1
|
Lakshminarayanan K, Murugan D, Venkatesan J, Vasanthakumari Thirumalaiswamy H, Gadais C, Rangasamy L. Siderophore-Conjugated Antifungals: A Strategy to Potentially Cure Fungal Infections. ACS Infect Dis 2024; 10:2448-2466. [PMID: 38905481 DOI: 10.1021/acsinfecdis.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Fungi pose a global threat to humankind due to the increasing emergence of multi-drug-resistant fungi. There is a rising incidence of invasive fungal infections. Due to the structural complexity of fungal cell membranes, only a few classes of antifungal agents are effective and have been approved by the U.S. FDA. Hence, researchers globally are focusing on developing novel strategies to cure fungal infections. One of the potential strategies is the "Trojan horse" approach, which uses the siderophore-mediated iron acquisition (SIA) system to scavenge iron to deliver potent antifungal agents for therapeutics and diagnostics. These siderophore conjugates chelate to iron and are taken up through siderophore-iron transporters, which are overexpressed exclusively on microbes such as bacteria or fungi, but not mammalian cells. Our comprehensive review delves into recent advancements in the design of siderophore-conjugated antifungal agents to gain fungal cell entry. Notably, our focus extends to unraveling the intricate relationship between the structure of natural siderophores or siderophore-like molecules and the resulting antifungal activity. By exploring these design strategies, we aim to contribute to the ongoing discourse on combating drug-resistant fungal infections and advancing the landscape of antifungal theranostics.
Collapse
Affiliation(s)
- Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Charlène Gadais
- ISCR UMR 6226 (Institute of Chemical Sciences of Rennes), Faculty of Pharmacy, University of Rennes, 35042 Rennes cedex, France
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
2
|
Avila‐Cobian LF, De Benedetti S, Hoshino H, Nguyen VT, El‐Araby AM, Sader S, Hu DD, Cole SL, Kim C, Fisher JF, Champion MM, Mobashery S. Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein. Protein Sci 2024; 33:e5038. [PMID: 38864725 PMCID: PMC11168074 DOI: 10.1002/pro.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Stefania De Benedetti
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Amr M. El‐Araby
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Safaa Sader
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Sara L. Cole
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
3
|
Renard S, Versluys S, Taillier T, Dubarry N, Leroi-Geissler C, Rey A, Cornaire E, Sordello S, Carry JCB, Angouillant-Boniface O, Gouyon T, Thompson F, Lebourg G, Certal V, Balazs L, Arranz E, Doerflinger G, Bretin F, Gervat V, Brohan E, Kraft V, Boulenc X, Ducelier C, Bacqué E, Couturier C. Optimization of the Antibacterial Spectrum and the Developability Profile of the Novel-Class Natural Product Corramycin. J Med Chem 2023; 66:16869-16887. [PMID: 38088830 DOI: 10.1021/acs.jmedchem.3c01564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Corramycin 1 is a novel zwitterionic antibacterial peptide isolated from a culture of the myxobacterium Corallococcus coralloides. Though Corramycin displayed a narrow spectrum and modest MICs against sensitive bacteria, its ADMET and physchem profile as well as its high tolerability in mice along with an outstanding in vivo efficacy in an Escherichia coli septicemia mouse model were promising and prompted us to embark on an optimization program aiming at enlarging the spectrum and at increasing the antibacterial activities by modulating membrane permeability. Scanning the peptidic moiety by the Ala-scan strategy followed by key stabilization and introduction of groups such as a primary amine or siderophore allowed us to enlarge the spectrum and increase the overall developability profile. The optimized Corramycin 28 showed an improved mouse IV PK and a broader spectrum with high potency against key Gram-negative bacteria that translated into excellent efficacy in several in vivo mouse infection models.
Collapse
Affiliation(s)
| | | | - Thomas Taillier
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | | | | | - Astrid Rey
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | - Emilie Cornaire
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | | | | | | | - Thierry Gouyon
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | | | - Gilles Lebourg
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Victor Certal
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Laszlo Balazs
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Esther Arranz
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | | | | | - Vincent Gervat
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Eric Brohan
- Sanofi, 13 Quai Jules Guesde, Vitry-sur-Seine 94403, France
| | - Volker Kraft
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | | | - Cécile Ducelier
- Sanofi, 1 Avenue Pierre Brossolette, Chilly-Mazarin 91385, France
| | - Eric Bacqué
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| | - Cédric Couturier
- Evotec, 1541, Avenue Marcel Mérieux, Marcy L'Etoile 69280, France
| |
Collapse
|
4
|
Bertonha AF, Silva CCL, Shirakawa KT, Trindade DM, Dessen A. Penicillin-binding protein (PBP) inhibitor development: A 10-year chemical perspective. Exp Biol Med (Maywood) 2023; 248:1657-1670. [PMID: 38030964 PMCID: PMC10723023 DOI: 10.1177/15353702231208407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including β-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.
