1
|
Cao Z, Sciabola S, Wang Y. Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual Screening. J Chem Inf Model 2024; 64:1882-1891. [PMID: 38442000 DOI: 10.1021/acs.jcim.3c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Virtual screening of large compound libraries to identify potential hit candidates is one of the earliest steps in drug discovery. As the size of commercially available compound collections grows exponentially to the scale of billions, active learning and Bayesian optimization have recently been proven as effective methods of narrowing down the search space. An essential component of those methods is a surrogate machine learning model that predicts the desired properties of compounds. An accurate model can achieve high sample efficiency by finding hits with only a fraction of the entire library being virtually screened. In this study, we examined the performance of a pretrained transformer-based language model and graph neural network in a Bayesian optimization active learning framework. The best pretrained model identifies 58.97% of the top-50,000 compounds after screening only 0.6% of an ultralarge library containing 99.5 million compounds, improving 8% over the previous state-of-the-art baseline. Through extensive benchmarks, we show that the superior performance of pretrained models persists in both structure-based and ligand-based drug discovery. Pretrained models can serve as a boost to the accuracy and sample efficiency of active learning-based virtual screening.
Collapse
Affiliation(s)
- Zhonglin Cao
- Medicinal Chemistry, Biogen, Cambridge, Massachusetts 02142, United States
| | - Simone Sciabola
- Medicinal Chemistry, Biogen, Cambridge, Massachusetts 02142, United States
| | - Ye Wang
- Medicinal Chemistry, Biogen, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Bui TTT, Mac DH, Quang Trung P, Pham CT. Crystal structure of 4-(naphthalen-2-yl)-2-oxo-6-phenyl-1,2-di-hydro-pyridine-3-carbo-nitrile. Acta Crystallogr E Crystallogr Commun 2023; 79:1076-1078. [PMID: 37936842 PMCID: PMC10626956 DOI: 10.1107/s2056989023009180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The synthesis and crystal structure of the title compound, C22H14N2O, are described. The title compound was synthesized by a three-component one-pot reaction in DMSO involving chalcone, cyano-acetamide and elemental sulfur as catalyst. The compound was characterized by spectroscopic methods and single-crystal X-ray diffraction. The structure consists of inversion-related dimers produced by N-H⋯O hydrogen bonding, which further inter-act through π-π contacts.
Collapse
Affiliation(s)
- Thai Thanh Thu Bui
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Pham Quang Trung
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Chien Thang Pham
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| |
Collapse
|
3
|
Nguyen BN, Tran MH, Bui TTT, Mac DH, Pham VP, Retailleau P, Nguyen TB. Sulfur-Promoted Oxidative Condensation of Chalcones with Unsubstituted Cyanoacetamide in DMSO: Access to 3-Cyanopyrid-2-ones. J Org Chem 2023. [PMID: 37470501 DOI: 10.1021/acs.joc.3c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Elemental sulfur and DABCO were found to be an excellent combination to promote a one-pot cascade of condensation-oxidative cyclization of chalcones and unsubstituted cyanoacetamide in DMSO to provide 3-cyanopyrid-2-ones.
Collapse
Affiliation(s)
- Bich Ngoc Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Minh Hieu Tran
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Thai Thanh Thu Bui
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Van Phong Pham
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, Av de la Terrasse, Gif-sur-Yvette 91198, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, Av de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
4
|
Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Int J Mol Sci 2022; 23:10669. [PMID: 36142582 PMCID: PMC9500838 DOI: 10.3390/ijms231810669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of drug-resistant mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), poses an increasing global threat that urgently demands the development of new potent anti-mycobacterial drugs. One of the approaches toward the identification of new drugs is fragment-based drug discovery (FBDD), which is the most ingenious among other drug discovery models, such as structure-based drug design (SBDD) and high-throughput screening. Specialized techniques, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and many others, are part of the drug discovery approach to combat the Mtb and NTM global menaces. Moreover, the primary drawbacks of traditional methods, such as the limited measurement of biomolecular toxicity and uncertain bioavailability evaluation, are successfully overcome by the FBDD approach. The current review focuses on the recognition of fragment-based drug discovery as a popular approach using virtual, computational, and biophysical methods to identify potent fragment molecules. FBDD focuses on designing optimal inhibitors against potential therapeutic targets of NTM and Mtb (PurC, ArgB, MmpL3, and TrmD). Additionally, we have elaborated on the challenges associated with the FBDD approach in the identification and development of novel compounds. Insights into the applications and overcoming the challenges of FBDD approaches will aid in the identification of potential therapeutic compounds to treat drug-sensitive and drug-resistant NTMs and Mtb infections.
