1
|
Jiang H, Wang Y, Zhang G, Jia A, Wei Z, Wang Y. Identification and Evolutionary Analysis of the Widely Distributed CAP Superfamily in Spider Venom. Toxins (Basel) 2024; 16:240. [PMID: 38922134 PMCID: PMC11209345 DOI: 10.3390/toxins16060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, utilizing transcriptomic and genomic data, and highlighted their similarities and differences. We show that spiders have specific combinations of toxins for better predation and defense, typically comprising a core toxin expressed alongside several auxiliary toxins. Among them, the CAP superfamily is widely distributed and highly expressed in web-building Araneoidea spiders. Our analysis of evolutionary relationships revealed four subfamilies (subA-subD) of the CAP superfamily that differ in structure and potential functions. CAP proteins are composed of a conserved CAP domain and diverse C-terminal domains. CAP subC shares similar domains with the snake ion channel regulator svCRISP proteins, while CAP subD possesses a sequence similar to that of insect venom allergen 5 (Ag5). Furthermore, we show that gene duplication and selective expression lead to increased expression of CAP subD, making it a core member of the CAP superfamily. This study sheds light on the functional diversity of CAP subfamilies and their evolutionary history, which has important implications for fully understanding the composition of spider venom proteins and the core toxin components of web-building spiders.
Collapse
Affiliation(s)
- Hongcen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Yiru Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Guoqing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Anqiang Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Zhaoyuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| |
Collapse
|
2
|
Mateos DL, Yarov-Yarovoy V. Structural modeling of peptide toxin-ion channel interactions using RosettaDock. Proteins 2023. [PMID: 36729043 DOI: 10.1002/prot.26474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Voltage-gated ion channels play essential physiological roles in action potential generation and propagation. Peptidic toxins from animal venoms target ion channels and provide useful scaffolds for the rational design of novel channel modulators with enhanced potency and subtype selectivity. Despite recent progress in obtaining experimental structures of peptide toxin-ion channel complexes, structural determination of peptide toxins bound to ion channels in physiologically important states remains challenging. Here we describe an application of RosettaDock approach to the structural modeling of peptide toxins interactions with ion channels. We tested this approach on 10 structures of peptide toxin-ion channel complexes and demonstrated that it can sample near-native structures in all tested cases. Our approach will be useful for improving the understanding of the molecular mechanism of natural peptide toxin modulation of ion channel gating and for the structural modeling of novel peptide-based ion channel modulators.
Collapse
Affiliation(s)
- Diego Lopez Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Biophysics Graduate Group, University of California Davis, Davis, California, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Biophysics Graduate Group, University of California Davis, Davis, California, USA.,Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
3
|
Ngum NM, Aziz MYA, Latif ML, Wall RJ, Duce IR, Mellor IR. Non-canonical endogenous expression of voltage-gated sodium channel NaV1.7 subtype by the TE671 rhabdomyosarcoma cell line. J Physiol 2022; 600:2499-2513. [PMID: 35413129 PMCID: PMC9325523 DOI: 10.1113/jp283055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract The human TE671 cell line was originally used as a model of medulloblastoma but has since been reassigned as rhabdomyosarcoma. Despite the characterised endogenous expression of voltage‐sensitive sodium currents in these cells, the specific voltage‐gated sodium channel (VGSC) subtype underlying these currents remains unknown. To profile the VGSC subtype in undifferentiated TE671 cells, endpoint and quantitative reverse transcription–PCR (qRT‐PCR), western blot and whole‐cell patch clamp electrophysiology were performed. qRT‐PCR profiling revealed that expression of the SCN9A gene was ∼215‐fold greater than the SCN4A gene and over 400‐fold greater than any of the other VGSC genes, while western blot confirmed that the dominant SCN9A RNA was translated to a protein with a molecular mass of ∼250 kDa. Elicited sodium currents had a mean amplitude of 2.6 ± 0.7 nA with activation and fast inactivation V50 values of −31.9 ± 1.1 and −69.6 ± 1.0 mV, respectively. The currents were completely and reversibly blocked by tetrodotoxin at concentrations greater than 100 nm (IC50 = 22.3 nm). They were also very susceptible to the NaV1.7 specific blockers Huwentoxin‐IV and Protoxin‐II with IC50 values of 14.6 nm and 0.8 nm, respectively, characteristic of those previously determined for NaV1.7. Combined, the results revealed the non‐canonical and highly dominant expression of NaV1.7 in the human TE671 rhabdomyosarcoma cell line. We show that the TE671 cell line is an easy to maintain and cost‐effective model for the study of NaV1.7, a major target for the development of analgesic drugs and more generally for the study of pain. Key points Undifferentiated TE671 cells produce a voltage‐sensitive sodium current when depolarised. The voltage‐gated sodium channel isoform expressed in undifferentiated TE671 cells was previously unknown.
Through qRT‐PCR, western blot and toxin pharmacology, it is shown that undifferentiated TE671 cells dominantly (>99.5%) express the NaV1.7 isoform that is strongly associated with pain.
The TE671 cell line is, therefore, a very easy to maintain and cost‐effective model to study NaV1.7‐targeting drugs.