Collapse
Affiliation(s)
- Ariane F Bertonha
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Caio C L Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Karina T Shirakawa
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Daniel M Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| |
Collapse
|
5
|
Rayner B, Verderosa AD, Ferro V, Blaskovich MAT. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med Chem 2023; 14:800-822. [PMID: 37252105 PMCID: PMC10211321 DOI: 10.1039/d2md00465h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/21/2023] [Indexed: 10/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to society due to the increasing emergence of multi-drug resistant bacteria that are not susceptible to our last line of defence antibiotics. Exacerbating this issue is a severe gap in antibiotic development, with no new clinically relevant classes of antibiotics developed in the last two decades. The combination of the rapidly increasing emergence of resistance and scarcity of new antibiotics in the clinical pipeline means there is an urgent need for new efficacious treatment strategies. One promising solution, known as the 'Trojan horse' approach, hijacks the iron transport system of bacteria to deliver antibiotics directly into cells - effectively tricking bacteria into killing themselves. This transport system uses natively produced siderophores, which are small molecules with a high affinity for iron. By linking antibiotics to siderophores, to make siderophore antibiotic conjugates, the activity of existing antibiotics can potentially be reinvigorated. The success of this strategy was recently exemplified with the clinical release of cefiderocol, a cephalosporin-siderophore conjugate with potent antibacterial activity against carbapenem-resistant and multi-drug resistant Gram-negative bacilli. This review discusses the recent advancements in siderophore antibiotic conjugates and the challenges associated with the design of these compounds that need to be overcome to deliver more efficacious therapeutics. Potential strategies have also been suggested for new generations of siderophore-antibiotics with enhanced activity.
Collapse
Affiliation(s)
- Beth Rayner
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Vito Ferro
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| |
Collapse
|
6
|
Rodríguez D, González-Bello C. Siderophores: Chemical Tools for Precise Antibiotic Delivery. Bioorg Med Chem Lett 2023; 87:129282. [PMID: 37031730 DOI: 10.1016/j.bmcl.2023.129282] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The success of precision medicine coupled with the disappointing impact of broad-spectrum antibiotic use on microbiome stability and bacterial resistance, has triggered a shift in antibiotic design strategies toward precision antibiotics. This also includes the implementation of novel vectorization approaches directed to improve the internalization of antibacterial agents into deadly gram-negative pathogens through precise and well-defined mechanisms. The conjugation of antibiotics to siderophores (iron scavengers), which are compounds that are able to afford stable iron-complexes that facilitate the internalization into the cell by using bacterial iron uptake pathways as gateways, is a strategy that has begun to show excellent results with the commercialization of the first antibiotic based on this principle, cefiderocol. This digests review provides an overview of the molecular basis for this antibiotic-siderophore conjugation approach, along with recent successful examples and highlights future challenges facing this booming research area.
Collapse
Affiliation(s)
- Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Shyam M, Shilkar D, Rakshit G, Jayaprakash V. Approaches for Targeting the Mycobactin Biosynthesis Pathway for Novel Anti-tubercular Drug Discovery: Where We Stand. Expert Opin Drug Discov 2022; 17:699-715. [PMID: 35575503 DOI: 10.1080/17460441.2022.2077328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several decades of antitubercular drug discovery efforts have focused on novel antitubercular chemotherapies. However, recent efforts have greatly shifted towards countering extremely/multi/total drug-resistant species. Targeting the conditionally essential elements inside Mycobacterium is a relatively new approach against tuberculosis and has received lackluster attention. The siderophore, Mycobactin, is a conditionally essential molecule expressed by mycobacteria in iron-stress conditions. It helps capture the micronutrient iron, essential for the smooth functioning of cellular processes. AREAS COVERED The authors discuss opportunities to target the conditionally essential pathways to help develop newer drugs and prolong the shelf life of existing therapeutics, emphasizing the bottlenecks in fast-tracking antitubercular drug discovery. EXPERT OPINION While the lack of iron supply can cripple bacterial growth and multiplication, excess iron can cause oxidative overload. Constant up-regulation can strain the bacterial synthetic machinery, further slowing its growth. Mycobactin synthesis is tightly controlled by a genetically conserved mega enzyme family via up-regulation (HupB) or down-regulation (IdeR) based on iron availability in its microenvironment. Furthermore, the recycling of siderophores by the MmpL-MmpS4/5 orchestra provides endogenous drug targets to beat the bugs with iron-toxicity contrivance. These processes can be exploited as chinks in the armor of Mycobacterium and be used for new drug development.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
8
|
Saha I, Chakraborty S, Agarwal S, Mukherjee P, Ghosh B, Dasgupta J. Mechanistic insights of ABC importer HutCD involved in heme internalization by Vibrio cholerae. Sci Rep 2022; 12:7152. [PMID: 35504999 PMCID: PMC9065009 DOI: 10.1038/s41598-022-11213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Heme internalization by pathogenic bacteria inside a human host to accomplish the requirement of iron for important cellular processes is of paramount importance. Despite this, the mechanism of heme import by the ATP-binding-cassette (ABC) transporter HutCD in Vibrio cholerae remains unexplored. We have performed biochemical studies on ATPase HutD and its mutants, along with molecular modelling, docking and unbiased all-atom MD simulations on lipid-solvated models of permease-ATPase complex HutCD. The results demonstrated mechanisms of ATP binding/hydrolysis and trapped transient and global conformational changes in HutCD, necessary for heme internalization. ATPase HutD forms a dimer, independent of the permease HutC. Each HutD monomer canonically binds ATP in a 1:1 stoichiometry. MD simulations demonstrated that a rotational motion of HutC dimer occurs synchronously with the inter-dimeric D-loop interactions of HutDs. F151 of TM4–TM5 loop of HutC, packs with ATP and Y15 of HutD, initiating ‘cytoplasmic gate opening’ which mimics an ‘outward-facing’ to ‘inward-facing’ conformational switching upon ATP hydrolysis. The simulation on ‘inward-facing’ HutCD culminates to an ‘occluded’ state. The simulation on heme-docked HutCD indicated that the event of heme release occurs in ATP-free ‘inward-facing’ state. Gradual conformational changes of the TM5 helices of HutC towards the ‘occluded’ state facilitate ejection of heme.
