1712). Some of the synthesized compounds exhibited synergistic activity. When 4 μg ml-1 compound B1 was combined with PB, it showed potent antibacterial activity, achieving 64-fold reduction of the MIC of PB. Furthermore, compound B1 showed prominent synergistic efficacy in both concentration gradient and time-kill curves in vitro. In addition, B1 combined with PB also exhibited synergistic and partial synergistic effect against E. coli (ATCC25922 and its clinical isolates), Acinetobacter baumannii (ATCC19606 and its clinical isolates), and Pseudomonas aeruginosa (Pae-1399).
Collapse
Affiliation(s)
- Rong Wang
- Shanghai Key Laboratory of Chemical Biology , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China . ; ; Tel: +86 21 64252945
| | - Shuang Hou
- Shanghai Key Laboratory of Chemical Biology , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China . ; ; Tel: +86 21 64252945
| | - Xiaojing Dong
- School of Pharmacy , Shanghai Jiaotong University , China
| | - Daijie Chen
- School of Pharmacy , Shanghai Jiaotong University , China
| | - Lei Shao
- Shanghai Institute of Pharmaceutical Industry , China
| | - Liujia Qian
- Shanghai Institute of Pharmaceutical Industry , China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China . ; ; Tel: +86 21 64252945
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai 200237 , China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China . ; ; Tel: +86 21 64252945
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai 200237 , China
| |
Collapse
|
40
|
Felicetti T, Cannalire R, Burali MS, Massari S, Manfroni G, Barreca ML, Tabarrini O, Schindler BD, Sabatini S, Kaatz GW, Cecchetti V. Searching for Novel Inhibitors of the S. aureus NorA Efflux Pump: Synthesis and Biological Evaluation of the 3-Phenyl-1,4-benzothiazine Analogues. ChemMedChem 2017; 12:1293-1302. [PMID: 28598572 DOI: 10.1002/cmdc.201700286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/06/2017] [Indexed: 12/26/2022]
Abstract
Bacterial resistance to antimicrobial agents has become an increasingly serious health problem in recent years. Among the strategies by which resistance can be achieved, overexpression of efflux pumps such as NorA of Staphylococcus aureus leads to a sub-lethal concentration of the antibacterial agent at the active site that in turn may predispose the organism to the development of high-level target-based resistance. With an aim to improve both the chemical stability and potency of our previously reported 3-phenyl-1,4-benzothiazine NorA inhibitors, we replaced the benzothiazine core with different nuclei. None of the new synthesized compounds showed any appreciable intrinsic antibacterial activity, and, in particular, 2-(3,4-dimethoxyphenyl)quinoline (6 c) was able to decrease, in a concentration-dependent manner, the ciprofloxacin MIC against the norA-overexpressing strains S. aureus SA-K2378 (norA++) and SA-1199B (norA+/A116E GrlA).
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Maria Sole Burali
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | | | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Bryan D Schindler
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University and the, John D. Dingell Department of Veteran Affairs Medical Center, Detroit, MI, 48201, USA
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Glenn W Kaatz
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University and the, John D. Dingell Department of Veteran Affairs Medical Center, Detroit, MI, 48201, USA
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
41
|
Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017; 60:8268-8297. [PMID: 28594170 DOI: 10.1021/acs.jmedchem.7b00215] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
42
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
43
|
Astolfi A, Felicetti T, Iraci N, Manfroni G, Massari S, Pietrella D, Tabarrini O, Kaatz GW, Barreca ML, Sabatini S, Cecchetti V. Pharmacophore-Based Repositioning of Approved Drugs as Novel Staphylococcus aureus NorA Efflux Pump Inhibitors. J Med Chem 2017; 60:1598-1604. [PMID: 28117588 DOI: 10.1021/acs.jmedchem.6b01439] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An intriguing opportunity to address antimicrobial resistance is represented by the inhibition of efflux pumps. Focusing on NorA, the most important efflux pump of Staphylococcus aureus, an efflux pump inhibitors (EPIs) library was used for ligand-based pharmacophore modeling studies. By exploitation of the obtained models, an in silico drug repositioning approach allowed for the identification of novel and potent NorA EPIs.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Donatella Pietrella
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Glenn W Kaatz
- John D. Dingell Department of Veterans Affairs Medical Center and the Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University , Detroit, Michigan 48201, United States
| | - Maria L Barreca
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
44
|
St-Coeur PD, Kinley S, Vogels CM, Decken A, Jr. Morin P, Westcott SA. Synthesis, characterization, and anticancer properties of iminophosphineplatinum(II) complexes containing boronate esters. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three new iminophosphines containing pinacol-derived boronate esters have been prepared and ligated to dichloridoplatinum(II) fragments. All compounds have been characterized fully, including an X-ray diffraction study carried out for the platinum complex 8, which is derived from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline. These three new platinum complexes, along with the non-boron containing control, have been examined for their initial cytotoxic properties against two glioma cell lines using the MTT method.