Collapse
Affiliation(s)
- Neville M Ngum
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Muhammad Y A Aziz
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - M Liaque Latif
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard J Wall
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian R Duce
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
4
|
Nguyen PT, Nguyen HM, Wagner KM, Stewart RG, Singh V, Thapa P, Chen YJ, Lillya MW, Ton AT, Kondo R, Ghetti A, Pennington MW, Hammock B, Griffith TN, Sack JT, Wulff H, Yarov-Yarovoy V. Computational design of peptides to target Na V1.7 channel with high potency and selectivity for the treatment of pain. eLife 2022; 11:81727. [PMID: 36576241 PMCID: PMC9831606 DOI: 10.7554/elife.81727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The voltage-gated sodium NaV1.7 channel plays a key role as a mediator of action potential propagation in C-fiber nociceptors and is an established molecular target for pain therapy. ProTx-II is a potent and moderately selective peptide toxin from tarantula venom that inhibits human NaV1.7 activation. Here we used available structural and experimental data to guide Rosetta design of potent and selective ProTx-II-based peptide inhibitors of human NaV1.7 channels. Functional testing of designed peptides using electrophysiology identified the PTx2-3127 and PTx2-3258 peptides with IC50s of 7 nM and 4 nM for hNaV1.7 and more than 1000-fold selectivity over human NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.8, and NaV1.9 channels. PTx2-3127 inhibits NaV1.7 currents in mouse and human sensory neurons and shows efficacy in rat models of chronic and thermal pain when administered intrathecally. Rationally designed peptide inhibitors of human NaV1.7 channels have transformative potential to define a new class of biologics to treat pain.
Collapse
Affiliation(s)
- Phuong T Nguyen
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Hai M Nguyen
- Department of Pharmacology, University of California DavisDavisUnited States
| | - Karen M Wagner
- Department of Entomology and Nematology & Comprehensive Cancer Center, University of California DavisDavisUnited States
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Vikrant Singh
- Department of Pharmacology, University of California DavisDavisUnited States
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Yi-Je Chen
- Department of Pharmacology, University of California DavisDavisUnited States
| | - Mark W Lillya
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | | | | | | | | | - Bruce Hammock
- Department of Entomology and Nematology & Comprehensive Cancer Center, University of California DavisDavisUnited States
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States,Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Heike Wulff
- Department of Pharmacology, University of California DavisDavisUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States,Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States,Biophysics Graduate Group, University of California DavisDavisUnited States
| |
Collapse
|
5
|
Adams GL, Pall PS, Grauer SM, Zhou X, Ballard JE, Vavrek M, Kraus RL, Morissette P, Li N, Colarusso S, Bianchi E, Palani A, Klein R, John CT, Wang D, Tudor M, Nolting AF, Biba M, Nowak T, Makarov AA, Reibarkh M, Buevich AV, Zhong W, Regalado EL, Wang X, Gao Q, Shahripour A, Zhu Y, de Simone D, Frattarelli T, Pasquini NM, Magotti P, Iaccarino R, Li Y, Solly K, Lee KJ, Wang W, Chen F, Zeng H, Wang J, Regan H, Amin RP, Regan CP, Burgey CS, Henze DA, Sun C, Tellers DM. Development of ProTx-II Analogues as Highly Selective Peptide Blockers of Na v1.7 for the Treatment of Pain. J Med Chem 2021; 65:485-496. [PMID: 34931831 DOI: 10.1021/acs.jmedchem.1c01570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.
Collapse
Affiliation(s)
- Gregory L Adams
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Parul S Pall
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Steven M Grauer
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xiaoping Zhou
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Marissa Vavrek
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Nianyu Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Stefania Colarusso
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Anandan Palani
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Rebecca Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Deping Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Tudor
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Andrew F Nolting
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mirlinda Biba
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy Nowak
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | | | - Wendy Zhong
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Xiao Wang
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qi Gao
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Yuping Zhu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniele de Simone
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Tommaso Frattarelli
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Nicolo' Maria Pasquini
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Paola Magotti
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Roberto Iaccarino
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Yuxing Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kelli Solly
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Keun-Joong Lee
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Feifei Chen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Haoyu Zeng
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jixin Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Hilary Regan
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rupesh P Amin
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Darrell A Henze
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chengzao Sun
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M Tellers
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
6
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
7
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
8
|
Neff RA, Wickenden AD. Selective Targeting of Nav1.7 with Engineered Spider Venom-Based Peptides. Channels (Austin) 2021; 15:179-193. [PMID: 33427574 PMCID: PMC7808416 DOI: 10.1080/19336950.2020.1860382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023] Open
Abstract
A fundamental mechanism that drives the propagation of electrical signals in the nervous system is the activation of voltage-gated sodium channels. The sodium channel subtype Nav1.7 is critical for the transmission of pain-related signaling, with gain-of-function mutations in Nav1.7 resulting in various painful pathologies. Loss-of-function mutations cause complete insensitivity to pain and anosmia in humans that otherwise have normal nervous system function, rendering Nav1.7 an attractive target for the treatment of pain. Despite this, no Nav1.7 selective therapeutic has been approved for use as an analgesic to date. Here we present a summary of research that has focused on engineering peptides found in spider venoms to produce Nav1.7 selective antagonists. We discuss the progress that has been made on various scaffolds from different venom families and highlight the challenges that remain in the effort to produce a Nav1.7 selective, venom-based analgesic.