Collapse
Affiliation(s)
- Indrila Saha
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Shrestha Chakraborty
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India.,Weill Cornell Medicine, Department of Anesthesiology, 1300 York Ave, New York, NY, 10065, USA
| | - Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Biplab Ghosh
- Macromolecular Crystallography Section, Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India.
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India.
| |
Collapse
|
9
|
Morgenstern M, Mayer C, Bach T, Pöthig A. Synthetic Studies towards Pyrido[1,2-a]azepine Stemona Alkaloids. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1777-2477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe carbon skeleton of the Stemona alkaloids stemokerrin and cochinchistemonine was assembled from three building blocks (a piperidine, a furan, and a tetronate). Key steps linking the fragments included a Stille cross-coupling (piperidine/furan) and an aldol-type addition of a tetronate. The furan served as a latent 1,4-difunctional compound which was converted into a γ-ketolactone by a type II photooxygenation. Attempts to construct the C12–C13 double bond of stemokerrin by a late-stage oxidation or by an elimination remained unsuccessful. The non-natural products dihydrostemokerrin and furostemokerrin were obtained instead.
Collapse
|
10
|
A novel tricyclic β-lactam exhibiting potent antibacterial activities against carbapenem-resistant Enterobacterales: Synthesis and structure-activity-relationships. Bioorg Med Chem 2021; 46:116343. [PMID: 34450571 DOI: 10.1016/j.bmc.2021.116343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
A series of tricyclic β-lactams were synthesized and evaluated for in vitro antibacterial activities against carbapenem-resistant Enterobacterales (CREs). Starting from a reported tricyclic β-lactam that combined the cephalosporin skeleton having a γ-lactone ring with a carboxylic acid group, which was reported as a unique partial structure of Lactivicin, we identified the compound which shows potent antibacterial activities against all tested CREs by introducing sulfoxide. In addition, the sulfoxide-introduced tricyclic β-lactam also shows a strong therapeutic efficacy in the neutropenic mouse lung infection model. These results indicate that the tricyclic β-lactam skeleton will show sufficient therapeutic performance in clinical use and therefore can serve as a scaffold in the search for new antibacterial agents against CREs.
Collapse
|
11
|
Fan D, Fang Q. Siderophores for medical applications: Imaging, sensors, and therapeutics. Int J Pharm 2021; 597:120306. [PMID: 33540031 DOI: 10.1016/j.ijpharm.2021.120306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Siderophores are low-molecular-weight chelators produced by microorganisms to scavenge iron from the environment and deliver it to cells via specific receptors. Tremendous researches on the molecular basis of siderophore regulation, synthesis, secretion, and uptake have inspired their diverse applications in the medical field. Replacing iron with radionuclides in siderophores, such as the most prominent Ga-68 for positron emission tomography (PET), carves out ways for targeted imaging of infectious diseases and cancers. Additionally, the high affinity of siderophores for metal ions or microorganisms makes them a potent detecting moiety in sensors that can be used for diagnosis. As for therapeutics, the notable Trojan horse-inspired siderophore-antibiotic conjugates demonstrate enhanced toxicity against multi-drug resistant (MDR) pathogens. Besides, siderophores can tackle iron overload diseases and, when combined with moieties such as hydrogels and nanoparticles, a wide spectrum of iron-induced diseases and even cancers. In this review, we briefly outline the related mechanisms, before summarizing the siderophore-based applications in imaging, sensors, and therapeutics.
Collapse
Affiliation(s)
- Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; Sino-Danish Center for Education and Research, Beijing 101408, PR China.
| |
Collapse
|
12
|
Members of our Early Career Panel highlight key research articles on the theme of antimicrobial resistance. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Goldberg JA, Nguyen H, Kumar V, Spencer EJ, Hoyer D, Marshall EK, Cmolik A, O'Shea M, Marshall SH, Hujer AM, Hujer KM, Rudin SD, Domitrovic TN, Bethel CR, Papp-Wallace KM, Logan LK, Perez F, Jacobs MR, van Duin D, Kreiswirth BM, Bonomo RA, Plummer MS, van den Akker F. A γ-Lactam Siderophore Antibiotic Effective against Multidrug-Resistant Gram-Negative Bacilli. J Med Chem 2020; 63:5990-6002. [PMID: 32420736 DOI: 10.1021/acs.jmedchem.0c00255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment of multidrug-resistant Gram-negative bacterial pathogens represents a critical clinical need. Here, we report a novel γ-lactam pyrazolidinone that targets penicillin-binding proteins (PBPs) and incorporates a siderophore moiety to facilitate uptake into the periplasm. The MIC values of γ-lactam YU253434, 1, are reported along with the finding that 1 is resistant to hydrolysis by all four classes of β-lactamases. The druglike characteristics and mouse PK data are described along with the X-ray crystal structure of 1 binding to its target PBP3.
