1
|
Gay EA, Guan D, Van Voorhies K, Vasukuttan V, Mathews KM, Besheer J, Jin C. Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. J Med Chem 2022; 65:7959-7974. [PMID: 35594150 DOI: 10.1021/acs.jmedchem.2c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide relaxin-3/RXFP3 system is involved in many important physiological processes such as stress responses, appetite control, and motivation for reward. To date, pharmacological studies of RXFP3 have been limited to peptide ligands. In this study, we report the discovery of the first small-molecule antagonists of RXFP3 through a high-throughput screening campaign. Focused structure-activity relationship studies of the hit compound resulted in RLX-33 (33) that was able to inhibit relaxin-3 activity in a battery of functional assays. RLX-33 is selective for RXFP3 over RXFP1 and RXFP4, two related members in the relaxin/insulin superfamily, and has favorable pharmacokinetic properties for behavioral assessment. When administered to rats intraperitoneally, RLX-33 blocked food intake induced by the RXFP3-selective agonist R3/I5. Collectively, our findings demonstrated that RLX-33 represents a promising antagonist scaffold for the development of drugs targeting the relaxin-3/RXFP3 system.
Collapse
Affiliation(s)
- Elaine A Gay
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Dongliang Guan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vineetha Vasukuttan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Kelly M Mathews
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
2
|
Nguyen T, Gamage TF, Finlay DB, Decker AM, Langston TL, Barrus D, Glass M, Li JX, Kenakin TP, Zhang Y. Development of 3-(4-Chlorophenyl)-1-(phenethyl)urea Analogues as Allosteric Modulators of the Cannabinoid Type-1 Receptor: RTICBM-189 is Brain Penetrant and Attenuates Reinstatement of Cocaine-Seeking Behavior. J Med Chem 2021; 65:257-270. [PMID: 34929081 DOI: 10.1021/acs.jmedchem.1c01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have shown that CB1 receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB1 NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB1 calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB1 potency, whereas 4-position analogues were generally less potent. The 3-chloro analogue (31, RTICBM-189) showed no activity at >50 protein targets and excellent brain permeation but relatively low metabolic stability in rat liver microsomes. Pharmacokinetic studies in rats confirmed the excellent brain exposure of 31 with a brain/plasma ratio Kp of 2.0. Importantly, intraperitoneal administration of 31 significantly and selectively attenuated the reinstatement of the cocaine-seeking behavior in rats without affecting locomotion.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Thomas F Gamage
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Daniel Barrus
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Terry P Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
3
|
Manning JJ, Green HM, Glass M, Finlay DB. Pharmacological selection of cannabinoid receptor effectors: Signalling, allosteric modulation and bias. Neuropharmacology 2021; 193:108611. [PMID: 34000272 DOI: 10.1016/j.neuropharm.2021.108611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
The type-1 cannabinoid receptor (CB1) is a promising drug target for a wide range of diseases. However, many existing and novel candidate ligands for CB1 have shown only limited therapeutic potential. Indeed, no ligands are currently approved for the clinic except formulations of the phytocannabinoids Δ9-THC and CBD and a small number of analogues. A key limitation of many promising CB1 ligands are their on-target adverse effects, notably including psychoactivity (agonists) and depression/suicidal ideation (inverse agonists). Recent drug development attempts have therefore focussed on altering CB1 signalling profiles in two ways. Firstly, with compounds that enhance or reduce the signalling of endogenous (endo-) cannabinoids, namely allosteric modulators. Secondly, with compounds that probe the capability of selectively targeting specific cellular signalling pathways that may mediate therapeutic effects using biased ligands. This review will summarise the current paradigm of CB1 signalling in terms of the intracellular transduction pathways acted on by the receptor. The development of compounds that selectively activate CB1 signalling pathways, whether allosterically or via orthosteric agonist bias, will also be addressed.
Collapse
Affiliation(s)
- Jamie J Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - Hayley M Green
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
4
|
Nguyen T, Gamage TF, Decker AM, Finlay DB, Langston TL, Barrus D, Glass M, Harris DL, Zhang Y. Rational design of cannabinoid type-1 receptor allosteric modulators: Org27569 and PSNCBAM-1 hybrids. Bioorg Med Chem 2021; 41:116215. [PMID: 34015703 DOI: 10.1016/j.bmc.2021.116215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
Allosteric modulation offers an alternate approach to target the cannabinoid type-1 receptor (CB1) for therapeutic benefits. Examination of the two widely studied prototypic CB1 negative allosteric modulators (NAMs) Org27569 and PSNCBAM-1 revealed structural resemblance and similar structure-activity relationships (SARs). In silico docking and dynamics simulation studies using the crystal structure of CB1 co-bound with CP55,940 and Org27569 suggested that Org27569 and PSNCBAM-1 occupied the same binding pocket and several common interactions were present in both series with the CB1 receptor. A new scaffold was therefore designed by merging the key structural features from the two series and the hybrids retained these binding features in the in silico docking studies. In addition, one such hybrid displayed similar functions to Org27569 in dynamic simulations by preserving a key R2143.50-D3386.30 salt bridge and maintaining an antagonist-like Helix3-Helix6 interhelical distance. Based on these results, a series of hybrids were synthesized and assessed in calcium mobilization, [35S]GTPγS binding and cAMP assays. Several compounds displayed comparable potencies to Org27569 and PSNCBAM-1 in these assays. This work offers new insight of the SAR requirement at the allosteric site of the CB1 receptor and provides a new scaffold that can be optimized for the development of future CB1 allosteric modulators.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Thomas F Gamage
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | | | - Daniel Barrus
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9054, New Zealand
| | - Danni L Harris
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
5
|
Mielnik CA, Lam VM, Ross RA. CB 1 allosteric modulators and their therapeutic potential in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110163. [PMID: 33152384 DOI: 10.1016/j.pnpbp.2020.110163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Vincent M Lam
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2020; 64:123-149. [PMID: 33379862 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College Street, Toronto, M5T 1R8 ON, Canada
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, and Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States.,Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College Street, Toronto, M5T 1R8 ON, Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, and Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China.,Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
7
|
Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Med Chem 2020; 11:2019-2037. [PMID: 31517528 DOI: 10.4155/fmc-2019-0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allosteric modulators of cannabinoid receptors hold great therapeutic potential, as they do not possess intrinsic efficacy, but instead enhance or diminish the receptor's response of orthosteric ligands allowing for the tempering of cannabinoid receptor signaling without the desensitization, tolerance and dependence. Allosteric modulators of cannabinoid receptors have numerous advantages over the orthosteric ligands such as higher receptor type selectivity, probe dependence and biased signaling, so they have a great potential to separate the therapeutic benefits from side effects own of orthosteric ligands. This review aims to give an overview of the CB1 and CB2 receptor allosteric modulators highlighting the structure-activity relationship and pharmacological profile of each classes, and their future promise.