Collapse
Affiliation(s)
- Robert A. Neff
- Neuroscience Discovery, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Alan D. Wickenden
- Molecular and Cellular Pharmacology, Janssen Research and Development, LLC, San Diego, CA, USA
| |
Collapse
|
9
|
Schroder RV, Cohen LS, Wang P, Arizala JD, Poget SF. Expression, Purification and Refolding of a Human Na V1.7 Voltage Sensing Domain with Native-like Toxin Binding Properties. Toxins (Basel) 2021; 13:toxins13100722. [PMID: 34679015 PMCID: PMC8541342 DOI: 10.3390/toxins13100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 01/28/2023] Open
Abstract
The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition.
Collapse
Affiliation(s)
- Ryan V. Schroder
- Department of Chemistry, College of Staten Island, University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA; (R.V.S.); (L.S.C.); (P.W.); (J.D.A.)
- The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Leah S. Cohen
- Department of Chemistry, College of Staten Island, University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA; (R.V.S.); (L.S.C.); (P.W.); (J.D.A.)
| | - Ping Wang
- Department of Chemistry, College of Staten Island, University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA; (R.V.S.); (L.S.C.); (P.W.); (J.D.A.)
| | - Joekeem D. Arizala
- Department of Chemistry, College of Staten Island, University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA; (R.V.S.); (L.S.C.); (P.W.); (J.D.A.)
- The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Sébastien F. Poget
- Department of Chemistry, College of Staten Island, University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA; (R.V.S.); (L.S.C.); (P.W.); (J.D.A.)
- The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
10
|
Montnach J, De Waard S, Nicolas S, Burel S, Osorio N, Zoukimian C, Mantegazza M, Boukaiba R, Béroud R, Partiseti M, Delmas P, Marionneau C, De Waard M. Fluorescent- and tagged-protoxin II peptides: potent markers of the Na v 1.7 channel pain target. Br J Pharmacol 2021; 178:2632-2650. [PMID: 33742442 DOI: 10.1111/bph.15453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Protoxin II (ProTx II) is a high affinity gating modifier that is thought to selectively block the Nav 1.7 voltage-dependent Na+ channel, a major therapeutic target for the control of pain. We aimed at producing ProTx II analogues entitled with novel functionalities for cell distribution studies and biochemical characterization of its Nav channel targets. EXPERIMENTAL APPROACH We took advantage of the high affinity properties of the peptide, combined to its slow off rate, to design a number of new tagged analogues useful for imaging and biochemistry purposes. We used high-throughput automated patch-clamp to identify the analogues best matching the native properties of ProTx II and validated them on various Nav -expressing cells in pull-down and cell distribution studies. KEY RESULTS Two of the produced ProTx II analogues, Biot-ProTx II and ATTO488-ProTx II, best emulate the pharmacological properties of unlabelled ProTx II, whereas other analogues remain high affinity blockers of Nav 1.7. The biotinylated version of ProTx II efficiently works for the pull-down of several Nav isoforms tested in a concentration-dependent manner, whereas the fluorescent ATTO488-ProTx II specifically labels the Nav 1.7 channel over other Nav isoforms tested in various experimental conditions. CONCLUSIONS AND IMPLICATIONS The properties of these ProTx II analogues as tools for Nav channel purification and cell distribution studies pave the way for a better understanding of ProTx II channel receptors in pain and their pathophysiological implications in sensory neuronal processing. The new fluorescent ProTx II should also be useful in the design of new drug screening strategies.