Collapse
Affiliation(s)
- Patrick-Denis St-Coeur
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Samantha Kinley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Pier Jr. Morin
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
45
|
Xiao ZP, Wei W, Liu Q, Wang PF, Luo X, Chen FY, Cao Y, Huang HX, Liu MM, Zhu HL. C-7 modified flavonoids as novel tyrosyl-tRNA synthetase inhibitors. RSC Adv 2017. [DOI: 10.1039/c6ra28061g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Twenty C-7 modified flavonoids were designed and synthesized.
Collapse
|
46
|
Willers C, Wentzel JF, du Plessis LH, Gouws C, Hamman JH. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors. Expert Opin Ther Targets 2016; 21:23-36. [PMID: 27892739 DOI: 10.1080/14728222.2017.1265105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.
Collapse
Affiliation(s)
- Clarissa Willers
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Johannes Frederik Wentzel
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Lissinda Hester du Plessis
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Chrisna Gouws
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Josias Hendrik Hamman
- a Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| |
Collapse
|
47
|
Bhaskar BV, Babu TMC, Reddy NV, Rajendra W. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3237-3252. [PMID: 27757014 PMCID: PMC5055111 DOI: 10.2147/dddt.s113556] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer. Structural design of NorA unveils amino (N)- and carboxyl (C)-terminal domains which are connected by long cytoplasmic loop. N and C domains are composed of six transmembrane α-helices (TM) which exhibits pseudo-twofold symmetry and possess voluminous substrate binding cavity between TM helices. Molecular docking of reserpine, totarol, ferruginol, salvin, thioxanthene, phenothiazine, omeprazole, verapamil, nalidixic acid, ciprofloxacin, levofloxacin, and acridine to NorA found that all the molecules were bound at the large hydrophobic cleft and indicated significant interactions with the key residues. In addition, structure-based virtual screening was employed which indicates that 14 potent novel lead molecules such as CID58685302, CID58685367, CID5799283, CID5578487, CID60028372, ZINC12196383, ZINC72140751, ZINC72137843, ZINC39227983, ZINC43742707, ZINC12196375, ZINC66166948, ZINC39228014, and ZINC14616160 have highest binding affinity for NorA. These lead molecules displayed considerable pharmacological properties as evidenced by Lipinski rule of five and prophecy of toxicity risk assessment. Thus, the present study will be helpful in designing and synthesis of a novel class of NorA efflux pump inhibitors that restore the susceptibilities of drug compounds.