Collapse
Affiliation(s)
| | | | | | | | - Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
5
|
Song L, Merceron R, Hulpia F, Lucía A, Gracia B, Jian Y, Risseeuw MDP, Verstraelen T, Cos P, Aínsa JA, Boshoff HI, Munier-Lehmann H, Savvides SN, Van Calenbergh S. Structure-aided optimization of non-nucleoside M. tuberculosis thymidylate kinase inhibitors. Eur J Med Chem 2021; 225:113784. [PMID: 34450493 PMCID: PMC10500704 DOI: 10.1016/j.ejmech.2021.113784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis thymidylate kinase (MtTMPK) has emerged as an attractive target for rational drug design. We recently investigated new families of non-nucleoside MtTMPK inhibitors in an effort to diversify MtTMPK inhibitor chemical space. We here report a new series of MtTMPK inhibitors by combining the Topliss scheme with rational drug design approaches, fueled by two co-crystal structures of MtTMPK in complex with developed inhibitors. These efforts furnished the most potent MtTMPK inhibitors in our assay, with two analogues displaying low micromolar MIC values against H37Rv Mtb. Prepared inhibitors address new sub-sites in the MtTMPK nucleotide binding pocket, thereby offering new insights into its druggability. We studied the role of efflux pumps as well as the impact of cell wall permeabilizers for selected compounds to potentially provide an explanation for the lack of correlation between potent enzyme inhibition and whole-cell activity.
Collapse
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; 3M, Zwijndrecht, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium; Eurofins Group, Poitiers, France
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; Janssen Pharmaceutica, Beerse, Belgium
| | - Ainhoa Lucía
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Begoña Gracia
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Toon Verstraelen
- Center for Melecular Modeling, Ghent University, Zwijnaarde, Ghent, 9052, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610, Antwerpen, Belgium
| | - José A Aínsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- CNRS UMR3523, Department of Structural Biology and Chemistry, Institut Pasteur, 75724, Paris Cedex 15, France
| | - Savvas N Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium.
| |
Collapse
|
6
|
Graff DE, Shakhnovich EI, Coley CW. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem Sci 2021; 12:7866-7881. [PMID: 34168840 PMCID: PMC8188596 DOI: 10.1039/d0sc06805e] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Structure-based virtual screening is an important tool in early stage drug discovery that scores the interactions between a target protein and candidate ligands. As virtual libraries continue to grow (in excess of 108 molecules), so too do the resources necessary to conduct exhaustive virtual screening campaigns on these libraries. However, Bayesian optimization techniques, previously employed in other scientific discovery problems, can aid in their exploration: a surrogate structure-property relationship model trained on the predicted affinities of a subset of the library can be applied to the remaining library members, allowing the least promising compounds to be excluded from evaluation. In this study, we explore the application of these techniques to computational docking datasets and assess the impact of surrogate model architecture, acquisition function, and acquisition batch size on optimization performance. We observe significant reductions in computational costs; for example, using a directed-message passing neural network we can identify 94.8% or 89.3% of the top-50 000 ligands in a 100M member library after testing only 2.4% of candidate ligands using an upper confidence bound or greedy acquisition strategy, respectively. Such model-guided searches mitigate the increasing computational costs of screening increasingly large virtual libraries and can accelerate high-throughput virtual screening campaigns with applications beyond docking.