Collapse
Affiliation(s)
- Joel A Goldberg
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Ha Nguyen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Vijay Kumar
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Elizabeth J Spencer
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - Denton Hoyer
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - Emma K Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Anna Cmolik
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Margaret O'Shea
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kristine M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Susan D Rudin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - T Nicholas Domitrovic
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Latania K Logan
- Department of Pediatrics, Rush University Medical Center, Rush Medical College, Chicago, Illinois 60612, United States.,Cook County Health and Hospital Systems, Chicago, Illinois 60612, United States
| | - Federico Perez
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Michael R Jacobs
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Pathology, University Hospitals Cleveland Medical Center, Division of Clinical Microbiology, Cleveland, Ohio 44106, United States
| | - David van Duin
- University of North Carolina School of Medicine, Chapel Hill, North Carolina 27514, United States
| | - Barry M Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07601, United States
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,Departments of Pharmacology, Molecular Biology & Microbiology, and Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, United States.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
| | - Mark S Plummer
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
14
|
Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3. Antimicrob Agents Chemother 2020; 64:AAC.00106-20. [PMID: 32152075 DOI: 10.1128/aac.00106-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of β-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.
Collapse
|
15
|
Influence of the α-Methoxy Group on the Reaction of Temocillin with Pseudomonas aeruginosa PBP3 and CTX-M-14 β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01473-19. [PMID: 31685462 DOI: 10.1128/aac.01473-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022] Open
Abstract
The prevalence of multidrug-resistant Pseudomonas aeruginosa has led to the reexamination of older "forgotten" drugs, such as temocillin, for their ability to combat resistant microbes. Temocillin is the 6-α-methoxy analogue of ticarcillin, a carboxypenicillin with well-characterized antipseudomonal properties. The α-methoxy modification confers resistance to serine β-lactamases, yet temocillin is ineffective against P. aeruginosa growth. The origins of temocillin's inferior antibacterial properties against P. aeruginosa have remained relatively unexplored. Here, we analyze the reaction kinetics, protein stability, and binding conformations of temocillin and ticarcillin with penicillin-binding protein 3 (PBP3), an essential PBP in P. aeruginosa We show that the 6-α-methoxy group perturbs the stability of the PBP3 acyl-enzyme, which manifests in an elevated off-rate constant (k off) in biochemical assays comparing temocillin with ticarcillin. Complex crystal structures with PBP3 reveal similar binding modes of the two drugs but with important differences. Most notably, the 6-α-methoxy group disrupts a high-quality hydrogen bond with a conserved residue important for ligand binding while also being inserted into a crowded active site, possibly destabilizing the active site and enabling water molecule from bulk solvent to access and cleave the acyl-enzyme bond. This hypothesis is supported by the observation that the acyl-enzyme complex of temocillin has reduced thermal stability compared with ticarcillin. Furthermore, we explore temocillin's mechanism of β-lactamase inhibition with a high-resolution complex structure of CTX-M-14 class A serine β-lactamase. The results suggest that the α-methoxy group prevents hydrolysis by locking the compound into an unexpected conformation that impedes access of the catalytic water to the acyl-enzyme adduct.
Collapse
|
16
|
Calvopiña K, Dulyayangkul P, Heesom KJ, Avison MB. TonB-dependent uptake of β-lactam antibiotics in the opportunistic human pathogen Stenotrophomonas maltophilia. Mol Microbiol 2019; 113:492-503. [PMID: 31773806 DOI: 10.1111/mmi.14434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/24/2019] [Indexed: 01/11/2023]
Abstract
The β-lactam antibiotic ceftazidime is one of the handful of drugs with proven clinical efficacy against the important opportunistic human pathogen Stenotrophomonas maltophilia. Here, we show that mutations in the energy transducer TonB, encoded by smlt0009 in S. maltophilia, confer ceftazidime resistance and smlt0009 mutants have reduced uptake of ceftazidime. This breaks the dogma that β-lactams enter Gram-negative bacteria only by passive diffusion through outer membrane porins. We also show that ceftazidime-resistant TonB mutants are cross-resistant to fluoroquinolone antimicrobials and a siderophore-conjugated lactivicin antibiotic designed to target TonB-dependent uptake. This implies that attempts to improve the penetration of antimicrobials into S. maltophilia by conjugating them with TonB substrates will suffer from the fact that β-lactams and fluoroquinolones coselect resistance to these novel and otherwise promising antimicrobials. Finally, we show that smlt0009 mutants already exist among S. maltophilia clinical isolates and have reduced susceptibility to siderophore-conjugated lactivicin, despite the in vitro growth impairment seen in smlt0009 mutants selected in the laboratory.