Collapse
Affiliation(s)
| | | | - Netala Vasudeva Reddy
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | |
Collapse
|
48
|
Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model. Appl Microbiol Biotechnol 2016; 100:9265-9281. [PMID: 27531512 DOI: 10.1007/s00253-016-7759-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/10/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
Multi drug resistant (MDR) pathogens pose a serious threat to public health since they can easily render most potent drugs ineffective. Efflux pump inhibitors (EPI) can be used to counter the MDR phenotypes arising due to increased efflux. In the present study, a series of dithiazole thione derivatives were synthesized and checked for its antibacterial and efflux pump inhibitory (EPI) activity. Among 10 dithiazole thione derivatives, real-time efflux studies revealed that seven compounds were potent EPIs relative to CCCP. Zebrafish toxicity studies identified four non-toxic putative EPIs. Both DTT3 and DTT9 perturbed membrane potential and DTT6 was haemolytic. Among DTT6 and DTT10, the latter was less toxic as evidenced by histopathology studies. Since DTT10 was non-haemolytic, did not affect the membrane potential, and was least toxic, it was chosen further for in vivo study, wherein DTT10 potentiated effect of ciprofloxacin against clinical strain of MRSA and reduced bacterial burden in muscle and skin tissue of infected zebrafish by ~ 1.7 and 2.5 log fold respectively. Gene expression profiling of major efflux transport proteins by qPCR revealed that clinical isolate of MRSA, in the absence of antibiotic, upregulated NorA, NorB and MepA pump, whereas it downregulates NorC and MgrA relative to wild-type strain of Staphylococcus aureus. In vitro studies with NorA mutant strains and substrate profiling revealed that at higher concentrations DTT10 is likely to function as a competitive inhibitor of NorA efflux protein in S. aureus, whereas at lower concentrations it might inhibit ciprofloxacin efflux through NorB and MepA as implied by docking studies. A novel non-toxic, non-haemolytic dithiazole thione derivative (DTT10) was identified as a potent competitive inhibitor of NorA efflux pump in S. aureus using in silico, in vitro and in vivo studies. This study also underscores the importance of using zebrafish infection model to screen and evaluate putative EPI for mitigating MDR strains of S. aureus.
Collapse
|
49
|
Liger F, Bouhours P, Ganem-Elbaz C, Jolivalt C, Pellet-Rostaing S, Popowycz F, Paris JM, Lemaire M. C2 Arylated Benzo[b]thiophene Derivatives asStaphylococcus aureusNorA Efflux Pump Inhibitors. ChemMedChem 2016; 11:320-30. [DOI: 10.1002/cmdc.201500463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- François Liger
- Equipe Catalyse Synthèse Environnement; CNRS-UMR 5246; L'Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS); 43 Bd. du 11 novembre 1918 69622 Villeurbanne France
| | - Pascale Bouhours
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Carine Ganem-Elbaz
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Claude Jolivalt
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Stéphane Pellet-Rostaing
- Equipe Catalyse Synthèse Environnement; CNRS-UMR 5246; L'Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS); 43 Bd. du 11 novembre 1918 69622 Villeurbanne France
| | - Florence Popowycz
- Institut National des Sciences Appliquées de Lyon; ICBMS, CNRS-UMR 5246, Equipe Chimie Organique et Bioorganique; 20 Avenue Albert Einstein 69621 Villeurbanne France
| | - Jean-Marc Paris
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Marc Lemaire
- Equipe Catalyse Synthèse Environnement; CNRS-UMR 5246; L'Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS); 43 Bd. du 11 novembre 1918 69622 Villeurbanne France
| |
Collapse
|
50
|
Patterson AE, Flewelling AJ, Clark TN, Geier SJ, Vogels CM, Masuda JD, Gray CA, Westcott SA. Antimicrobial and antimycobacterial activities of aliphatic amines derived from vanillin. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ten lipophilic amines were prepared from the reductive amination of vanillin and the corresponding primary amines using sodium borohydride in methanol. All compounds have been obtained elementally pure and an X-ray diffraction study on the 4-n-butylaniline derivative has confirmed the molecular structure. Whilst the overall antibiotic activity of the derivatives was low, some of these compounds, particularly the boronate ester 2-methoxy-4-((2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylamino)methyl)phenol (7), showed a promising degree of antimycobacterial activity against Mycobacterium tuberculosis H37Ra, where activity seemed to vary by the position of the boron substitution on the aniline ring.
Collapse
Affiliation(s)
- Alyssa E. Patterson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andrew J. Flewelling
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Trevor N. Clark
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jason D. Masuda
- Department of Chemistry, St. Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Christopher A. Gray
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|