Collapse
Affiliation(s)
- David E Graff
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA USA
| | - Connor W Coley
- Department of Chemical Engineering, MIT Cambridge MA USA
| |
Collapse
|
7
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Jian Y, Forbes HE, Hulpia F, Risseeuw MDP, Caljon G, Munier-Lehmann H, Boshoff HIM, Van Calenbergh S. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent Antimycobacterial Agents Activated by Deazaflavin (F 420)-Dependent Nitroreductase (Ddn). J Med Chem 2021; 64:440-457. [PMID: 33347317 PMCID: PMC10629625 DOI: 10.1021/acs.jmedchem.0c01374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Swapping the substituents in positions 2 and 4 of the previously synthesized but yet undisclosed 5-cyano-4-(methylthio)-2-arylpyrimidin-6-ones 4, ring closure, and further optimization led to the identification of the potent antitubercular 2-thio-substituted quinazolinone 26. Structure-activity relationship (SAR) studies indicated a crucial role for both meta-nitro substituents for antitubercular activity, while the introduction of polar substituents on the quinazolinone core allowed reduction of bovine serum albumin (BSA) binding (63c, 63d). While most of the tested quinazolinones exhibited no cytotoxicity against MRC-5, the most potent compound 26 was found to be mutagenic via the Ames test. This analogue exhibited moderate inhibitory potency against Mycobacterium tuberculosis thymidylate kinase, the target of the 3-cyanopyridones that lies at the basis of the current analogues, indicating that the whole-cell antimycobacterial activity of the present S-substituted thioquinazolinones is likely due to modulation of alternative or additional targets. Diminished antimycobacterial activity was observed against mutants affected in cofactor F420 biosynthesis (fbiC), cofactor reduction (fgd), or deazaflavin-dependent nitroreductase activity (rv3547), indicating that reductive activation of the 3,5-dinitrobenzyl analogues is key to antimycobacterial activity.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Martijn D. P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex 15 75724 Paris, France
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
9
|
Soares de Melo C, Singh V, Myrick A, Simelane SB, Taylor D, Brunschwig C, Lawrence N, Schnappinger D, Engelhart CA, Kumar A, Parish T, Su Q, Myers TG, Boshoff HIM, Barry CE, Sirgel FA, van Helden PD, Buchanan KI, Bayliss T, Green SR, Ray PC, Wyatt PG, Basarab GS, Eyermann CJ, Chibale K, Ghorpade SR. Antitubercular 2-Pyrazolylpyrimidinones: Structure-Activity Relationship and Mode-of-Action Studies. J Med Chem 2021; 64:719-740. [PMID: 33395287 PMCID: PMC7816196 DOI: 10.1021/acs.jmedchem.0c01727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 11/30/2022]
Abstract
Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.
Collapse
Affiliation(s)
- Candice Soares de Melo
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Department of Chemistry and Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Rondebosch 7701, South Africa
| | - Alissa Myrick
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Sandile B. Simelane
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Christel Brunschwig
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Nina Lawrence
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Curtis A. Engelhart
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Anuradha Kumar
- Infectious
Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- Infectious
Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Qin Su
- Genomic
Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Timothy G. Myers
- Genomic
Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Frederick A. Sirgel
- South
African Medical Research Council Centre for Tuberculosis Research/DST/NRF
Centre of Excellence for Biomedical Tuberculosis Research, Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Science, Stellenbosch University, Tygerberg 7505, South Africa
| | - Paul D. van Helden
- South
African Medical Research Council Centre for Tuberculosis Research/DST/NRF
Centre of Excellence for Biomedical Tuberculosis Research, Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Science, Stellenbosch University, Tygerberg 7505, South Africa
| | - Kirsteen I. Buchanan
- Drug
Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Tracy Bayliss
- Drug
Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Paul G. Wyatt
- Drug
Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Gregory S. Basarab
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug
Discovery and Development Centre (H3D), Division of Clinical Pharmacology,
Department of Medicine, University of Cape
Town, Observatory 7925, South Africa
| | - Charles J. Eyermann
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Department of Chemistry and Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Rondebosch 7701, South Africa
| | - Sandeep R. Ghorpade
- Drug
Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
10
|
Jian Y, Merceron R, De Munck S, Forbes HE, Hulpia F, Risseeuw MDP, Van Hecke K, Savvides SN, Munier-Lehmann H, Boshoff HIM, Van Calenbergh S. Endeavors towards transformation of M. tuberculosis thymidylate kinase (MtbTMPK) inhibitors into potential antimycobacterial agents. Eur J Med Chem 2020; 206:112659. [PMID: 32823003 PMCID: PMC11000207 DOI: 10.1016/j.ejmech.2020.112659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/30/2023]