Collapse
|
8
|
Dopart R, Immadi SS, Lu D, Kendall DA. Structural Optimization of the Diarylurea PSNCBAM-1, an Allosteric Modulator of Cannabinoid Receptor 1. Curr Ther Res Clin Exp 2019; 92:100574. [PMID: 32021660 PMCID: PMC6994307 DOI: 10.1016/j.curtheres.2019.100574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/15/2019] [Indexed: 11/05/2022] Open
Abstract
PSNCBAM-1 is an allosteric modulator of the cannabinoid receptor 1. Derivatives of PSNCBAM-1 were made, to reduce the total rings in the structure. Several derivatives maintained allosteric activity, as shown by binding experiments. Some calculated physicochemical properties for these derivatives are provided.
Background Structure–activity relationship studies improve the pharmacological and pharmacokinetic properties of a lead compound such as PSNCBAM-1, an allosteric modulator of the cannabinoid receptor 1. Objectives Here, several derivatives of PSNCBAM-1 were synthesized with the aim of reducing the number of rings within its structure and enhancing the solubility of the compounds. The derivatives studied contain substituents previously shown to enhance binding of agonists (ie, a cyano group and a pyrimidine ring), with a reduced number of rings compared with the parent compound, PSNCBAM-1. Methods The synthesized compounds were tested for the enhancement of the binding of orthosteric cannabinoid receptor 1 agonist CP55,940 in the presence of varying concentrations of each test compound. Select compounds were also tested for their effects on cannabinoid receptor 1 inverse agonist SR141716A binding. The compounds were also subjected to computational analysis of drug-like properties and solubility. Results Consistent with a positive allosteric modulator for orthosteric ligand binding, compounds LDK1317 (12a), LDK1320 (12b), LDK1321 (6a), LDK1323 (8a), and LDK1324 (6b) all enhanced the binding of agonist CP55,940 to some degree. Reduction in the number of rings did not abolish the activity. The new lead compounds LDK1317 (12a) and LDK1321 (6a) showed improved drug-like properties and enhanced solubility in silico. Conclusions In contrast to PSNCBAM-1, the synthesized compounds are analogs with fewer rings. The compounds LDK1317 (12a) and LDK1321 (6a) contained only 2 or 3 rings, respectively, and showed the binding parameters (KB = 110 nM, α = 2.3, and KB = 85 nM, α = 5.9). Further, the computationally predicted drug-like properties and solubility suggest these compounds are acceptable new lead compounds for further development of cannabinoid receptor 1 allosteric modulators. (Curr Ther Res Clin Exp. 2020; 81:XXX–XXX)
Collapse
Affiliation(s)
- Rachel Dopart
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Sri Sujana Immadi
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, Texas
| | - Dai Lu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, Texas
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
9
|
Allosteric Modulation of Cannabinoid Receptor 1-Current Challenges and Future Opportunities. Int J Mol Sci 2019; 20:ijms20235874. [PMID: 31771126 PMCID: PMC6928801 DOI: 10.3390/ijms20235874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation.