Collapse
Affiliation(s)
- Karina Calvopiña
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Punyawee Dulyayangkul
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Program in Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kate J Heesom
- University of Bristol Proteomics Facility, Bristol, United Kingdom
| | - Matthew B Avison
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
Li ZW, Lu X, Wang YX, Hu XX, Fu HG, Gao LM, You XF, Tang S, Song DQ. Synthesis and antibacterial evaluation against resistant Gram-negative bacteria of monobactams bearing various substituents on oxime residue. Bioorg Chem 2019; 94:103487. [PMID: 31831161 DOI: 10.1016/j.bioorg.2019.103487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 01/21/2023]
Abstract
Based on the structural characteristics of aztreonam (AZN) and its target PBP3, a series of new monobactam derivatives bearing various substituents on oxime residue were prepared and evaluated for their antibacterial activities against susceptible and resistant Gram-negative bacteria. Among them, compounds 8p and 8r displayed moderate potency with MIC values of 0.125-32 μg/mL against most tested Gram-negative strains, comparable to AZN. Meanwhile, the combination of 8p and 8r with avibactam as a β-lactamases inhibitor, in a ratio of 1:16, showed a promising synergistic effect against both ESBLs- and NDM-1-producing K. pneumoniae, with significantly reduced MIC values up to 8-fold and >256-fold respectively. Furthermore, both of them demonstrated excellent safety profiles both in vitro and in vivo. The results provided powerful information for further structural optimization of monobactam antibiotics to fight β-lactamase-producing resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Zhi-Wen Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Xiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin-Xin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Gen Fu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Mei Gao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue-Fu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sheng Tang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
18
|
Zaghouani M, Bögeholz LAK, Mercier E, Wintermeyer W, Roche SP. Total synthesis of (±)-fumimycin and analogues for biological evaluation as peptide deformylase inhibitors. Tetrahedron 2019; 75:3216-3230. [PMID: 31555018 PMCID: PMC6759494 DOI: 10.1016/j.tet.2019.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise 7-step total synthesis of (±)-fumimycin in 11.6 % overall yield is reported. An acid-catalyzed intramolecular aza-Friedel-Crafts cyclization was developed to construct the benzofuranone skeleton of the natural product bearing an α,α-disubstituted amino acid moiety in a single step. Regioselective chlorination followed by a Suzuki-Miyaura cross-coupling rapidly enabled the preparation of a library of analogues which were evaluated against peptide deformylase for antibacterial activity.
Collapse
Affiliation(s)
- Mehdi Zaghouani
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Lena A. K. Bögeholz
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Evan Mercier
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Stéphane P. Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
| |
Collapse
|
19
|
Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. Biometals 2019; 32:425-451. [PMID: 30919118 DOI: 10.1007/s10534-019-00192-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
New or repurposed antibiotics are desperately needed since bacterial resistance has risen to essentially all of our current antibiotics, and few new antibiotics have been developed over the last several decades. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (i.e., β-lactamases) and even induction of efflux mechanisms. Research efforts are described that are designed to determine if the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron chelating compounds called siderophores. Several natural siderophore-antibiotic conjugates (sideromycins) have been discovered and studied. The natural sideromycins consist of an iron binding siderophore linked to a warhead that exerts antibiotic activity once assimilated by targeted bacteria. Inspired these natural conjugates, a combination of chemical syntheses, microbiological and biochemical studies have been used to generate semi-synthetic and totally synthetic sideromycin analogs. The results demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics or sideromycins) and induction of iron limitation/starvation (development of new agents to block iron assimilation). While several examples illustrate that this approach can generate microbe selective antibiotics that are active in vitro, the scope and limitations of this approach, especially related to development of resistance, siderophore based molecular recognition requirements, appropriate linker and drug choices, will be described.
Collapse
|
20
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
21
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
22
|
Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Structure and dynamics of Type III periplasmic proteins VcFhuD and VcHutB reveal molecular basis of their distinctive ligand binding properties. Sci Rep 2017; 7:42812. [PMID: 28216648 PMCID: PMC5316997 DOI: 10.1038/srep42812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Molecular mechanisms of xenosiderophore and heme acquisitions using periplasmic binding protein (PBP) dependent ATP-binding cassette transporters to scavenge the essential nutrient iron are elusive yet in Vibrio cholerae. Our current study delineates the structures, dynamics and ligand binding properties of two Type III PBPs of V. cholerae, VcFhuD and VcHutB. Through crystal structures and fluorescence quenching studies we demonstrate unique features of VcFhuD to bind both hydroxamate and catecholate type xenosiderophores. Like E. coli FhuD, VcFhuD binds ferrichrome and ferri-desferal using conserved Tryptophans and R102. However, unlike EcFhuD, slightly basic ligand binding pocket of VcFhuD could favour ferri-enterobactin binding with plausible participation of R203, along with R102, like it happens in catecholate binding PBPs. Structural studies coupled with spectrophotometric and native PAGE analysis indicated parallel binding of two heme molecules to VcHutB in a pH dependent manner, while mutational analysis established the relative importance of Y65 and H164 in heme binding. MD simulation studies exhibited an unforeseen inter-lobe swinging motion in Type III PBPs, magnitude of which is inversely related to the packing of the linker helix with its neighboring helices. Small inter-lobe movement in VcFhuD or dramatic twisting in VcHutB is found to influence ligand binding.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| | - Sanjay Dey