Abstract
As the last enzyme in nucleotide synthesis as precursors for DNA replication, thymidylate kinase of M. tuberculosis (MtbTMPK) attracts significant interest as a target in the discovery of new anti-tuberculosis agents. Earlier, we discovered potent MtbTMPK inhibitors, but these generally suffered from poor antimycobacterial activity, which we hypothesize is due to poor bacterial uptake. To address this, we herein describe our efforts to equip previously reported MtbTMPK inhibitors with targeting moieties to increase the whole cell activity of the hybrid analogues. Introduction of a simplified Fe-chelating siderophore motif gave rise to analogue 17 that combined favorable enzyme inhibitory activity with significant activity against M. tuberculosis (MIC of 12.5 μM). Conjugation of MtbTMPK inhibitors with an imidazo[1,2-a]pyridine or 3,5-dinitrobenzamide scaffold afforded analogues 26, 27 and 28, with moderate MtbTMPK enzyme inhibitory potency, but sub-micromolar activity against mycobacteria without significant cytotoxicity. These results indicate that conjugation with structural motifs known to favor mycobacterial uptake may be a valid approach for discovering new antimycobacterial agents.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - Steven De Munck
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 S3, Gent, B-9000, Belgium
| | - Savvas N Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex, 15 75724, Paris, France
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
11
|
Jian Y, Hulpia F, Risseeuw MDP, Forbes HE, Munier-Lehmann H, Caljon G, Boshoff HIM, Van Calenbergh S. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents. Eur J Med Chem 2020; 201:112450. [PMID: 32623208 DOI: 10.1016/j.ejmech.2020.112450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, relies on thymidylate kinase (MtbTMPK) for the synthesis of thymidine triphosphates and thus also DNA synthesis. Therefore, this enzyme constitutes a potential Achilles heel of the pathogen. Based on a previously reported MtbTMPK 6-aryl-substituted pyridone inhibitor and guided by two co-crystal structures of MtbTMPK with pyridone- and thymine-based inhibitors, we report the synthesis of a series of aryl-shifted cyanopyridone analogues. These compounds generally lacked significant MtbTMPK inhibitory potency, but some analogues did exhibit promising antitubercular activity. Analogue 11i demonstrated a 10-fold increased antitubercular activity (MIC H37Rv, 1.2 μM) compared to literature compound 5. Many analogues with whole-cell antimycobacterial activity were devoid of significant cytotoxicity.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex 15, 75724, Paris, France
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1(S7), B2610, Wilrijk, Belgium
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium.
| |
Collapse
|
12
|
Abstract
After several years of limited success, an effective regimen for the treatment of both drug-sensitive and multiple-drug-resistant tuberculosis is in place. However, this success is still incomplete, as we need several more novel combinations to treat extensively drug-resistant tuberculosis, as well newer emerging resistance. Additionally, the goal of a shortened therapy continues to evade us. A systematic analysis of the tuberculosis drug discovery approaches employed over the last two decades shows that the lead identification path has been largely influenced by the improved understanding of the biology of the pathogen Mycobacterium tuberculosis. Interestingly, the drug discovery efforts can be grouped into a few defined approaches that predominated over a period of time. This review delineates the key drivers during each of these periods. While doing so, the author’s experiences at AstraZeneca R&D, Bangalore, India, on the discovery of new antimycobacterial candidate drugs are used to exemplify the concept. Finally, the review also discusses the value of validated targets, promiscuous targets, the current anti-TB pipeline, the gaps in it, and the possible way forward.
Collapse
|
13
|
1-(1-Arylethylpiperidin-4-yl)thymine Analogs as Antimycobacterial TMPK Inhibitors. Molecules 2020; 25:molecules25122805. [PMID: 32560578 PMCID: PMC7356956 DOI: 10.3390/molecules25122805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 11/17/2022] Open
Abstract
A series of Mycobacterium tuberculosis TMPK (MtbTMPK) inhibitors based on a reported compound 3 were synthesized and evaluated for their capacity to inhibit MtbTMPK catalytic activity and the growth of a virulent M. tuberculosis strain (H37Rv). Modifications of the scaffold of 3 failed to afford substantial improvements in MtbTMPK inhibitory activity and antimycobacterial activity. Optimization of the substitution pattern of the D ring of 3 resulted in compound 21j with improved MtbTMPK inhibitory potency (three-fold) and H37Rv growth inhibitory activity (two-fold). Moving the 3-chloro substituent of 21j to the para-position afforded isomer 21h, which, despite a 10-fold increase in IC50-value, displayed promising whole cell activity (minimum inhibitory concentration (MIC) = 12.5 μM).