Collapse
|
10
|
Wang CM, Du JY, Zhang JY, Tang KX, Gao TH, Xu YG, Sun LP. Regioselective bromination of aryl ureas with Phenyliodine(III) diacetate and potassium bromide. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Nguyen T, Thomas BF, Zhang Y. Overcoming the Psychiatric Side Effects of the Cannabinoid CB1 Receptor Antagonists: Current Approaches for Therapeutics Development. Curr Top Med Chem 2019; 19:1418-1435. [PMID: 31284863 DOI: 10.2174/1568026619666190708164841] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
The Cannabinoid CB1 Receptor (CB1R) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the CB1R in the last two decades.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Brian F Thomas
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| |
Collapse
|
12
|
Nguyen T, Gamage TF, Decker AM, Barrus D, Langston TL, Li JX, Thomas BF, Zhang Y. Synthesis and Pharmacological Evaluation of 1-Phenyl-3-Thiophenylurea Derivatives as Cannabinoid Type-1 Receptor Allosteric Modulators. J Med Chem 2019; 62:9806-9823. [PMID: 31596583 DOI: 10.1021/acs.jmedchem.9b01161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported diarylurea derivatives as cannabinoid type-1 receptor (CB1) allosteric modulators, which were effective in attenuating cocaine-seeking behavior. Herein, we extended the structure-activity relationships of PSNCBAM-1 (2) at the central phenyl ring directly connected to the urea moiety. Replacement with a thiophene ring led to 11 with improved or comparable potencies in calcium mobilization, [35S]GTPγS binding, and cAMP assays, whereas substitution with nonaromatic rings led to significant attenuation of the modulatory activity. These compounds had no inverse agonism in [35S]GTPγS binding, a characteristic that is often thought to contribute to adverse psychiatric effects. While 11 had good metabolic stability in rat liver microsomes, it showed modest solubility and blood-brain barrier permeability. Compound 11 showed an insignificant attenuation of cocaine seeking behavior in rats, most likely due to its limited CNS penetration, suggesting that pharmacokinetics and distribution play a role in translating the in vitro efficacy to in vivo behavior.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Thomas F Gamage
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Ann M Decker
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Daniel Barrus
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Tiffany L Langston
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology , University of Buffalo, the State University of New York , Buffalo , New York 14214 , United States
| | - Brian F Thomas
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Yanan Zhang
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
13
|
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV. Selective modulation of the cannabinoid type 1 (CB 1) receptor as an emerging platform for the treatment of neuropathic pain. MEDCHEMCOMM 2019; 10:647-659. [PMID: 31191856 PMCID: PMC6533890 DOI: 10.1039/c8md00595h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Vineet Kumar
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
14
|
Al-Zoubi R, Morales P, Reggio PH. Structural Insights into CB1 Receptor Biased Signaling. Int J Mol Sci 2019; 20:E1837. [PMID: 31013934 PMCID: PMC6515405 DOI: 10.3390/ijms20081837] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system has emerged as a promising target for the treatment of numerous diseases, including cancer, neurodegenerative disorders, and metabolic syndromes. Thus far, two cannabinoid receptors, CB1 and CB2, have been discovered, which are found predominantly in the central nervous system (CB1) or the immune system (CB2), among other organs and tissues. CB1 receptor ligands have been shown to induce a complex pattern of intracellular effects. The binding of a ligand induces distinct conformational changes in the receptor, which will eventually translate into distinct intracellular signaling pathways through coupling to specific intracellular effector proteins. These proteins can mediate receptor desensitization, trafficking, or signaling. Ligand specificity and selectivity, complex cellular components, and the concomitant expression of other proteins (which either regulate the CB1 receptor or are regulated by the CB1 receptor) will affect the therapeutic outcome of its targeting. With an increased interest in G protein-coupled receptors (GPCR) research, in-depth studies using mutations, biological assays, and spectroscopic techniques (such as NMR, EPR, MS, FRET, and X-ray crystallography), as well as computational modelling, have begun to reveal a set of concerted structural features in Class A GPCRs which relate to signaling pathways and the mechanisms of ligand-induced activation, deactivation, or activity modulation. This review will focus on the structural features of the CB1 receptor, mutations known to bias its signaling, and reported studies of CB1 receptor ligands to control its specific signaling.
Collapse
Affiliation(s)
- Rufaida Al-Zoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science & Technology, P.O.BOX 3030, Irbid 22110, Jordan.
| | - Paula Morales
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain.
| | - Patricia H Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
15
|
Lu D, Immadi SS, Wu Z, Kendall DA. Translational potential of allosteric modulators targeting the cannabinoid CB 1 receptor. Acta Pharmacol Sin 2019; 40:324-335. [PMID: 30333554 PMCID: PMC6460365 DOI: 10.1038/s41401-018-0164-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
The cannabinoid type-1 (CB1) receptor, a G-protein-coupled receptor, is an attractive target for drug discovery due to its involvement in many physiological processes. Historically, drug discovery efforts targeting the CB1 receptor have focused on the development of orthosteric ligands that interact with the active site to which endogenous cannabinoids bind. Research performed over the last several decades has revealed substantial difficulties in translating CB1 orthosteric ligands into druggable candidates. The difficulty is mainly due to the adverse effects associated with orthosteric CB1 ligands. Recent discoveries of allosteric CB1 modulators provide tremendous opportunities to develop CB1 ligands with novel mechanisms of action; these ligands may potentially improve the pharmacological effects and enhance drug safety in treating the disorders by regulating the functions of the CB1 receptor. In this paper, we review and summarize the complex pharmacological profiles of each class of CB1 allosteric modulators, the development of new classes of CB1 allosteric modulators and the results from in vivo assessments of their therapeutic value.
Collapse
Affiliation(s)
- Dai Lu
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA.
