1
|
Zhang S, Liu Y, Javeed A, Jian C, Sun J, Wu S, Han B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur J Med Chem 2023; 249:115151. [PMID: 36731273 DOI: 10.1016/j.ejmech.2023.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.
Collapse
Affiliation(s)
- Shanshan Zhang
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Ansar Javeed
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuiqin Jian
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinlyu Sun
- Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Bingnan Han
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Ag2CO3 catalyzed aza-michael addition of pyrazoles to α, β-unsaturated carbonyl compounds: A new access to N-alkylated pyrazole derivatives. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Xu M, Lu Z, Wu Z, Gui M, Liu G, Tang Y, Li W. Development of In Silico Models for Predicting Potential Time-Dependent Inhibitors of Cytochrome P450 3A4. Mol Pharm 2023; 20:194-205. [PMID: 36458739 DOI: 10.1021/acs.molpharmaceut.2c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is one of the major drug metabolizing enzymes in the human body and metabolizes ∼30-50% of clinically used drugs. Inhibition of CYP3A4 must always be considered in the development of new drugs. Time-dependent inhibition (TDI) is an important P450 inhibition type that could cause undesired drug-drug interactions. Therefore, identification of CYP3A4 TDI by a rapid convenient way is of great importance to any new drug discovery effort. Here, we report the development of in silico classification models for prediction of potential CYP3A4 time-dependent inhibitors. On the basis of the CYP3A4 TDI data set that we manually collected from literature and databases, both conventional machine learning and deep learning models were constructed. The comparisons of different sampling strategies, molecular representations, and machine-learning algorithms showed the benefits of a balanced data set and the deep-learning model featured by GraphConv. The generalization ability of the best model was tested by screening an external data set, and the prediction results were validated by biological experiments. In addition, several structural alerts that are relevant to CYP3A4 time-dependent inhibitors were identified via information gain and frequency analysis. We anticipate that our effort would be useful for identification of potential CYP3A4 time-dependent inhibitors in drug discovery and design.
Collapse
Affiliation(s)
- Minjie Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Minyan Gui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
4
|
Chen M, Li Z, Shao X, Maienfisch P. Scaffold-Hopping Approach To Identify New Chemotypes of Dimpropyridaz. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11109-11122. [PMID: 35412307 DOI: 10.1021/acs.jafc.2c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dimpropyridaz is a pyrazole carboxamide insecticide with a novel mode of action, currently under worldwide development by BASF, providing excellent activity against sucking pests. A series of dimpropyridaz analogues were designed to investigate the impact of bioisosteric heterocyclic replacements on the biological activity and molecular properties. Focus was given to prepare analogues where the 4-pyridazinyl moiety was replaced by 5-pyrimidinyl, 2-pyrimidinyl, 3-pyridazinyl, and 2-pyrazinyl groups. Five different synthetic routes were developed for the preparation of these analogues, delivering the target compounds in moderate to good yields. We explained some aspects of the observed structure-activity relationship by a density functional theory (DFT) calculation and DFT-derived Multiwfn and VMD program models. These findings provide first insights into the important role of the 4-pyridazinyl heterocyclic moiety in the pyrazole carboxamide insecticide chemical class and the mechanism of action of dimpropyridaz.
Collapse
Affiliation(s)
- Meijun Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
5
|
Gürses T, Olğaç A, Garscha U, Gür Maz T, Bal NB, Uludağ O, Çalışkan B, Schubert US, Werz O, Banoglu E. Simple heteroaryl modifications in the 4,5-diarylisoxazol-3-carboxylic acid scaffold favorably modulates the activity as dual mPGES-1/5-LO inhibitors with in vivo efficacy. Bioorg Chem 2021; 112:104861. [PMID: 33826984 DOI: 10.1016/j.bioorg.2021.104861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/02/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1), 5-lipoxygenase (5-LO) and 5- lipoxygenase-activating protein (FLAP) are key for biosynthesis of proinflammatory lipid mediators and pharmacologically relevant drug targets. In the present study, we made an attempt to explore the role of small heteroaromatic fragments on the 4,5-diarylisoxazol-3-carboxylic acid scaffold, which are selected to interact with focused regions in the active sites of mPGES-1, 5-LO and FLAP. We report that the simple structural variations on the benzyloxyaryl side-arm of the scaffold significantly influence the selectivity against mPGES-1, 5-LO and FLAP, enabling to produce multi-target inhibitors of these protein targets, exemplified by compound 18 (IC50 mPGES-1 = 0.16 µM; IC50 5-LO = 0.39 µM) with in vivo efficacy in animal model of inflammation. The computationally modeled binding structures of these new inhibitors for three targets provide clues for rational design of modified structures as multi-target inhibitors. In conclusion, the simple synthetic procedure, and the possibility of enhancing the potency of this class of inhibitors through structural modifications pave the way for further development of new multi-target inhibitors against mPGES-1, 5-LO and FLAP, with potential application as anti-inflammatory agents.