Collapse
|
14
|
Gul S, Khalil R, Zaheer Ul-Haq, Mubarak MS. Computational Overview of Mycobacterial Thymidine Monophosphate Kinase. Curr Pharm Des 2020; 26:1676-1681. [PMID: 32242781 DOI: 10.2174/1381612826666200403114152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) ranks among the diseases with the highest morbidity rate with significantly high prevalence in developing countries. Globally, tuberculosis poses the most substantial burden of mortality. Further, a partially treated tuberculosis patient is worse than untreated; they may lead to standing out as a critical obstacle to global tuberculosis control. The emergence of multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains, and co-infection of HIV further worsen the situation. The present review article discusses validated targets of the bacterial enzyme thymidine monophosphate kinase (TMPK). TMPKMTB enzyme belongs to the nucleoside monophosphate kinases (NMPKs) family. It is involved in phosphorylation of TMP to TDP, and TDP is phosphorylated to TTP. This review highlights structure elucidation of TMP enzymes and their inhibitors study on TMP scaffold, and it also discusses different techniques; including molecular docking, virtual screening, 3DPharmacophore, QSAR for finding anti-tubercular agents.
Collapse
Affiliation(s)
- Sana Gul
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | - Ruqaiya Khalil
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi-75210, Pakistan
| | | |
Collapse
|
15
|
Venugopala KN, Tratrat C, Pillay M, Chandrashekharappa S, Al-Attraqchi OHA, Aldhubiab BE, Attimarad M, Alwassil OI, Nair AB, Sreeharsha N, Venugopala R, Morsy MA, Haroun M, Kumalo HM, Odhav B, Mlisana K. In silico Design and Synthesis of Tetrahydropyrimidinones and Tetrahydropyrimidinethiones as Potential Thymidylate Kinase Inhibitors Exerting Anti-TB Activity Against Mycobacterium tuberculosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1027-1039. [PMID: 32214795 PMCID: PMC7082623 DOI: 10.2147/dddt.s228381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Abstract
Background and Purpose Tuberculosis has been reported to be the worldwide leading cause of death resulting from a sole infectious agent. The emergence of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has made the battle against the infection more difficult since most currently available therapeutic options are ineffective against these resistant strains. Therefore, novel molecules need to be developed to effectively treat tuberculosis disease. Preliminary docking studies revealed that tetrahydropyrimidinone derivatives have favorable interactions with the thymidylate kinase receptor. In the present investigation, we report the synthesis and the mycobacterial activity of several pyrimidinones and pyrimidinethiones as potential thymidylate kinase inhibitors. Methods The title compounds (1a-d) and (2a-b) were synthesized by a one-pot three-component Biginelli reaction. They were subsequently characterized and used for whole-cell anti-TB screening against H37Rv and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by the resazurin microplate assay (REMA) plate method. Molecular modeling was conducted using the Accelry's Discovery Studio 4.0 client program to explain the observed bioactivity of the compounds. The pharmacokinetic properties of the synthesized compounds were predicted and analyzed. Results Of the compounds tested for anti-TB activity, pyrimidinone 1a and pyrimidinethione 2a displayed moderate activity against susceptible MTB H37Rv strains at 16 and 32 µg/mL, respectively. Only compound 2a was observed to exert modest activity at 128 µg/mL against MTB strains with cross-resistance to rifampicin and isoniazid. The presence of the trifluoromethyl group was essential to retain the inhibitory activity of compounds 1a and 2a. Molecular modeling studies of these compounds against thymidylate kinase targets demonstrated a positive correlation between the bioactivity and structure of the compounds. The in-silico ADME (absorption, distribution, metabolism, and excretion) prediction indicated favorable pharmacokinetic and drug-like properties for most compounds. Conclusion Pyrimidinone 1a and pyrimidinethione 2a were identified as the leading compounds and can serve as a starting point to develop novel anti-TB therapeutic agents.