| | - Sri Sujana Immadi
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Zhixing Wu
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
16
|
Nguyen T, Gamage TF, Decker AM, German N, Langston TL, Farquhar CE, Kenakin TP, Wiley JL, Thomas BF, Zhang Y. Diarylureas Containing 5-Membered Heterocycles as CB 1 Receptor Allosteric Modulators: Design, Synthesis, and Pharmacological Evaluation. ACS Chem Neurosci 2019; 10:518-527. [PMID: 30188693 DOI: 10.1021/acschemneuro.8b00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allosteric modulators have attracted significant interest as an alternate strategy to modulate CB1 receptor signaling for therapeutic benefits that may avoid the adverse effects associated with orthosteric ligands. Here we extended our previous structure-activity relationship studies on the diarylurea-based CB1 negative allosteric modulators (NAMs) by introducing five-membered heterocycles to replace the 5-pyrrolidinylpyridinyl group in PSNCBAM-1 (1), one of the first generation CB1 allosteric modulators. Many of these compounds had comparable potency to 1 in blocking the CB1 agonist CP55,940 stimulated calcium mobilization and [35S]GTP-γ-S binding. Similar to 1, most compounds showed positive cooperativity by increasing [3H]CP55,940 binding, consistent with the positive allosteric modulator (PAM)-antagonist mechanism. Interestingly, these compounds exhibited differences in ability to increase specific binding of [3H]CP55,940 and decrease binding of the antagonist [3H]SR141716. In saturation binding studies, only increases in [3H]CP55,940 Bmax, but not Kd, were observed, suggesting that these compounds stabilize low affinity receptors into a high affinity state. Among the series, the 2-pyrrolyl analogue (13) exhibited greater potency than 1 in the [35S]GTP-γ-S binding assay and significantly enhanced the maximum binding level in the [3H]CP5,5940 binding assay, indicating greater CB1 receptor affinity and/or cooperativity.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Thomas F. Gamage
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M. Decker
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Nadezhda German
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L. Langston
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Charlotte E. Farquhar
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Terry P. Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jenny L. Wiley
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Brian F. Thomas
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
17
|
Yang C, Zhang F, Deng GJ, Gong H. Amination of Aromatic Halides and Exploration of the Reactivity Sequence of Aromatic Halides. J Org Chem 2018; 84:181-190. [DOI: 10.1021/acs.joc.8b02588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chu Yang
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 China
| | - Feng Zhang
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Guo-Jun Deng
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 China
| | - Hang Gong
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 China
| |
Collapse
|
18
|
Jagla CAD, Scott CE, Tang Y, Qiao C, Mateo-Semidey GE, Yudowski GA, Lu D, Kendall DA. Pyrimidinyl Biphenylureas Act as Allosteric Modulators to Activate Cannabinoid Receptor 1 and Initiate β-Arrestin-Dependent Responses. Mol Pharmacol 2018; 95:1-10. [PMID: 30322873 DOI: 10.1124/mol.118.112854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G-protein-coupled receptor that is abundant in the central nervous system. It binds several compounds in its orthosteric site, including the endocannabinoids, arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and the plant-derived Δ9-tetrahydrocannabinol, one of the main psychoactive components of marijuana. It primarily couples to Gi/o proteins to inhibit adenylate cyclase activity and typically induces downstream signaling that is Gi-dependent. Since this receptor is implicated in several maladies, such as obesity, pain, and neurodegenerative disorders, there is interest in developing therapeutics that selectively target this receptor. Allosteric modulators of CB1 offer one new approach that has tremendous therapeutic potential. Here, we reveal receptor- and cellular-level properties consistent with receptor activation by a series of pyrimidinyl biphenylureas (LDK1285, LDK1288, LDK1305, and PSNCBAM1), including promoting binding of the agonist CP55940 with positive cooperativity and inhibiting binding of the inverse agonist SR141716A with negative cooperativity, demonstrated via radioligand binding studies. Consistent with these findings, the allosteric modulators induced cellular internalization of the receptor and recruitment of β-arrestin 2 in human embryonic kidney cell line 293 cells monitored with confocal and total internal reflective fluorescence microscopy, respectively. These allosteric modulators, however, caused G-protein-independent but β-arrestin 1-dependent phosphorylation of the downstream kinases extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Src, shown by immunoblotting studies. These results are consistent with the involvement of β-arrestin and suggest that these allosteric modulators induce biased signaling.
Collapse
Affiliation(s)
- Caitlin A D Jagla
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Caitlin E Scott
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Changjiang Qiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Gabriel E Mateo-Semidey
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Guillermo A Yudowski
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Dai Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| |
Collapse
|
19
|
Dopart R, Lu D, Lichtman AH, Kendall DA. Allosteric modulators of cannabinoid receptor 1: developing compounds for improved specificity. Drug Metab Rev 2018; 50:3-13. [PMID: 29355030 PMCID: PMC6134837 DOI: 10.1080/03602532.2018.1428342] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cannabinoid receptor 1 (CB1) is a G protein-coupled receptor (GPCR) that is located primarily in the central nervous system. CB1 is a therapeutic target which may impact pathways to mediate pain, neurodegenerative disorders, hunger, and drug-seeking behavior. Despite these benefits, development of orthosteric therapeutic compounds, which target the endogenous ligand-binding site of CB1, has been challenging due to detrimental side effects including psychoactivity, depression, and suicidal thoughts. However, CB1 also has an allosteric binding site(s), which is topographically distinct from the orthosteric site. Allosteric modulation of CB1 has a number of potential advantages including providing a mechanism for more precise control of downstream pathways and circumventing these side effects. In this review, we summarize the concept of allosteric modulation and focus on the structure-activity relationship studies of the well-characterized allosteric modulators, ORG27569 and PSNCBAM-1 and their derivatives, and a few other recent modulators. We review studies on the properties of these modulators on CB1 signaling in cells and their effects in vivo. While many current allosteric modulators also produce complex outcomes, they provide new advances for the design of CB1 centered therapeutics.