Collapse
Affiliation(s)
- Jérôme Montnach
- LabEx "Ion Channels, Science & Therapeutics", l'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | - Stephan De Waard
- LabEx "Ion Channels, Science & Therapeutics", l'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | - Sébastien Nicolas
- LabEx "Ion Channels, Science & Therapeutics", l'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | - Sophie Burel
- LabEx "Ion Channels, Science & Therapeutics", l'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | - Nancy Osorio
- Laboratory of Cognitive Neuroscience, UMR 7291, CNRS, Aix-Marseille University, Marseille, France
| | | | - Massimo Mantegazza
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Rachid Boukaiba
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Vitry-sur-Seine, France
| | | | - Michel Partiseti
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Vitry-sur-Seine, France
| | - Patrick Delmas
- Laboratory of Cognitive Neuroscience, UMR 7291, CNRS, Aix-Marseille University, Marseille, France
| | - Céline Marionneau
- LabEx "Ion Channels, Science & Therapeutics", l'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | - Michel De Waard
- LabEx "Ion Channels, Science & Therapeutics", l'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes, France.,Smartox Biotechnology, Saint-Egrève, France
| |
Collapse
|
11
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
12
|
Gao S, Na R, Yang L, Yu H, Zhao X, Huang X. Investigation of binding modes of spider toxin–human voltage-gated sodium channel subtybe 1.7. J Biomol Struct Dyn 2020; 39:4981-4989. [DOI: 10.1080/07391102.2020.1783363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shasha Gao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Risong Na
- College of plant protection, Henan Agricultural University, Zhengzhou, P.R China
| | - Lianjuan Yang
- Department of Mycology, Shanghai Dermatology Hospital, Shanghai, China
| | - Hui Yu
- College of Science, Beihua Univesrity, Jilin, China
| | - Xi Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Xuri Huang
- College of plant protection, Henan Agricultural University, Zhengzhou, P.R China
| |
Collapse
|
13
|
Cardoso FC. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem Pharmacol 2020; 181:114107. [PMID: 32579958 DOI: 10.1016/j.bcp.2020.114107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Venom peptides are amongst the most exquisite group of bioactive molecules able to alter the normal physiology of organisms. These bioactive peptides penetrate tissues and blood vessels to encounter a number of receptors and ion channels to which they bind with high affinity and execute modulatory activities. Arachnid is the most diverse class of venomous animals often rich in peptides modulating voltage-gated sodium (NaV), calcium (CaV), and potassium (KV) channels. Spider venoms, in particular, contain potent and selective peptides targeting these channels, with a few displaying interesting multi-target properties for NaV and CaV channels underlying disease mechanisms such as in neuropathic pain, motor neuron disease and cancer. The elucidation of the pharmacology and structure-function properties of these venom peptides are invaluable for the development of effective drugs targeting NaV and CaV channels. This perspective discusses spider venom peptides displaying multi-target properties to modulate NaV and CaV channels in regard to their pharmacological features, structure-function relationships and potential to become the next generation of effective drugs to treat neurological disorders and other multi-ion channels related diseases.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St Lucia, QLD AU 4072, Australia
| |
Collapse
|
14
|
Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain 2020; 160:1766-1780. [PMID: 31335646 DOI: 10.1097/j.pain.0000000000001567] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, postsurgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute postsurgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor μ-theraphotoxin-Pn3a is effectively antiallodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. In addition, we found superadditive antinociceptive effects of subtherapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice after surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors; however, several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1), and Cacna1b (CaV2.2), were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.
Collapse
|
15
|
McCarthy S, Robinson J, Thalassinos K, Tabor AB. A Chemical Biology Approach to Probing the Folding Pathways of the Inhibitory Cystine Knot (ICK) Peptide ProTx-II. Front Chem 2020; 8:228. [PMID: 32309273 PMCID: PMC7145985 DOI: 10.3389/fchem.2020.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peptide toxins that adopt the inhibitory cystine knot (ICK) scaffold have very stable three-dimensional structures as a result of the conformational constraints imposed by the configuration of the three disulfide bonds that are the hallmark of this fold. Understanding the oxidative folding pathways of these complex peptides, many of which are important therapeutic leads, is important in order to devise reliable synthetic routes to correctly folded, biologically active peptides. Previous research on the ICK peptide ProTx-II has shown that in the absence of an equilibrating redox buffer, misfolded intermediates form that prevent the formation of the native disulfide bond configuration. In this paper, we used tandem mass spectrometry to examine these misfolded peptides, and identified two non-native singly bridged peptides, one with a Cys(III)-Cys(IV) linkage and one with a Cys(V)-Cys(VI) linkage. Based on these results, we propose that the C-terminus of ProTx-II has an important role in initiating the folding of this peptide. To test this hypothesis, we have also studied the folding pathways of analogs of ProTx-II containing the disulfide-bond directing group penicillamine (Pen) under the same conditions. We find that placing Pen residues at the C-terminus of the ProTx-II analogs directs the folding pathway away from the singly bridged misfolded intermediates that represent a kinetic trap for the native sequence, and allows a fully oxidized final product to be formed with three disulfide bridges. However, multiple two-disulfide peptides were also produced, indicating that further study is required to fully control the folding pathways of this modified scaffold.
Collapse
Affiliation(s)
| | | | - Konstantinos Thalassinos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom.,Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | | |
Collapse
|
16
|
Abstract
Snake and spider venoms have been developed by nature as a defense mechanism against predators or to immobilize their prey by blocking the cardiovascular, respiratory, and/or nervous systems. Consequently, predators are deterred from approaching their prey by painful sensations. At a molecular level, the targeted physiological systems are blocked or stimulated by peptide toxins which, once injected into the body, modulate, though not exclusively, important cell membrane ion channels and receptors. Millions of years of constant evolution have led to the evolvement of complex venom libraries of optimized protein toxins, making them more potent, more selective, resistant to proteases, less immunogenic, and improved in terms of pharmacokinetic (PK) properties. The resulting advantage is that they induce long-term and potent pharmacodynamic (PD) effects toward unique molecular targets of therapeutic importance such as coagulation cascade proteins, receptors, and ionic channels. This optimization process has been enabled by the diversification of peptide sequences (mainly by gene duplication) and an upscaling of the complexity of toxin peptide scaffold structures, through implementation of multiple disulfide bridges and sequence-active motif diversification, leading to a wide diversity of chemical structures. This combination of pharmaceutical properties has made venom toxins valuable both as pharmacological tools and as leads for drug development. These highly tunable molecules can be tailored to achieve desirable biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. This brief overview provides basic definitions, rules, and methodologies and describes successful examples of a few drugs developed from snake toxins that are currently used in the clinic for therapy of several diseases as well as new molecular entities in clinical development based on spider-venom-derived peptide toxins.