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | | | | | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Hezekiel M Kumalo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Medical School, Durban 4001, South Africa
| | - Bharti Odhav
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Koleka Mlisana
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| |
Collapse
|
16
|
Jian Y, Risseeuw MDP, Froeyen M, Song L, Cappoen D, Cos P, Munier-Lehmann H, van Calenbergh S. 1-(Piperidin-3-yl)thymine amides as inhibitors of M. tuberculosis thymidylate kinase. J Enzyme Inhib Med Chem 2019; 34:1730-1739. [PMID: 31822127 PMCID: PMC6920704 DOI: 10.1080/14756366.2019.1662790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A series of readily accessible 1-(piperidin-3-yl)thymine amides was designed, synthesised and evaluated as Mycobacterium tuberculosis TMPK (MtbTMPK) inhibitors. In line with the modelling results, most inhibitors showed reasonable MtbTMPK inhibitory activity. Compounds 4b and 4i were slightly more potent than the parent compound 3. Moreover, contrary to the latter, amide analogue 4g was active against the avirulent M. tuberculosis H37Ra strain (MIC50=35 µM). This finding opens avenues for future modifications.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mathy Froeyen
- Department of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lijun Song
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, Paris, France
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Synthesis, antitubercular evaluation, molecular docking and molecular dynamics studies of 4,6-disubstituted-2-oxo-dihydropyridine-3-carbonitriles. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Brahmachari G, Nurjamal K, Begam S, Mandal M, Nayek N, Karmakar I, Mandal B. Alum (KAl(SO4)2.12H2O) - An Eco-friendly and Versatile Acid-catalyst in Organic Transformations: A Recent Update. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190307160332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium alum (KAl(SO4)2.12H2O), commonly known as ‘alum’, has recently drawn the attention of synthetic chemists as an efficient, safe and eco-friendly acid catalyst in implementing a large number of organic transformations, thereby generating interesting molecular frameworks. The present review article offers an overview of the potent catalytic applications of this commercially available and low-cost inorganic sulfate salt in organic reactions reported during the period of 2014 to 2018.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Bhagirath Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
19
|
Firsov A, Chupakhin E, Dar'in D, Bakulina O, Krasavin M. Three-Component Castagnoli-Cushman Reaction of 3-Arylglutaconic Acids with Aromatic Aldehydes and Amines Delivers Rare 4,6-Diaryl-1,6-dihydropyridin-2(3 H)-ones. Org Lett 2019; 21:1637-1640. [PMID: 30794425 DOI: 10.1021/acs.orglett.9b00171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempted use of 3-arylglutaconic acids in the three-component version of the Castagnoli-Cushman reaction with amines and aromatic aldehydes resulted in an unexpected formation of 4,6-diaryl 1,6-dihydropyridine-2(3 H)-ones. These are of interest as representatives of a rare heterocyclic chemotype for de novo biological investigation. Alternatively, these compounds can be oxidized into their 2-pyridone counterparts, stereoselectively reduced to give cis-configured 4,6-diaryl 2-piperidones, or isomerized to 5,6-dihydropyridin-2(1 H)-ones. All the three scaffolds are well represented in the bioactive compound domain.