Collapse
Affiliation(s)
- Rachel Dopart
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Dai Lu
- b Rangel College of Pharmacy , Health Science Center, Texas A&M University , Kingsville , TX , USA
| | - Aron H Lichtman
- c Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA , USA
| | - Debra A Kendall
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| |
Collapse
|
20
|
Abstract
Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- a College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Canada
| | - Robert B Laprairie
- a College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
21
|
Nguyen T, Decker AM, Langston TL, Mathews KM, Siemian JN, Li JX, Harris DL, Runyon SP, Zhang Y. Discovery of Novel Proline-Based Neuropeptide FF Receptor Antagonists. ACS Chem Neurosci 2017; 8:2290-2308. [PMID: 28737888 DOI: 10.1021/acschemneuro.7b00219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The neuropeptide FF (NPFF) system has been implicated in a number of physiological processes including modulating the pharmacological activity of opioid analgesics and several other classes of drugs of abuse. In this study, we report the discovery of a novel proline scaffold with antagonistic activity at the NPFF receptors through a high throughput screening campaign using a functional calcium mobilization assay. Focused structure-activity relationship studies on the initial hit 1 have resulted in several analogs with calcium mobilization potencies in the submicromolar range and modest selectivity for the NPFF1 receptor. Affinities and potencies of these compounds were confirmed in radioligand binding and functional cAMP assays. Two compounds, 16 and 33, had good solubility and blood-brain barrier permeability that fall within the range of CNS permeant candidates without the liability of being a P-glycoprotein substrate. Finally, both compounds reversed fentanyl-induced hyperalgesia in rats when administered intraperitoneally. Together, these results point to the potential of these proline analogs as promising NPFF receptor antagonists.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M. Decker
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L. Langston
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Kelly M. Mathews
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Justin N. Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Danni L. Harris
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Scott P. Runyon
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
22
|
Bertini S, Chicca A, Gado F, Arena C, Nieri D, Digiacomo M, Saccomanni G, Zhao P, Abood ME, Macchia M, Gertsch J, Manera C. Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Bioorg Med Chem 2017; 25:6427-6434. [PMID: 29079014 DOI: 10.1016/j.bmc.2017.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/31/2023]
Abstract
In this work, we explored the molecular framework of the known CB1R allosteric modulator PSNCBAM-1 with the aim to generate new bioactive analogs and to deepen the structure-activity relationships of this type of compounds. In particular, the introduction of a NH group between the pyridine ring and the phenyl nucleus generated the amino-phenyl-urea derivative SN15b that behaved as a positive allosteric modulator (PAM), increasing the CB1R binding affinity of the orthosteric ligand CP55,940. The functional activity was evaluated using serum response element (SRE) assay, which assesses the CB1R-dependent activation of the MAPK/ERK signaling pathway. SN15b and the biphenyl-urea analog SC4a significantly inhibited the response produced by CP55,940 in the low µM range, thus behaving as negative allosteric modulators (NAMs). The new derivatives presented here provide further insights about the modulation of CB1R binding and functional activity by allosteric ligands.
Collapse
Affiliation(s)
- Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Chiara Arena
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Daniela Nieri
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | |
Collapse
|
23
|
Khurana L, Mackie K, Piomelli D, Kendall DA. Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities. Neuropharmacology 2017; 124:3-12. [PMID: 28527758 PMCID: PMC5540789 DOI: 10.1016/j.neuropharm.2017.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 02/03/2023]
Abstract
Cannabinoid pharmacology has been intensely studied because of cannabis' pervasive medicinal and non-medicinal uses as well as for the therapeutic potential of cannabinoid-based drugs for the treatment of pain, anxiety, substance abuse, obesity, cancer and neurodegenerative disorders. The identification of allosteric modulators of the cannabinoid receptor 1 (CB1) has given a new direction to the development of cannabinoid-based therapeutics due to the many advantages offered by targeting allosteric site(s). Allosteric receptor modulators hold potential to develop subtype-specific and pathway-specific therapeutics. Here we briefly discuss the first-generation of allosteric modulators of CB1 receptor, their structure-activity relationships, signaling pathways and the allosteric binding site(s) on the CB1 receptor. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Leepakshi Khurana
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Ken Mackie
- Gill Center and Departmental of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California, Irvine, CA 92697, United States
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
24
|
Nguyen T, German N, Decker AM, Langston TL, Gamage TF, Farquhar CE, Li JX, Wiley JL, Thomas BF, Zhang Y. Novel Diarylurea Based Allosteric Modulators of the Cannabinoid CB1 Receptor: Evaluation of Importance of 6-Pyrrolidinylpyridinyl Substitution. J Med Chem 2017; 60:7410-7424. [PMID: 28792219 DOI: 10.1021/acs.jmedchem.7b00707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulators of the cannabinoid CB1 receptor have recently been reported as an alternative approach to modulate the CB1 receptor for therapeutic benefits. In this study, we report the design and synthesis of a series of diarylureas derived from PSNCBAM-1 (2). Similar to 2, these diarylureas dose-dependently inhibited CP55,940-induced intracellular calcium mobilization and [35S]GTP-γ-S binding while enhancing [3H]CP55,940 binding to the CB1 receptor. Structure-activity relationship studies revealed that the pyridinyl ring of 2 could be replaced by other aromatic rings and the pyrrolidinyl ring is not required for CB1 allosteric modulation. 34 (RTICBM-74) had similar potencies as 2 in all in vitro assays but showed significantly improved metabolic stability to rat liver microsomes. More importantly, 34 was more effective than 2 in attenuating the reinstatement of extinguished cocaine-seeking behavior in rats, demonstrating the potential of this diarylurea series as promising candidates for the development of relapse treatment of cocaine addiction.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Nadezhda German