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| | - Biplab Ghosh
- High Pressure &Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Maitree Biswas
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| |
Collapse
|
23
|
|
24
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
25
|
Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier–drug conjugates. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2215-2240. [DOI: 10.1016/j.nano.2016.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
|
26
|
Sideromimic Modification of Lactivicin Dramatically Increases Potency against Extensively Drug-Resistant Stenotrophomonas maltophilia Clinical Isolates. Antimicrob Agents Chemother 2016; 60:4170-5. [PMID: 27139464 DOI: 10.1128/aac.00371-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/24/2016] [Indexed: 01/09/2023] Open
Abstract
Acetamido derivatives of the naturally antibacterial non-β-lactam lactivicin (LTV) have improved activity against their penicillin binding protein targets and reduced hydrolysis by β-lactamases, but penetration into Gram-negative bacteria is still relatively poor. Here we report that modification of the LTV lactone with a catechol-type siderophore increases potency 1,000-fold against Stenotrophomonas maltophilia, a species renowned for its insusceptibility to antimicrobials. The MIC90 of modified lactone compound 17 (LTV17) against a global collection of extensively drug-resistant clinical S. maltophilia isolates was 0.063 μg · ml(-1) Sideromimic modification does not reduce the ability of LTVs to induce production of the L1 and L2 β-lactamases in S. maltophilia and does not reduce the rate at which LTVs are hydrolyzed by L1 or L2. We conclude, therefore, that lactivicin modification with a siderophore known to be preferentially used by S. maltophilia substantially increases penetration via siderophore uptake. LTV17 has the potential to be developed as a novel antimicrobial for treatment of infections by S. maltophilia More generally, our work shows that sideromimic modification in a species-targeted manner might prove useful for the development of narrow-spectrum antimicrobials that have reduced collateral effects.
Collapse
|
27
|
Chellat MF, Raguž L, Riedl R. Targeting Antibiotic Resistance. Angew Chem Int Ed Engl 2016; 55:6600-26. [PMID: 27000559 PMCID: PMC5071768 DOI: 10.1002/anie.201506818] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/10/2015] [Indexed: 12/11/2022]
Abstract
Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last-resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled "Combat drug resistance: no action today means no cure tomorrow" triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens.
Collapse
Affiliation(s)
- Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Luka Raguž
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| |
Collapse
|
28
|
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8:1063-84. [PMID: 27327972 DOI: 10.4155/fmc-2016-0078] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
Collapse
Affiliation(s)
| | | | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, UK
| | | |
Collapse
|
29
|
Steele AD, Keohane CE, Knouse KW, Rossiter SE, Williams SJ, Wuest WM. Diverted Total Synthesis of Promysalin Analogs Demonstrates That an Iron-Binding Motif Is Responsible for Its Narrow-Spectrum Antibacterial Activity. J Am Chem Soc 2016; 138:5833-6. [PMID: 27096543 PMCID: PMC5084090 DOI: 10.1021/jacs.6b03373] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere.
Collapse
Affiliation(s)
- Andrew D. Steele
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Colleen E. Keohane
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kyle W. Knouse
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sean E. Rossiter
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sierra J. Williams
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - William M. Wuest
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
30
|
Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377-88. [PMID: 27146331 DOI: 10.1007/s10534-016-9935-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Collapse
|
31
|
Affiliation(s)
- Mathieu F. Chellat
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Luka Raguž
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
32
|
Synthesis and structures of 5-methoxy-salicylaldehyde thiosemicarbazonates of copper(II): Molecular spectroscopy, ESI-mass studies and antimicrobial activity. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.12.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics (Basel) 2016; 5:antibiotics5010012. [PMID: 27025527 PMCID: PMC4810414 DOI: 10.3390/antibiotics5010012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Peptidoglycan (PG) is an essential macromolecular sacculus surrounding most bacteria. It is assembled by the glycosyltransferase (GT) and transpeptidase (TP) activities of multimodular penicillin-binding proteins (PBPs) within multiprotein complex machineries. Both activities are essential for the synthesis of a functional stress-bearing PG shell. Although good progress has been made in terms of the functional and structural understanding of GT, finding a clinically useful antibiotic against them has been challenging until now. In contrast, the TP/PBP module has been successfully targeted by β-lactam derivatives, but the extensive use of these antibiotics has selected resistant bacterial strains that employ a wide variety of mechanisms to escape the lethal action of these antibiotics. In addition to traditional β-lactams, other classes of molecules (non-β-lactams) that inhibit PBPs are now emerging, opening new perspectives for tackling the resistance problem while taking advantage of these valuable targets, for which a wealth of structural and functional knowledge has been accumulated. The overall evidence shows that PBPs are part of multiprotein machineries whose activities are modulated by cofactors. Perturbation of these systems could lead to lethal effects. Developing screening strategies to take advantage of these mechanisms could lead to new inhibitors of PG assembly. In this paper, we present a general background on the GTs and TPs/PBPs, a survey of recent issues of bacterial resistance and a review of recent works describing new inhibitors of these enzymes.