Collapse
Affiliation(s)
- Tuğba Gürses
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey.
| |
Collapse
|
6
|
Zhu L, Zeng H, Liu D, Fu Y, Wu Q, Song B, Gan X. Design, synthesis, and biological activity of novel 1,2,4-oxadiazole derivatives. BMC Chem 2020; 14:68. [PMID: 33292412 PMCID: PMC7680602 DOI: 10.1186/s13065-020-00722-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Background Plant diseases seriously threaten food security, it is urgent to discover efficient and low-risk chemical pesticides. 1,2,4-Oxadiazole derivatives exhibit broad spectrum of agricultural biological activities. For discovering novel molecules with excellent agricultural activities, novel 1,2,4-oxadiazole derivatives were synthesized and evaluated for their agricultural activities. Result Bioassays results showed that the title compounds exhibited moderate nematocidal activity against Meloidogyne incognita and anti-fungal activity to Rhizoctonia solani. It’s worth noting that compounds 5m, 5r, 5u, 5v, 5x and 5y showed strong antibacterial effects on Xanthomonas oryzae pv. oryzae (Xoo), with EC50 values of 36.25, 24.14, 28.82, 19.44, 25.37 and 28.52 μg/mL, respectively, superior to bismerthiazol (BMT, EC50 = 77.46 μg/mL) and thiodiazole copper (TDC, EC50 = 99.31 μg/mL). Compounds 5p, 5u and 5v exhibited excellent antibacterial ability against Xanthomonas oryzae pv. oryzicola (Xoc), with EC50 values of 31.40, 19.04 and 21.78 μg/mL, respectively, better than that of BMT (EC50 = 68.50 μg/mL) and TDC (EC50 = 91.05 μg/mL). In addition, compound 5v exerted moderate antibacterial effects on rice bacterial leaf blight. Conclusions Twenty-six novel 1,2,4-oxadiazole derivatives were obtained and their biological activities were evaluated. Compound 5u and 5v exhibited excellent antibacterial activity Xoo and Xoc. These results indicated that 1,2,4-oxadiazole derivatives containing a trifluoromethyl pyridine moiety could be as potential alternative templates for discovering novel antibacterial agents.![]()
Collapse
Affiliation(s)
- Lingzhi Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Dan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yun Fu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qiong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
8
|
Tu G, Qin Z, Huo D, Zhang S, Yan A. Fingerprint-based computational models of 5-lipo-oxygenase activating protein inhibitors: Activity prediction and structure clustering. Chem Biol Drug Des 2020; 96:931-947. [PMID: 33058463 DOI: 10.1111/cbdd.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 01/24/2023]
Abstract
Inflammatory diseases can be treated by inhibiting 5-lipo-oxygenase activating protein (FLAP). In this study, a data set containing 2,112 FLAP inhibitors was collected. A total of 25 classification models were built by five machine learning algorithms with five different types of fingerprints. The best model, which was built by support vector machine algorithm with ECFP_4 fingerprint had an accuracy and a Matthews correlation coefficient of 0.862 and 0.722 on the test set, respectively. The predicted results were further evaluated by the application domain dSTD-PRO (a distance between one compound to models). Each compound had a dSTD-PRO value, which was calculated by the predicted probabilities obtained from all 25 models. The application domain results suggested that the reliability of predicted results depended mainly on the compounds themselves rather than algorithms or fingerprints. A group of customized 10-bit fingerprint was manually defined for clustering the molecular structures of 2,112 FLAP inhibitors into eight subsets by K-Means. According to the clustering results, most of inhibitors in two subsets (subsets 2 and 4) were highly active inhibitors. We found that aryl oxadiazole/oxazole alkanes, biaryl amino-heteroarenes, two aromatic rings (often N-containing) linked by a cyclobutene group, and 1,2,4-triazole group were typical fragments in highly active inhibitors.