Collapse
|
17
|
Myshkin MY, Männikkö R, Krumkacheva OA, Kulbatskii DS, Chugunov AO, Berkut AA, Paramonov AS, Shulepko MA, Fedin MV, Hanna MG, Kullmann DM, Bagryanskaya EG, Arseniev AS, Kirpichnikov MP, Lyukmanova EN, Vassilevski AA, Shenkarev ZO. Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Na v1.4 Channel. Front Pharmacol 2019; 10:953. [PMID: 31555136 PMCID: PMC6737007 DOI: 10.3389/fphar.2019.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps-ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein-protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.
Collapse
Affiliation(s)
- Mikhail Yu Myshkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roope Männikkö
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | - Dmitrii S Kulbatskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton O Chugunov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | - Antonina A Berkut
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Shulepko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - Elena G Bagryanskaya
- N.N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Alexander S Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Alexander A Vassilevski
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Zakhar O Shenkarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| |
Collapse
|
18
|
Hompoonsup S, Chambers D, Doherty P, Williams G. No transcriptional evidence for active Na v channels in two classes of cancer cell. Channels (Austin) 2019; 13:311-320. [PMID: 31329011 PMCID: PMC6682260 DOI: 10.1080/19336950.2019.1644858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Voltage-gated sodium channel (Nav) expression in non-excitable cells has raised questions regarding their non-canonical roles. Interestingly, a growing body of evidence also points towards the prevalence of aberrant Nav expression in malignant tumors, potentially opening a new therapeutic window. In this study, the transcriptional consequences of channel inhibition were investigated in non-small cell lung carcinoma H460 and neuroblastoma SH-SYSY cell lines, that both express Nav1.7. Channel activity was blocked by the application of both selective, ProTx-II, and non-selective, tetrodotoxin, inhibitors. Global gene expression profiling did not point to any statistically significant inhibition-associated perturbation of the transcriptome. A small subset of genes that showed relatively consistent changes across multiple treatments were further assayed in the context of a multiplex bead expression array which failed to recapitulate the changes seen in the global array. We conclude that there is no robust transcriptional signature associated with the inhibition of two sodium channel expressing cancer cell lines and consequently sodium channel inhibition will not lend itself to therapeutic approaches such as transcription-based drug repurposing.
Collapse
Affiliation(s)
- Supanida Hompoonsup
- a Wolfson Centre for Age-Related Diseases, King's College London , London , UK.,b Learning Institute, King Mongkut's University of Technology Thonburi , Bangkok , Thailand
| | - David Chambers
- a Wolfson Centre for Age-Related Diseases, King's College London , London , UK
| | - Patrick Doherty
- a Wolfson Centre for Age-Related Diseases, King's College London , London , UK
| | - Gareth Williams
- a Wolfson Centre for Age-Related Diseases, King's College London , London , UK
| |
Collapse
|
19
|
Nicolas S, Zoukimian C, Bosmans F, Montnach J, Diochot S, Cuypers E, De Waard S, Béroud R, Mebs D, Craik D, Boturyn D, Lazdunski M, Tytgat J, De Waard M. Chemical Synthesis, Proper Folding, Na v Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins (Basel) 2019; 11:toxins11060367. [PMID: 31234412 PMCID: PMC6628435 DOI: 10.3390/toxins11060367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022] Open
Abstract
Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.
Collapse
Affiliation(s)
- Sébastien Nicolas
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Claude Zoukimian
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Frank Bosmans
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, 9000 Gent, Belgium.
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jérôme Montnach
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Eva Cuypers
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Stephan De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| | - Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, Frankfurt, Germany.
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Michel Lazdunski
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| |
Collapse
|
20
|
Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol 2019; 10:366. [PMID: 31031623 PMCID: PMC6470632 DOI: 10.3389/fphar.2019.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Spider venom-derived cysteine knot peptides are a mega-diverse class of molecules that exhibit unique pharmacological properties to modulate key membrane protein targets. Voltage-gated sodium channels (NaV) are often targeted by these peptides to allosterically promote opening or closing of the channel by binding to structural domains outside the channel pore. These effects can result in modified pain responses, muscle paralysis, cardiac arrest, priapism, and numbness. Although such effects are often deleterious, subtype selective spider venom peptides are showing potential to treat a range of neurological disorders, including chronic pain and epilepsy. This review examines the structure–activity relationships of cysteine knot peptides from spider venoms that modulate NaV and discusses their potential as leads to novel therapies for neurological disorders.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
21
|
Lawrence N, Wu B, Ligutti J, Cheneval O, Agwa AJ, Benfield AH, Biswas K, Craik DJ, Miranda LP, Henriques ST, Schroeder CI. Peptide-Membrane Interactions Affect the Inhibitory Potency and Selectivity of Spider Toxins ProTx-II and GpTx-1. ACS Chem Biol 2019; 14:118-130. [PMID: 30507158 DOI: 10.1021/acschembio.8b00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gating modifier toxins (GMTs) from spider venom can inhibit voltage gated sodium channels (NaVs) involved in pain signal transmission, including the NaV1.7 subtype. GMTs have a conserved amphipathic structure that allow them to interact with membranes and also with charged residues in regions of NaV that are exposed at the cell surface. ProTx-II and GpTx-1 are GMTs able to inhibit NaV1.7 with high potency, but they differ in their ability to bind to membranes and in their selectivity over other NaV subtypes. To explore these differences and gain detailed information on their membrane-binding ability and how this relates to potency and selectivity, we examined previously described NaV1.7 potent/selective GpTx-1 analogues and new ProTx-II analogues designed to reduce membrane binding and improve selectivity for NaV1.7. Our studies reveal that the number and type of hydrophobic residues as well as how they are presented at the surface determine the affinity of ProTx-II and GpTx-1 for membranes and that altering these residues can have dramatic effects on NaV inhibitory activity. We demonstrate that strong peptide-membrane interactions are not essential for inhibiting NaV1.7 and propose that hydrophobic interactions instead play an important role in positioning the GMT at the membrane surface proximal to exposed NaV residues, thereby affecting peptide-channel interactions. Our detailed structure-activity relationship study highlights the challenges of designing GMT-based molecules that simultaneously achieve high potency and selectivity for NaV1.7, as single mutations can induce local changes in GMT structure that can have a major impact on NaV-inhibitory activity.