Collapse
|
34
|
Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria. Eur J Med Chem 2016; 110:151-63. [PMID: 26827160 DOI: 10.1016/j.ejmech.2016.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 01/20/2023]
Abstract
A series of monobactam derivatives were prepared and evaluated for their antibacterial activities against susceptible and resistant Gram-negative strains, taking Aztreonam and BAL30072 as the leads. Six conjugates (12a-f) bearing PIH-like siderophore moieties were created to enhance the bactericidal activities against Gram-negative bacteria based on Trojan Horse strategy, and all of them displayed potencies against susceptible Gram-negative strains with MIC ≤ 8 μg/mL. SAR revealed that the polar substituents on the oxime side chain were beneficial for activities against resistant Gram-negative bacteria. Compounds 19c and 33a-b exhibited the promising potencies against ESBLs-producing E. coli and Klebsiella pneumoniae with MICs ranging from 2 μg/mL to 8 μg/mL. These results offered powerful information for further strategic optimization in search of the antibacterial candidates against MDR Gram-negative bacteria.
Collapse
|
35
|
Hart KM, Reck M, Bowman GR, Wencewicz TA. Tabtoxinine-β-lactam is a “stealth” β-lactam antibiotic that evades β-lactamase-mediated antibiotic resistance. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00325c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tabtoxinine-β-lactam (TβL) is a phytotoxin produced by plant pathogenic strains of Pseudomonas syringae.
Collapse
Affiliation(s)
- Kathryn M. Hart
- Department of Biochemistry and Molecular Biophysics
- Washington University School of Medicine
- St. Louis
- USA
| | - Margaret Reck
- Department of Chemistry
- Washington University in St. Louis
- St. Louis
- USA
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics
- Washington University School of Medicine
- St. Louis
- USA
| | | |
Collapse
|
36
|
Indoria S, Lobana TS, Sood H, Arora DS, Hundal G, Jasinski JP. Synthesis, spectroscopy, structures and antimicrobial activity of mixed-ligand zinc(ii) complexes of 5-nitro-salicylaldehyde thiosemicarbazones. NEW J CHEM 2016. [DOI: 10.1039/c5nj02822a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc(ii)-thiosemicarbazone complexes have high antimicrobial activity against MRSA,S. aureus,K. pneumoniae,Sh. flexneri,S. typhimuriumandC. albicans.
Collapse
Affiliation(s)
- Shikha Indoria
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143 005
- India
| | - Tarlok S. Lobana
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143 005
- India
| | - Henna Sood
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Daljit S. Arora
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Geeta Hundal
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143 005
- India
| | | |
Collapse
|
37
|
Li K, Bruner SD. Structure and functional analysis of the siderophore periplasmic binding protein from the fuscachelin gene cluster of T
hermobifida fusca. Proteins 2015; 84:118-28. [DOI: 10.1002/prot.24959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Kunhua Li
- Department of Chemistry; University of Florida; Gainesville Florida 32611
| | - Steven D. Bruner
- Department of Chemistry; University of Florida; Gainesville Florida 32611
| |
Collapse
|
38
|
Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production. Appl Microbiol Biotechnol 2015; 100:1285-1295. [PMID: 26497174 DOI: 10.1007/s00253-015-7060-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
The genome of the amphotericin producer Streptomyces nodosus was sequenced. A single scaffold of 7,714,110 bp was obtained. Biosynthetic genes were identified for several natural products including polyketides, peptides, siderophores and terpenes. The majority of these clusters specified known compounds. Most were silent or expressed at low levels and unlikely to compete with amphotericin production. Biosynthesis of a skyllamycin analogue was activated by introducing expression plasmids containing either a gene for a LuxR transcriptional regulator or genes for synthesis of the acyl moiety of the lipopeptide. In an attempt to boost amphotericin production, genes for acyl CoA carboxylases, a phosphopantetheinyl transferase and the AmphRIV transcriptional activator were overexpressed, and the effects on yields were investigated. This study provides the groundwork for metabolic engineering of S. nodosus strains to produce high yields of amphotericin analogues.
Collapse
|
39
|
Chairatana P, Zheng T, Nolan EM. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chem Sci 2015; 6:4458-4471. [PMID: 28717471 PMCID: PMC5499518 DOI: 10.1039/c5sc00962f] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin-β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt-Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt-Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt-Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt-Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore-antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression.
Collapse
Affiliation(s)
- Phoom Chairatana
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; ; Tel: +1-617-452-2495
| | - Tengfei Zheng
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; ; Tel: +1-617-452-2495
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; ; Tel: +1-617-452-2495
| |
Collapse
|
40
|
Li K, Chen WH, Bruner SD. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida fusca. Biochemistry 2015; 54:3989-4000. [PMID: 26043104 DOI: 10.1021/acs.biochem.5b00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial iron acquisition is a complex process and frequently a key and necessary step for survival. Among the several paths for iron assimilation, small molecule siderophore-mediated transport is a commonly employed strategy of many microorganisms. The chemistry and biology of the extraordinary tight and specific binding of siderophores to metal is also exploited in therapeutic treatments for microbial virulence and metal toxicity. The intracellular fate of iron acquired via the siderophore pathway is one of the least understood steps in the complex process at the molecular level. A common route to cellular incorporation is the single-electron reduction of ferric to ferrous iron catalyzed by specific and/or nonspecific reducing agents. The biosynthetic gene clusters for siderophores often contain representatives of one or two families of redox-active enzymes: the flavin-containing "siderophore-interacting protein" and iron-sulfur ferric siderophore reductases. Here we present the structure and characterization of the siderophore-interacting protein, FscN, from the fuscachelin siderophore gene cluster of Thermobifida fusca. The structure shows a flavoreductase fold with a noncovalently bound FAD cofactor along with an unexpected metal bound adjacent to the flavin site. We demonstrated that FscN is redox-active and measured the binding and reduction of ferric fuscachelin. This work provides a structural basis for the activity of a siderophore-interacting protein and further insight into the complex and important process of iron acquisition and utilization.