Collapse
Affiliation(s)
- Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Donghui Huo
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Olgac A, Carotti A, Kretzer C, Zergiebel S, Seeling A, Garscha U, Werz O, Macchiarulo A, Banoglu E. Discovery of Novel 5-Lipoxygenase-Activating Protein (FLAP) Inhibitors by Exploiting a Multistep Virtual Screening Protocol. J Chem Inf Model 2020; 60:1737-1748. [DOI: 10.1021/acs.jcim.9b00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abdurrahman Olgac
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Yenimahalle, Ankara, Turkey
- Laboratory of Molecular Modeling, Evias Pharmaceutical R&D Ltd., Gazi Teknopark G1-101, 06830 Golbasi, Ankara, Turkey
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Stephanie Zergiebel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Andreas Seeling
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06560 Yenimahalle, Ankara, Turkey
| |
Collapse
|
10
|
Structural and clinical impact of anti-allergy agents: An overview. Bioorg Chem 2019; 94:103351. [PMID: 31668464 DOI: 10.1016/j.bioorg.2019.103351] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Allergic disorders are markedly rising in industrialized countries. The identification of compounds that trigger the immunoglobulin E (IgE)-dependent allergic reaction remain the means to improve the quality of life by limiting patient's exposure to critical allergens. Information concerning the treatment and onset of allergic disorders including atopic dermatitis, allergic rhinitis, and bronchial asthma has been provided by the research over the past decade. Recent studies also indicated that allergic inflammation is associated closely with their exacerbation and progression and indeed is the basic pathophysiology of allergic diseases. As a result of immunological and molecular biological studies our understanding of the mechanism of allergic inflammation with regard to therapeutic agents has improved. While much effort has been paid to developing a new anti-allergic agent, the allergic disease has yet to be completely conquered. The more extensive research will allow the development of new therapeutics to combat allergic diseases. Currently, with respect to mechanism of action anti-allergy drugs are classified into five types including histamine H1 antagonists, leukotriene antagonists, Th2 cytokine inhibitors, thromboxane A2 inhibitors and mediator-release inhibitors. The use of two or more anti-allergy agents together is not acknowledged at present, but this will be the subject of research in the future because with different mechanisms of action anti-allergy agents used at the same time will theoretically increase their effects. This review article focuses on anti-allergy agents highlighting their applications, clinical trials and recent advancement on drugs.
Collapse
|
11
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Müller S, Ackloo S, Arrowsmith CH, Bauser M, Baryza JL, Blagg J, Böttcher J, Bountra C, Brown PJ, Bunnage ME, Carter AJ, Damerell D, Dötsch V, Drewry DH, Edwards AM, Edwards J, Elkins JM, Fischer C, Frye SV, Gollner A, Grimshaw CE, IJzerman A, Hanke T, Hartung IV, Hitchcock S, Howe T, Hughes TV, Laufer S, Li VMJ, Liras S, Marsden BD, Matsui H, Mathias J, O'Hagan RC, Owen DR, Pande V, Rauh D, Rosenberg SH, Roth BL, Schneider NS, Scholten C, Singh Saikatendu K, Simeonov A, Takizawa M, Tse C, Thompson PR, Treiber DK, Viana AYI, Wells CI, Willson TM, Zuercher WJ, Knapp S, Mueller-Fahrnow A. Donated chemical probes for open science. eLife 2018; 7:e34311. [PMID: 29676732 PMCID: PMC5910019 DOI: 10.7554/elife.34311] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.