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Thomas F Gamage
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Charlotte E Farquhar
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York , Buffalo, New York 14214, United States
| | - Jenny L Wiley
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Brian F Thomas
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
25
|
Gamage TF, Farquhar CE, Lefever TW, Thomas BF, Nguyen T, Zhang Y, Wiley JL. The great divide: Separation between in vitro and in vivo effects of PSNCBAM-based CB 1 receptor allosteric modulators. Neuropharmacology 2017; 125:365-375. [PMID: 28803965 DOI: 10.1016/j.neuropharm.2017.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
While allosteric modulators of the cannabinoid type-1 receptor (CB1) continue to be developed and characterized, the gap between the in vitro and in vivo data is widening, raising questions regarding translatability of their effects and biological relevance. Among the CB1 allosteric modulators, PSNCBAM-1 has received little attention regarding its effects in vivo. Recently, pregnenolone was reported to act as an allosteric modulator of CB1, blocking THC's effects in vitro and in vivo, highlighting the potential of CB1 allosteric modulators for treatment of cannabis intoxication. We investigated the pharmacological effects of PSNCBAM-1 and two structural analogs, RTICBM-15 and -28, as well as pregnenolone, in both signaling and behavioral assays including [35S]GTPγS binding, the cannabinoid tetrad and drug discrimination. While the CB1 allosteric modulator PSNCBAM-1 attenuated THC-induced anti-nociception and its structural analog RTICBM-28 reduced THC's potency in drug discrimination, most cannabinoid effects in mice were unaffected. In contrast to the mouse studies, PSNCBAM-1 and analogs insurmountably antagonized CP55,940- and THC-stimulated [35S]GTPγS binding and exhibited negative binding cooperativity with [3H]SR141716 with similar apparent affinities. Notably, RTICBM-28, which contains a cyano substitution at the 4-chlorophenyl position of PSNCBAM-1, exhibited enhanced binding cooperativity with CP55,940. In contrast to previous findings, pregnenolone did not block THC's effects in drug discrimination or [35S]GTPγS. These data further highlight the difficulty in translating pharmacological effects of CB1 allosteric modulators in vivo but confirm the established pharmacology of PSNCBAM-1 and analogs in molecular assays of CB1 receptor function.
Collapse
Affiliation(s)
- Thomas F Gamage
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA.
| | - Charlotte E Farquhar
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA
| | - Brian F Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA
| | - Thuy Nguyen
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA
| | - Yanan Zhang
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709-2194, USA
| |
Collapse
|
26
|
Radiosynthesis and evaluation of new PET ligands for peripheral cannabinoid receptor type 1 imaging. Bioorg Med Chem Lett 2017; 27:4114-4117. [PMID: 28757061 DOI: 10.1016/j.bmcl.2017.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
Cannabinoid receptor type 1 (CB1) is mainly expressed in the brain, as well as being expressed in functional relevant concentrations in various peripheral tissues. 1-(4-Chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 1) was developed as a potent allosteric antagonist for CB1 and its oral administration led to reductions in the appetite and body weight of rats. Several analogs of 1 (compounds 2 and 3) were recently identified through a series of structure-activity relationship studies. Herein, we report the synthesis of radiolabeled analogs of these compounds using [11C]COCl2 and an evaluation of their potential as PET ligands for CB1 imaging using in vitro and in vivo techniques. [11C]2 and [11C]3 were successfully synthesized in two steps using [11C]COCl2. The radiochemical yields of [11C]2 and [11C]3 were 17±8% and 20±9% (decay-corrected to the end of bombardment, based on [11C]CO2). The specific activities of [11C]2 and [11C]3 were 42±36 and 37±13GBq/μmol, respectively. The results of an in vitro binding assay using brown adipose tissue (BAT) homogenate showed that the binding affinity of 2 for CB1 (KD=15.3µM) was much higher than that of 3 (KD=26.0µM). PET studies with [11C]2 showed a high uptake of radioactivity in BAT, which decreased in animals pretreated with AM281 (a selective antagonist for CB1). In conclusion, [11C]2 may be a useful PET ligand for imaging peripheral CB1 in BAT.
Collapse
|
27
|
Kulkarni AR, Garai S, Janero DR, Thakur GA. Design and Synthesis of Cannabinoid 1 Receptor (CB1R) Allosteric Modulators: Drug Discovery Applications. Methods Enzymol 2017; 593:281-315. [PMID: 28750808 DOI: 10.1016/bs.mie.2017.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Also expressed in various peripheral tissues, the type-1 cannabinoid receptor (CB1R) is the predominant G protein-coupled receptor (GPCR) in brain, where it is responsible for retrograde control of neurotransmitter release. Cellular signaling mediated by CB1R is involved in numerous physiological processes, and pharmacological CB1R modulation is considered a tenable therapeutic approach for diseases ranging from substance-use disorders and glaucoma to metabolic syndrome. Despite the design and synthesis of a variety of bioactive small molecules targeted to the CB1R orthosteric ligand-binding site, the potential of CB1R as a therapeutic GPCR has been largely unrealized due to adverse events associated with typical orthosteric CB1R agonists and antagonists/inverse agonists. Modulation of CB1R-mediated signal transmission by targeting alternative allosteric ligand-binding site(s) on the receptor has garnered interest as a potentially safer and more effective therapeutic modality. This chapter highlights the design and synthesis of novel, pharmacologically active CB1R allosteric modulators and emphasizes how their molecular properties and the positive and negative allosteric control they exert can lead to improved CB1R-targeted pharmacotherapeutics, as well as designer covalent probes that can be used to map CB1R allosteric binding domains and inform structure-based drug design.