Collapse
Affiliation(s)
- Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Joseph Ligutti
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Akello Joanna Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Aurélie H. Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, Estevez A, Kugel C, Franke Y, Chen J, Ciferri C, Hackos DH, Koth CM, Payandeh J. Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin. Cell 2019; 176:702-715.e14. [PMID: 30661758 DOI: 10.1016/j.cell.2018.12.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.
Collapse
Affiliation(s)
- Hui Xu
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| | | | - Foteini Tzakoniati
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Evera Wong
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christine Kugel
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - David H Hackos
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA.
| | - Christopher M Koth
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Fang GM, Chen XX, Yang QQ, Zhu LJ, Li NN, Yu HZ, Meng XM. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Wright ZVF, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M, Gonen T, Thalassinos K, Tabor AB. The Role of Disulfide Bond Replacements in Analogues of the Tarantula Toxin ProTx-II and Their Effects on Inhibition of the Voltage-Gated Sodium Ion Channel Na v1.7. J Am Chem Soc 2017; 139:13063-13075. [PMID: 28880078 PMCID: PMC5618157 DOI: 10.1021/jacs.7b06506] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Spider
venom toxins, such as Protoxin-II (ProTx-II), have recently
received much attention as selective Nav1.7 channel blockers,
with potential to be developed as leads for the treatment of chronic
nocioceptive pain. ProTx-II is a 30-amino acid peptide with three
disulfide bonds that has been reported to adopt a well-defined inhibitory
cystine knot (ICK) scaffold structure. Potential drawbacks with such
peptides include poor pharmacodynamics and potential scrambling of
the disulfide bonds in vivo. In order to address
these issues, in the present study we report the solid-phase synthesis
of lanthionine-bridged analogues of ProTx-II, in which one of the
three disulfide bridges is replaced with a thioether linkage, and
evaluate the biological properties of these analogues. We have also
investigated the folding and disulfide bridging patterns arising from
different methods of oxidation of the linear peptide precursor. Finally,
we report the X-ray crystal structure of ProTx-II to atomic resolution;
to our knowledge this is the first crystal structure of an ICK spider
venom peptide not bound to a substrate.
Collapse
Affiliation(s)
- Zoë V F Wright
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rachael Dickman
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Silvia Sanchez-Martinez
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Ian Kilford
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Adrian Hall
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Andrew K Takle
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
25
|
Rajamani R, Wu S, Rodrigo I, Gao M, Low S, Megson L, Wensel D, Pieschl RL, Post-Munson DJ, Watson J, Langley DR, Ahlijanian MK, Bristow LJ, Herrington J. A Functional NaV1.7-NaVAb Chimera with a Reconstituted High-Affinity ProTx-II Binding Site. Mol Pharmacol 2017. [DOI: 10.1124/mol.117.108712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
26
|
Agwa AJ, Henriques ST, Schroeder CI. Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real? Neuropharmacology 2017; 127:32-45. [PMID: 28400258 DOI: 10.1016/j.neuropharm.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
Abstract
Spider peptide toxins have attracted attention because of their ability to target voltage-gated ion channels, which are involved in several pathologies including chronic pain and some cardiovascular conditions. A class of these peptides acts by modulating the gating mechanism of voltage-gated ion channels and are thus called gating modifier toxins (GMTs). In addition to their interactions with voltage-gated ion channels, some GMTs have affinity for lipid bilayers. This review discusses the potential importance of the cell membrane on the mode of action of GMTs. We propose that peptide-membrane interactions can anchor GMTs at the cell surface, thereby increasing GMT concentration in the vicinity of the channel binding site. We also propose that modulating peptide-membrane interactions might be useful for increasing the therapeutic potential of spider toxins. Furthermore, we explore the advantages and limitations of the methodologies currently used to examine peptide-membrane interactions. Although GMT-lipid membrane binding does not appear to be a requirement for the activity of all GMTs, it is an important feature, and future studies with GMTs should consider the trimolecular peptide-lipid membrane-channel complex. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
27
|
Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNa V1.7. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:835-844. [PMID: 28115115 DOI: 10.1016/j.bbamem.2017.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