Collapse
Affiliation(s)
- Susanne Müller
- Structural Genomics ConsortiumBuchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | - Suzanne Ackloo
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | | | | | | | - Julian Blagg
- Cancer Research UK Cancer Therapeutics UnitThe Institute of Cancer ResearchLondonUnited Kingdom
| | | | - Chas Bountra
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Brown
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | | | - Adrian J Carter
- Discovery ResearchBoehringer IngelheimIngelheim am RheinGermany
| | - David Damerell
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe-UniversityFrankfurt am MainGermany
- Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUnited States
| | - Aled M Edwards
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | - James Edwards
- Janssen Pharmaceutical Research and Development LLCSpring HouseUnited States
| | - Jon M Elkins
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUnited States
| | - Andreas Gollner
- Discovery ResearchBoehringer IngelheimBiberach an der RissGermany
| | | | - Adriaan IJzerman
- Division of Medicinal ChemistryLeiden UniversityLeidenNetherlands
| | - Thomas Hanke
- Structural Genomics ConsortiumBuchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | | | | | | | | - Stefan Laufer
- Department of Pharmaceutical ChemistryEberhard Karls Universität TübingenTübingenGermany
| | | | - Spiros Liras
- Worldwide Medicinal ChemistryPfizerCambridgeUnited States
| | - Brian D Marsden
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
| | | | - John Mathias
- Worldwide Medicinal ChemistryPfizerCambridgeUnited States
| | | | - Dafydd R Owen
- Worldwide Medicinal ChemistryPfizerCambridgeUnited States
| | - Vineet Pande
- Discovery SciencesJanssen-Pharmaceutical Companies of Johnson & JohnsonBeerseBelgium
| | - Daniel Rauh
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundDortmundGermany
| | | | - Bryan L Roth
- The National Institute of Mental Health Psychoactive Active Drug Screening ProgramUniversity of North Carolina Chapel Hill School of MedicineChapel HillUnited States
| | - Natalie S Schneider
- Structural Genomics ConsortiumBuchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | | | | - Anton Simeonov
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaUnited States
| | | | | | - Paul R Thompson
- Department of Biochemistry and PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | | | - Amélia YI Viana
- Discovery ResearchBoehringer IngelheimIngelheim am RheinGermany
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUnited States
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUnited States
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUnited States
| | - Stefan Knapp
- Structural Genomics ConsortiumBuchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | |
Collapse
|
13
|
Identification of multi-target inhibitors of leukotriene and prostaglandin E2 biosynthesis by structural tuning of the FLAP inhibitor BRP-7. Eur J Med Chem 2018; 150:876-899. [DOI: 10.1016/j.ejmech.2018.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/19/2022]
|
14
|
Vydzhak RN, Panchishin SY, Brovarets VS. Alkylation of 1-Alkyl-3-methyl-1,4-dihydropyrazolo[4,3-c]pyrazoles with Halocarboxylic Acids Esters. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s107036321802007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Hu C, Ma S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. MEDCHEMCOMM 2018; 9:212-225. [PMID: 30108915 PMCID: PMC6083793 DOI: 10.1039/c7md00390k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Inflammation is favorable in most cases, because it is a kind of body defensive response to external stimuli; sometimes, inflammation is also harmful, such as attacks on the body's own tissues. It could be that inflammation is a unified process of injury and resistance to injury. Inflammation brings extreme pain to patients, showing symptoms of rubor, swelling, fever, pain and dysfunction. As the specific mechanism is not clear yet, the current anti-inflammatory agents are given priority for relieving suffering of patients. Thus it is emergent to find new anti-inflammatory agents with rapid effect. Lipoxygenase (LOX) is a kind of rate-limiting enzyme in the process of arachidonic acid metabolism into leukotriene (LT) which mediates the occurrence of inflammation. The inhibition of LOX can reduce LT, thereby producing an anti-inflammatory effect. In this review, the LOX inhibitors reported in recent years are summarized, and, in particular, their activities, structure-activity relationships and molecular docking studies are emphasized, which will provide new ideas to design novel LOX inhibitors.
Collapse
Affiliation(s)
- Chaoyu Hu
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| |
Collapse
|
16
|
Discovery and optimization of oxadiazole-based FLAP inhibitors. Bioorg Med Chem Lett 2017; 27:4652-4659. [DOI: 10.1016/j.bmcl.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
|
17
|
Jiang KM, Luesakul U, Zhao SY, An K, Muangsin N, Neamati N, Jin Y, Lin J. Tautomeric-Dependent Lactam Cycloaddition with Nitrile Oxide: Facile Synthesis of 1,2,4-Oxadiazole[4,5- a]indolone Derivatives. ACS OMEGA 2017; 2:3123-3134. [PMID: 30023685 PMCID: PMC6044867 DOI: 10.1021/acsomega.7b00490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 06/08/2023]
Abstract
A concise, metal-free, and gram-scale strategy to convert indoline-2,3-diones to 1,2,4-oxadiazole[4,5-a]indolones through an improved [3 + 2] cycloaddition of α-ketone-lactam with nitrile oxides has been developed. The lactim form of the resonance structure of isatin in protic solvents is the key active dipolarophile that shows chemo- and regioselectivity under experimental and theoretical conditions. This strategy conveniently enabled the assembly of several 1,2,4-oxadiazole[4,5-a]indolines with a broad range of functional groups. Compounds 3a and 4b exhibit cytotoxicity in the NCI/ADR-RES, SKOV3, and OVCAR8 cell lines.