Collapse
Affiliation(s)
- Abhijit R Kulkarni
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Sumanta Garai
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - David R Janero
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States; Center for Drug Discovery, Northeastern University, Boston, MA, United States; College of Science, Northeastern University, Boston, MA, United States; Health Sciences Entrepreneurs, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States.
| |
Collapse
|
28
|
Abstract
The cannabinoid CB1 receptor is abundant in the central nervous system and regulates neuronal transmission and other key physiological processes including those leading to pain, inflammation, memory, and feeding behavior. CB1 is activated by the endogenous ligands, arachidonoyl ethanolamine and 2-arachidonoyl glycerol, by various synthetic ligands (e.g., CP55940), and by Δ9-tetrahydrocannabinol, the psychoactive component of Cannabis sativa. These CB1 ligands are orthosteric and transduce downstream signals by binding CB1 and primarily inducing Gi coupling, but Gs and β-arrestin coupling are also possible. Recently, allosteric modulators for CB1 were discovered that bind to topographically distinct sites and can noncompetitively impact the potency and efficacy of orthosteric compounds. These offer the exciting potential for mechanistic analyses and for developing therapeutics. Yet, it is critical to elucidate whether a compound is a positive allosteric modulator or a negative allosteric modulator of orthosteric ligand-induced CB1 profiles to understand pathway specificity and ameliorate diseases. In this chapter, we present equilibrium and kinetic binding analysis to reveal the impact of allosteric modulators on CB1. Also described are activities consistent with CB1 activation (or inactivation) and include cellular internalization of CB1 and downstream signaling patterns. Since many CB1 allosteric modulators do not enhance G protein coupling, it is critical to distinguish CB1 activation and biased signaling patterns via β-arrestin from CB1 inactivation. These strategies can illuminate pathway specificity and are valuable for the fine-tuning of CB1 function.
Collapse
|
29
|
Thomas BF. Interactions of Cannabinoids With Biochemical Substrates. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2017; 11:1178221817711418. [PMID: 28607542 PMCID: PMC5457144 DOI: 10.1177/1178221817711418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
Recent decades have seen much progress in the identification and characterization of cannabinoid receptors and the elucidation of the mechanisms by which derivatives of the Cannabis sativa plant bind to receptors and produce their physiological and psychological effects. The information generated in this process has enabled better understanding of the fundamental physiological and psychological processes controlled by the central and peripheral nervous systems and has fostered the development of natural and synthetic cannabinoids as therapeutic agents. A negative aspect of this decades-long effort is the proliferation of clandestinely synthesized analogs as recreational street drugs with dangerous effects. Currently, the interactions of cannabinoids with their biochemical substrates are extensively but inadequately understood, and the clinical application of derived and synthetic receptor ligands remains quite limited. The wide anatomical distribution and functional complexity of the cannabinoid system continue to indicate potential for both therapeutic and side effects, which offers challenges and opportunities for medicinal chemists involved in drug discovery and development.
Collapse
Affiliation(s)
- Brian F Thomas
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
30
|
Nguyen T, Li JX, Thomas BF, Wiley JL, Kenakin TP, Zhang Y. Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor. Med Res Rev 2017; 37:441-474. [PMID: 27879006 PMCID: PMC5397374 DOI: 10.1002/med.21418] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Brian F. Thomas
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jenny L. Wiley
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Terry P. Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| |
Collapse
|
31
|
Khurana L, Fu BQ, Duddupudi AL, Liao YH, Immadi SS, Kendall DA, Lu D. Pyrimidinyl Biphenylureas: Identification of New Lead Compounds as Allosteric Modulators of the Cannabinoid Receptor CB 1. J Med Chem 2017; 60:1089-1104. [PMID: 28059509 PMCID: PMC5724760 DOI: 10.1021/acs.jmedchem.6b01448] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The allosteric modulator 1-(4-chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 2) bound the cannabinoid receptor 1 (CB1) and antagonized G protein coupling. This compound demonstrated potent anorectic effects similar to the CB1 antagonist rimonabant that once was marketed for the treatment of obesity, suggesting a new chemical entity for the discovery of antiobesity drugs. To increase structural diversity of this class of CB1 ligands, we designed and synthesized two classes of novel analogues, in which the pyridine ring of 2 was replaced by a pyrimidine ring. These positively modulate the binding of the CB1 orthosteric agonist CP55,940 while exhibiting an antagonism of G-protein coupling activity. Interestingly, compounds 7d and 8d demonstrated ERK1/2 phosphorylation mediated via β-arrestin unlike the orthosteric CP55,940 that does so in a G protein-dependent manner. These can serve as new lead compounds for the future development of CB1 allosteric modulators that show biased agonism and potentially antiobesity behavior via a new mechanism.