The human voltage-gated sodium channel sub-type 1.7 (hNaV1.7) is emerging as an attractive target for the development of potent and sub-type selective novel analgesics with increased potency and fewer side effects than existing therapeutics. HwTx-IV, a spider derived peptide toxin, inhibits hNaV1.7 with high potency and is therefore of great interest as an analgesic lead. In the current study we examined whether engineering a HwTx-IV analogue with increased ability to bind to lipid membranes would improve its inhibitory potency at hNaV1.7. This hypothesis was explored by comparing HwTx-IV and two analogues [E1PyrE]HwTx-IV (mHwTx-IV) and [E1G,E4G,F6W,Y30W]HwTx-IV (gHwTx-IV) on their membrane-binding affinity and hNaV1.7 inhibitory potency using a range of biophysical techniques including computational analysis, NMR spectroscopy, surface plasmon resonance, and fluorescence spectroscopy. HwTx-IV and mHwTx-IV exhibited weak affinity for lipid membranes, whereas gHwTx-IV showed improved affinity for the model membranes studied. In addition, activity assays using SH-SY5Y neuroblastoma cells expressing hNaV1.7 showed that gHwTx-IV has increased activity at hNaV1.7 compared to HwTx-IV. Based on these results we hypothesize that an increase in the affinity of HwTx-IV for lipid membranes is accompanied by improved inhibitory potency at hNaV1.7 and that increasing the affinity of gating modifier toxins to lipid bilayers is a strategy that may be useful for improving their potency at hNaV1.7.
Collapse
|
28
|
Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA, Freedman J, Eckert WA, Zhou M, Bonesteel R, Pennington MW, Eddinger KA, Yaksh TL, Hunter M, Swanson RV, Wickenden AD. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep 2017; 7:39662. [PMID: 28045073 PMCID: PMC5206724 DOI: 10.1038/srep39662] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/25/2016] [Indexed: 12/27/2022] Open
Abstract
Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain.
Collapse
Affiliation(s)
- M Flinspach
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Q Xu
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A D Piekarz
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Fellows
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Hagan
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A Gibbs
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Y Liu
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R A Neff
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - J Freedman
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - W A Eckert
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - M Zhou
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Bonesteel
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | - K A Eddinger
- University of California, San Diego, Department Anesthesiology and Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA
| | - T L Yaksh
- University of California, San Diego, Department Anesthesiology and Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA
| | - M Hunter
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R V Swanson
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A D Wickenden
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| |
Collapse
|
29
|
Molesini B, Treggiari D, Dalbeni A, Minuz P, Pandolfini T. Plant cystine-knot peptides: pharmacological perspectives. Br J Clin Pharmacol 2017; 83:63-70. [PMID: 26987851 PMCID: PMC5338163 DOI: 10.1111/bcp.12932] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/29/2022] Open
Abstract
Cystine-knot miniproteins are a class of 30-50 amino acid long peptides widespread in eukaryotic organisms. Due to their very peculiar three-dimensional structure, they exhibit high resistance to heat and peptidase attack. The cystine-knot peptides are well represented in several plant species including medicinal herbs and crops. The pharmacological interest in plant cystine-knot peptides derives from their broad biological activities, mainly cytotoxic, antimicrobial and peptidase inhibitory and in the possibility to engineer them to incorporate pharmacophoric information for oral delivery or disease biomonitoring. The mechanisms of action of plant cystine-knot peptides are still largely unknown, although the capacity to interfere with plasma membranes seems a feature common to several cystine-knot peptides. In some cases, such as potato carboxypetidase inhibitor (PCI) and tomato cystine-knot miniproteins (TCMPs), the cystine-knot peptides target human growth factor receptors either by acting as growth factor antagonist or by altering their signal transduction pathway. The possibility to identify specific molecular targets of plant cystine-knot peptides in human cells opens novel possibilities for the pharmacological use of these peptides besides their use as scaffold to develop stable disease molecular markers and therapeutic agents.
Collapse
Affiliation(s)
| | - Davide Treggiari
- Department of Medicine, Section of Internal MedicineUniversity of VeronaVeronaItaly
| | - Andrea Dalbeni
- Department of Medicine, Section of Internal MedicineUniversity of VeronaVeronaItaly
| | - Pietro Minuz
- Department of Medicine, Section of Internal MedicineUniversity of VeronaVeronaItaly
| | | |
Collapse
|
30
|
Henriques ST, Deplazes E, Lawrence N, Cheneval O, Chaousis S, Inserra M, Thongyoo P, King GF, Mark AE, Vetter I, Craik DJ, Schroeder CI. Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. J Biol Chem 2016; 291:17049-65. [PMID: 27311819 DOI: 10.1074/jbc.m116.729095] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/11/2022] Open
Abstract
ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor.