Collapse
Affiliation(s)
- Kun-Ming Jiang
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Urarika Luesakul
- Department
of Medicinal Chemistry, College of Pharmacy, and Translational Oncology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Shu-Yue Zhao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun An
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Nongnuj Muangsin
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, and Translational Oncology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yi Jin
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
- Department
of Medicinal Chemistry, College of Pharmacy, and Translational Oncology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jun Lin
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
18
|
Mulder JA, Gao J, Fandrick KR, Zeng X, Desrosiers JN, Patel ND, Li Z, Rodriguez S, Lorenz JC, Wang J, Ma S, Fandrick DR, Grinberg N, Lee H, Bosanac T, Takahashi H, Chen Z, Bartolozzi A, Nemoto P, Busacca CA, Song JJ, Yee NK, Mahaney PE, Senanayake CH. Early Development Scale-Up of a Structurally-Challenging 5-Lipoxygenase Activating Protein (FLAP) Inhibitor. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason A. Mulder
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Joe Gao
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Keith R. Fandrick
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Xingzhong Zeng
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Jean-Nicolas Desrosiers
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Nitinchandra D. Patel
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Zhibin Li
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Sonia Rodriguez
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Jun Wang
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Shengli Ma
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Daniel R. Fandrick
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Nelu Grinberg
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Heewon Lee
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Todd Bosanac
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Hidenori Takahashi
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Zhidong Chen
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Alessandra Bartolozzi
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Peter Nemoto
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Carl A. Busacca
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Jinhua J. Song
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Nathan K. Yee
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Paige E. Mahaney
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| | - Chris H. Senanayake
- Chemical Development, U.S., ‡Medicinal Chemistry,
U.S., Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, Connecticut 06877, United States
| |
Collapse
|
19
|
Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur J Med Chem 2017; 153:34-48. [PMID: 28784429 DOI: 10.1016/j.ejmech.2017.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Leukotrienes are proinflammatory lipid mediators associated with diverse chronic inflammatory diseases such as asthma, COPD, IBD, arthritis, atherosclerosis, dermatitis and cancer. Cellular leukotrienes are produced from arachidonic acid via the 5-lipoxygenase pathway in which the 5-lipoxygenase activating protein, also named as FLAP, plays a critical role by operating as a regulatory protein for efficient transfer of arachidonic acid to 5-lipoxygenase. By blocking leukotriene production, FLAP inhibitors may behave as broad-spectrum leukotriene modulators, which might be of therapeutic use for chronic inflammatory diseases requiring anti-leukotriene therapy. The early development of FLAP inhibitors (i.e. MK-886, MK-591, BAY-X-1005) mostly concentrated on asthma cure, and resulted in promising readouts in preclinical and clinical studies with asthma patients. Following the recent elucidation of the 3D-structure of FLAP, development of new inhibitor chemotypes is highly accelerated, eventually leading to the evolution of many un-drug-like structures into more drug-like entities such as AZD6642 and BI665915 as development candidates. The most clinically advanced FLAP inhibitor to date is GSK2190918 (formerly AM803) that has successfully completed phase II clinical trials in asthmatics. Concluding, although there are no FLAP inhibitors reached to the drug approval phase yet, due to the rising number of indications for anti-LT therapy such as atherosclerosis, FLAP inhibitor development remains a significant research field. FLAP inhibitors reviewed herein are classified into four sub-classes as the first-generation FLAP inhibitors (indole and quinoline derivatives), the second-generation FLAP inhibitors (diaryl-alkanes and biaryl amino-heteroarenes), the benzimidazole-containing FLAP inhibitors and other FLAP inhibitors with polypharmacology for easiness of the reader. Hence, we meticulously summarize how FLAP inhibitors historically developed from scratch to their current advanced state, and leave the reader with a positive view that a FLAP inhibitor might soon reach to the need of patients who may require anti-LT therapy.
Collapse
|
20
|
Lindsay-Scott PJ, Gallagher PT. Synthesis of heterocycles from arylacetonitriles: Powerful tools for medicinal chemists. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Sardella R, Ianni F, Pucciarini L, Marinozzi M, Zlotskii SS, Natalini B. Cyclopropyl-containing sulfonyl amino acids: Exploring the enantioseparation through chiral ligand-exchange chromatography. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217050309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening. Sci Rep 2017; 7:42751. [PMID: 28218273 PMCID: PMC5317001 DOI: 10.1038/srep42751] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022] Open
Abstract
Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N'-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay.