Collapse
Affiliation(s)
- Kunhua Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Wei-Hung Chen
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
41
|
Murphy-Benenato KE, Dangel B, Davis HE, Durand-Réville TF, Ferguson AD, Gao N, Jahić H, Mueller JP, Manyak EL, Quiroga O, Rooney M, Sha L, Sylvester M, Wu F, Zambrowski M, Zhao SX. SAR and Structural Analysis of Siderophore-Conjugated Monocarbam Inhibitors of Pseudomonas aeruginosa PBP3. ACS Med Chem Lett 2015; 6:537-42. [PMID: 26005529 DOI: 10.1021/acsmedchemlett.5b00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/22/2015] [Indexed: 01/12/2023] Open
Abstract
A main challenge in the development of new agents for the treatment of Pseudomonas aeruginosa infections is the identification of chemotypes that efficiently penetrate the cell envelope and are not susceptible to established resistance mechanisms. Siderophore-conjugated monocarbams are attractive because of their ability to hijack the bacteria's iron uptake machinery for transport into the periplasm and their inherent stability to metallo-β-lactamases. Through development of the SAR we identified a number of modifications to the scaffold that afforded active anti-P. aeruginosa agents with good physicochemical properties. Through crystallographic efforts we gained a better understanding into how these compounds bind to the target penicillin binding protein PBP3 and factors to consider for future design.
Collapse
Affiliation(s)
- Kerry E. Murphy-Benenato
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Brian Dangel
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Hajnalka E. Davis
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Thomas F. Durand-Réville
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | | | - Haris Jahić
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - John P. Mueller
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Olga Quiroga
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Michael Rooney
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Li Sha
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Mark Sylvester
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Frank Wu
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Mark Zambrowski
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Shannon X. Zhao
- Infection Innovative Medicines, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
42
|
Murphy-Benenato KE, Bhagunde PR, Chen A, Davis HE, Durand-Réville TF, Ehmann DE, Galullo V, Harris JJ, Hatoum-Mokdad H, Jahić H, Kim A, Manjunatha MR, Manyak EL, Mueller J, Patey S, Quiroga O, Rooney M, Sha L, Shapiro AB, Sylvester M, Tan B, Tsai AS, Uria-Nickelsen M, Wu Y, Zambrowski M, Zhao SX. Discovery of Efficacious Pseudomonas aeruginosa-Targeted Siderophore-Conjugated Monocarbams by Application of a Semi-mechanistic Pharmacokinetic/Pharmacodynamic Model. J Med Chem 2015; 58:2195-205. [DOI: 10.1021/jm501506f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - M. R. Manjunatha
- Infection
Innovative Medicines, AstraZeneca India Pvt. Ltd., Bellary Road, Bangalore 560024, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lobana TS, Indoria S, Kaur H, Arora DS, Jassal AK, Jasinski JP. Synthesis and structures of 5-nitro-salicylaldehyde thiosemicarb-azonates of copper(ii): molecular spectroscopy, ESI-mass studies, antimicrobial activity and cytotoxicity. RSC Adv 2015. [DOI: 10.1039/c4ra15006f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Salicylaldehyde thiosemicarbazonates of copper(ii) have shown significant growth inhibitory activity againstS. aureus, MRSA,K. pneumonia,S. flexneri,P. aeruginosaandC. albicansand are bactericidal in nature with low cytotoxicity.
Collapse
Affiliation(s)
- Tarlok S. Lobana
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Shikha Indoria
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Harpreet Kaur
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Daljit S. Arora
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | | | | |
Collapse
|
44
|
Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants. Anal Biochem 2014; 463:15-22. [DOI: 10.1016/j.ab.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022]
|
45
|
Penicillin-binding proteins: evergreen drug targets. Curr Opin Pharmacol 2014; 18:112-9. [DOI: 10.1016/j.coph.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
|
46
|
de Carvalho CCCR, Fernandes P. Siderophores as "Trojan Horses": tackling multidrug resistance? Front Microbiol 2014; 5:290. [PMID: 24971080 PMCID: PMC4053685 DOI: 10.3389/fmicb.2014.00290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Affiliation(s)
- Carla C C R de Carvalho
- Department of Bioengineering, Centre for Biological and Chemical Engineering, Institute of Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| | - Pedro Fernandes
- Department of Bioengineering, Centre for Biological and Chemical Engineering, Institute of Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal ; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias Lisboa, Portugal
| |
Collapse
|