Collapse
Affiliation(s)
| | - Evelyne Deplazes
- From the Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, University of Queensland, Queensland 4072 and
| | | | | | | | | | | | | | - Alan E Mark
- From the Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, University of Queensland, Queensland 4072 and
| | - Irina Vetter
- From the Institute for Molecular Bioscience and the School of Pharmacy, University of Queensland, Queensland 4102, Australia
| | | | | |
Collapse
|
31
|
Shcherbatko A, Rossi A, Foletti D, Zhu G, Bogin O, Galindo Casas M, Rickert M, Hasa-Moreno A, Bartsevich V, Crameri A, Steiner AR, Henningsen R, Gill A, Pons J, Shelton DL, Rajpal A, Strop P. Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain. J Biol Chem 2016; 291:13974-13986. [PMID: 27129258 DOI: 10.1074/jbc.m116.725978] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.
Collapse
Affiliation(s)
| | - Andrea Rossi
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Davide Foletti
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Guoyun Zhu
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | | | | | - Mathias Rickert
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Adela Hasa-Moreno
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | | | | | | | | | - Avinash Gill
- Sutro Biopharma, South San Francisco, California 94080
| | - Jaume Pons
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - David L Shelton
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Arvind Rajpal
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Pavel Strop
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080,.
| |
Collapse
|
32
|
Salari A, Vega BS, Milescu LS, Milescu M. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels. Sci Rep 2016; 6:23894. [PMID: 27045173 PMCID: PMC4820701 DOI: 10.1038/srep23894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 01/26/2023] Open
Abstract
Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning.
Collapse
Affiliation(s)
- Autoosa Salari
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| | - Benjamin S Vega
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| | - Lorin S Milescu
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| | - Mirela Milescu
- University of Missouri, Division of Biological Sciences, Columbia, 65211, USA
| |
Collapse
|
33
|
Murray JK, Long J, Zou A, Ligutti J, Andrews KL, Poppe L, Biswas K, Moyer BD, McDonough SI, Miranda LP. Single Residue Substitutions That Confer Voltage-Gated Sodium Ion Channel Subtype Selectivity in the NaV1.7 Inhibitory Peptide GpTx-1. J Med Chem 2016; 59:2704-17. [DOI: 10.1021/acs.jmedchem.5b01947] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Justin K. Murray
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jason Long
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anruo Zou
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph Ligutti
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristin L. Andrews
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Leszek Poppe
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kaustav Biswas
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bryan D. Moyer
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Stefan I. McDonough
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Les P. Miranda
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
34
|
High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:537508. [PMID: 26843868 PMCID: PMC4710912 DOI: 10.1155/2015/537508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Proteolytic stability in gastrointestinal tract and blood plasma is the major obstacle for oral peptide drug development. Inhibitor cystine knots (ICKs) are linear cystine knot peptides which have multifunctional properties and could become promising drug scaffolds. ProTx-I, ProTx-II, GTx1-15, and GsMTx-4 were spider-derived ICKs and incubated with pepsin, trypsin, chymotrypsin, and elastase in physiological conditions to find that all tested peptides were resistant to pepsin, and ProTx-II, GsMTx-4, and GTx1-15 showed resistance to all tested proteases. Also, no ProTx-II degradation was observed in rat blood plasma for 24 hours in vitro and ProTx-II concentration in circulation decreased to half in 40 min, indicating absolute stability in plasma and fast clearance from the system. So far, linear peptides are generally thought to be unsuitable in vivo, but all tested ICKs were not degraded by pepsin and stomach could be selected for the alternative site of drug absorption for fast onset of the drug action. Since spider ICKs are selective inhibitors of various ion channels which are related to the pathology of many diseases, engineered ICKs will make a novel class of peptide medicines which can treat variety of bothering symptoms.
Collapse
|
35
|
de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem 2015; 58:7093-118. [PMID: 25927480 DOI: 10.1021/jm501981g] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tremendous therapeutic potential of voltage-gated sodium channels (Na(v)s) has been the subject of many studies in the past and is of intense interest today. Na(v)1.7 channels in particular have received much attention recently because of strong genetic validation of their involvement in nociception. Here we summarize the current status of research in the Na(v) field and present the most relevant recent developments with respect to the molecular structure, general physiology, and pharmacology of distinct Na(v) channel subtypes. We discuss Na(v) channel ligands such as small molecules, toxins isolated from animal venoms, and the recently identified Na(v)1.7-selective antibody. Furthermore, we review eight characterized ligand binding sites on the Na(v) channel α subunit. Finally, we examine possible therapeutic applications of Na(v) ligands and provide an update on current clinical studies.
Collapse
Affiliation(s)
- Manuel de Lera Ruiz
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
36
|
Murray JK, Ligutti J, Liu D, Zou A, Poppe L, Li H, Andrews KL, Moyer BD, McDonough SI, Favreau P, Stöcklin R, Miranda LP. Engineering Potent and Selective Analogues of GpTx-1, a Tarantula Venom Peptide Antagonist of the NaV1.7 Sodium Channel. J Med Chem 2015; 58:2299-314. [DOI: 10.1021/jm501765v] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Philippe Favreau
- Atheris Laboratories, Case Postale
314, CH-1233 Bernex, Geneva, Switzerland
| | - Reto Stöcklin
- Atheris Laboratories, Case Postale
314, CH-1233 Bernex, Geneva, Switzerland
| | | |
Collapse
|