Collapse
|
23
|
Werz O, Gerstmeier J, Garscha U. Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opin Ther Pat 2017; 27:607-620. [DOI: 10.1080/13543776.2017.1276568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
24
|
Discovery of the Novel Oxadiazole-Containing 5-Lipoxygenase Activating Protein (FLAP) Inhibitor BI 665915. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1239.ch004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Krolenko KY, Vlasov SV, Zhuravel IA. Synthesis and antimicrobial activity of 5-(1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazole derivatives. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1972-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Levent S, Gerstmeier J, Olgaç A, Nikels F, Garscha U, Carotti A, Macchiarulo A, Werz O, Banoglu E, Çalışkan B. Synthesis and biological evaluation of C(5)-substituted derivatives of leukotriene biosynthesis inhibitor BRP-7. Eur J Med Chem 2016; 122:510-519. [PMID: 27423639 DOI: 10.1016/j.ejmech.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/10/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Pharmacological intervention with 5-lipoxygenase (5-LO) pathway leading to suppression of leukotriene (LT) biosynthesis is a clinically validated strategy for treatment of respiratory and cardiovascular diseases such as asthma and atherosclerosis. Here we describe the synthesis of a series of C(5)-substituted analogues of the previously described 5-LO-activating protein (FLAP) inhibitor BRP-7 (IC50 = 0.31 μM) to explore the effects of substitution at the C(5)-benzimidazole (BI) ring as a strategy to increase the potency against FLAP-mediated 5-LO product formation. Incorporation of polar substituents on the C(5) position of the BI core, exemplified by compound 11 with a C(5)-nitrile substituent, significantly enhances the potency for suppression of 5-LO product synthesis in human neutrophils (IC50 = 0.07 μM) and monocytes (IC50 = 0.026 μM).
Collapse
Affiliation(s)
- Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey
| | - Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Abdurrahman Olgaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey
| | - Felix Nikels
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey.
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06330 Ankara, Turkey.
| |
Collapse
|
27
|
Banoglu E, Çelikoğlu E, Völker S, Olgaç A, Gerstmeier J, Garscha U, Çalışkan B, Schubert US, Carotti A, Macchiarulo A, Werz O. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP). Eur J Med Chem 2016; 113:1-10. [DOI: 10.1016/j.ejmech.2016.02.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
|
28
|
Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Achievement of regioselectivity in transition metal-catalyzed direct C–H (hetero)arylation reactions of heteroarenes with one heteroatom through the use of removable protecting/blocking substituents or traceless directing groups. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Latli B, Hrapchak M, Gao JJ, Busacca CA, Senanayake CH. A novel five-lipoxygenase activity protein inhibitor labeled with carbon-14 and deuterium. J Labelled Comp Radiopharm 2015; 58:390-4. [DOI: 10.1002/jlcr.3319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/27/2015] [Accepted: 06/27/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Bachir Latli
- Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road, P.O. Box 368 Ridgefield CT 06877-0368 USA
| | - Matt Hrapchak
- Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road, P.O. Box 368 Ridgefield CT 06877-0368 USA
| | - Joe J. Gao
- Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road, P.O. Box 368 Ridgefield CT 06877-0368 USA
| | - Carl A. Busacca
- Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road, P.O. Box 368 Ridgefield CT 06877-0368 USA
| | - Chris H. Senanayake
- Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road, P.O. Box 368 Ridgefield CT 06877-0368 USA
| |
Collapse
|
30
|
Pettersen D, Davidsson Ö, Whatling C. Recent advances for FLAP inhibitors. Bioorg Med Chem Lett 2015; 25:2607-12. [PMID: 26004579 DOI: 10.1016/j.bmcl.2015.04.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
Abstract
A number of FLAP inhibitors have been progressed to clinical trials for respiratory and other inflammatory indications but so far no drug has reached the market. With this Digest we assess the opportunity to develop FLAP inhibitors for indications beyond respiratory disease, and in particular for atherosclerotic cardiovascular disease. We also show how recently disclosed FLAP inhibitors have structurally evolved from the first generation FLAP inhibitors paving the way for new compound classes.
Collapse
Affiliation(s)
| | | | - Carl Whatling
- CVMD iMed, AstraZeneca R&D Mölndal, S-413 83 Mölndal, Sweden
| |
Collapse
|