Collapse
Affiliation(s)
- Leepakshi Khurana
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bo-Qiao Fu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, Texas 78363, United States
| | - Anantha L. Duddupudi
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, Texas 78363, United States
| | - Yu-Hsien Liao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sri Sujana Immadi
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, Texas 78363, United States
| | - Debra A. Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Dai Lu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, Texas 78363, United States
| |
Collapse
|
32
|
Kulkarni AR, Garai S, Thakur GA. Scalable, One-Pot, Microwave-Accelerated Tandem Synthesis of Unsymmetrical Urea Derivatives. J Org Chem 2016; 82:992-999. [PMID: 27966953 DOI: 10.1021/acs.joc.6b02521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a facile, microwave-accelerated, one-pot tandem synthesis of unsymmetrical ureas via a Curtius rearrangement. In this method, one-pot microwave irradiation of commercially available (hetero)aromatic acids and amines in the presence of diphenylphosphoryl azide enabled extremely rapid (1-5 min) construction of an array of unsymmetrical ureas in good to excellent yields. We demonstrate the utility of our method in the efficient, gram-scale synthesis of key biologically active compounds targeting the cannabinoid 1 and α7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Abhijit R Kulkarni
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
33
|
Hernandez-Folgado L, Stevenson LA, Morales P, Gómez-Cañas M, Pazos MR, Cascio MG, Jagerovic N, Elguero J, Pertwee R, Goya P. Exploring the Benzimidazole Ring as a Substitution for Indole in Cannabinoid Allosteric Modulators. Cannabis Cannabinoid Res 2016. [DOI: 10.1089/can.2016.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Lesley A. Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - María Gómez-Cañas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Ruth Pazos
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Maria Grazia Cascio
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - José Elguero
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - Roger Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Pilar Goya
- Instituto de Química Médica, CSIC, Madrid, Spain
| |
Collapse
|
34
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
35
|
Hernández-Vázquez E, Salgado-Barrera S, Ramírez-Espinosa JJ, Estrada-Soto S, Hernández-Luis F. Synthesis and molecular docking of N′-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorg Med Chem 2016; 24:2298-306. [DOI: 10.1016/j.bmc.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 01/05/2023]
|
36
|
Morales P, Goya P, Jagerovic N, Hernandez-Folgado L. Allosteric Modulators of the CB 1 Cannabinoid Receptor: A Structural Update Review. Cannabis Cannabinoid Res 2016; 1:22-30. [PMID: 28861476 PMCID: PMC5576597 DOI: 10.1089/can.2015.0005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In 2005, the first evidence of an allosteric binding site at the CB1R was provided by the identification of three indoles of the company Organon that were allosteric enhancers of agonist binding affinity and, functionally, allosteric inhibitors of agonist activity. Since then, structure–activity relationships of indoles as CB1R modulators have been reported. Targeting the allosteric site on CB1R, new families structurally based on urea and on 3-phenyltropane analogs of cocaine have been discovered as CB1R-negative allosteric modulators (NAMs), respectively, by Prosidion and by the Research Triangle Park. Endogenous allosteric ligands of different nature have been identified more recently. Thus, the therapeutic neuroprotection application of lipoxin A4, an arachidonic acid derivative, as an allosteric enhancer of CB1R activity has been confirmed in vivo. It was also the case of the steroid hormone, pregnenolone, whose negative allosteric effects on Δ9-tetrahydrocannabinol (Δ9-THC) were reproduced in vivo in a behavioral tetrad model and in food intake and memory impairment assays. Curiously, the peroxisome proliferator-activated receptor-γ agonist fenofibrate or polypeptides such as pepcan-12 have been shown to act on the endocannabinoid system through CB1R allosteric modulation. The mechanistic bases of the effects of the phytocannabinoid cannabidiol (CBD) are still not fully explained. However, there is evidence that CBD behaves as an NAM of Δ9-THC- and 2-AG. Allosteric modulation at CB1R offers new opportunities for therapeutic applications. Therefore, further understanding of the chemical features required for allosteric modulation as well as their orthosteric probe dependence may broaden novel approaches for fine-tuning the signaling pathways of the CB1R.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
37
|
Kulkarni PM, Kulkarni AR, Korde A, Tichkule RB, Laprairie RB, Denovan-Wright EM, Zhou H, Janero DR, Zvonok N, Makriyannis A, Cascio MG, Pertwee RG, Thakur GA. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). J Med Chem 2015; 59:44-60. [PMID: 26529344 PMCID: PMC4716578 DOI: 10.1021/acs.jmedchem.5b01303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Undesirable side effects associated
with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R),
a tractable target for treating several pathologies affecting humans,
have greatly limited their translational potential. Recent discovery
of CB1R negative allosteric modulators (NAMs) has renewed interest
in CB1R by offering a potentially safer therapeutic avenue. To elucidate
the CB1R allosteric binding motif and thereby facilitate rational
drug discovery, we report the synthesis and biochemical characterization
of first covalent ligands designed to bind irreversibly to the CB1R
allosteric site. Either an electrophilic or a photoactivatable group
was introduced at key positions of two classical CB1R NAMs: Org27569
(1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays,
did not exhibit inverse agonism, and behaved as a robust positive
allosteric modulator of binding of orthosteric agonist CP55,940. This
novel covalent probe can serve as a useful tool for characterizing
CB1R allosteric ligand-binding motifs.
Collapse
Affiliation(s)
| | | | | | | | - Robert B Laprairie
- Department of Pharmacology, Dalhousie University , Halifax NS Canada B3H 4R2
| | | | | | | | | | | | - Maria G Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | | |
Collapse
|
38
|
Hashimoto T, Ishii S, Yano R, Miura H, Sakata K, Takeuchi R. Iridium-Catalyzed [2+2+2] Cycloaddition of α,ω-Diynes with Cyanamides. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500637] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Nguyen T, German N, Decker AM, Li JX, Wiley JL, Thomas BF, Kenakin TP, Zhang Y. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators. Bioorg Med Chem 2015; 23:2195-2203. [PMID: 25797163 DOI: 10.1016/j.bmc.2015.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/15/2022]
Abstract
A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Nadezhda German
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Jenny L Wiley
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Brian F Thomas
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Terry P Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|