Collapse
Affiliation(s)
- Andrei Firsov
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Evgeny Chupakhin
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation.,Immanuel Kant Baltic Federal University , Kaliningrad 236016 , Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Olga Bakulina
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation.,Immanuel Kant Baltic Federal University , Kaliningrad 236016 , Russian Federation
| |
Collapse
|
20
|
Baitha A, Upadhyay M, Gopinathan A, Krishnan K, Dabholkar VV. Synthesis, characterization, and docking studies of novel cyanopyridone analogs with serotonin 5-HT1B receptor agonists. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1575422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Amresh Baitha
- Organic Research Laboratory, Department of Chemistry, Guru Nanak College, University of Mumbai, Mumbai, India
| | - Manish Upadhyay
- Department of Bioinformatic, Guru Nanak Khalsa College, University of Mumbai, Mumbai, India
| | - Ajay Gopinathan
- Organic Research Laboratory, Department of Chemistry, Guru Nanak College, University of Mumbai, Mumbai, India
| | - Karthik Krishnan
- Organic Research Laboratory, Department of Chemistry, Guru Nanak College, University of Mumbai, Mumbai, India
| | - Vijay V. Dabholkar
- Organic Research Laboratory, Department of Chemistry, Guru Nanak College, University of Mumbai, Mumbai, India
| |
Collapse
|
21
|
Kandeel M, Kitade Y, Al-Taher A, Al-Nazawi M. The structural basis of unique substrate recognition by Plasmodium thymidylate kinase: Molecular dynamics simulation and inhibitory studies. PLoS One 2019; 14:e0212065. [PMID: 30730992 PMCID: PMC6366710 DOI: 10.1371/journal.pone.0212065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) showed structural and catalytic distinctions from the host enzyme rendering it a hopeful antiprotozoal drug target. Despite the comprehensive enzymologic, structural, inhibitory and chemical synthesis approaches targeting this enzyme, the elucidation of the exact mechanism underlying the recognition of the atypical purine substrates remains to be determined. In this study, molecular dynamics (MD) simulation of a broad range of substrates and inhibitors as well as the inhibitory properties of deoxyguanosine (dG) derivatives were used to assess the PfTMK substructure molecular rearrangements. The estimated changes during the favourable binding of high affinity substrate (TMP) include lower interaction with P-loop, free residue fluctuations of the lid domain and the average RMSD value. The RMSD of TMP complex was higher and more rapidly stabilized than the dGMP complex. The lid domain flexibility is severely affected by dGMP and β-thymidine derivatives, while being partially fluctuating with other thymidine derivatives. The TMK-purine (dGMP) complex was slowly and gradually stabilized with lower over all structure flexibility and residue fluctuations especially at the lid domain, which closes the active site during its catalytic state. Thymidine derivatives allow structure flexibility of the lid domain being highly fluctuating in α- and β-thymidine derivatives and TMP. dG derivatives remains less efficient than thymidine derivatives in inhibiting TMK. The variations in the structural dynamics of the P-loop and lid domain in response to TMP or dGMP might favour thymidine-based compounds. The provided MD simulation strategy can be used for predicating structural changes in PfTMK during lead optimization.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Kafrelsheikh, Egypt
- * E-mail: ,
| | - Yukio Kitade
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa, Yakuza, Toyota, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Japan
| | - Abdulla Al-Taher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia
| | - Mohammed Al-Nazawi
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia
| |
Collapse
|
22
|
Waman VP, Vedithi SC, Thomas SE, Bannerman BP, Munir A, Skwark MJ, Malhotra S, Blundell TL. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerg Microbes Infect 2019; 8:109-118. [PMID: 30866765 PMCID: PMC6334779 DOI: 10.1080/22221751.2018.1561158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marcin J. Skwark
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Peters CE, Lamsa A, Liu RB, Quach D, Sugie J, Brumage L, Pogliano J, Lopez-Garrido J, Pogliano K. Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway. ACS Chem Biol 2018; 13:3251-3258. [PMID: 30133247 DOI: 10.1021/acschembio.8b00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling (RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.
Collapse
Affiliation(s)
- Christine E. Peters
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Roland B. Liu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Diana Quach
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Lauren Brumage
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Song L, Merceron R, Gracia B, Quintana AL, Risseeuw MDP, Hulpia F, Cos P, Aínsa JA, Munier-Lehmann H, Savvides SN, Van Calenbergh S. Structure Guided Lead Generation toward Nonchiral M. tuberculosis Thymidylate Kinase Inhibitors. J Med Chem 2018; 61:2753-2775. [DOI: 10.1021/acs.jmedchem.7b01570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Begoña Gracia
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ainhoa Lucía Quintana
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Martijn D. P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - José A. Aínsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex 15 75724 Paris, France
| | - Savvas N. Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
25
|
Kaur D, Mathew S, Nair CGS, Begum A, Jainanarayan AK, Sharma M, Brahmachari SK. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis. J Transl Med 2017; 15:261. [PMID: 29268770 PMCID: PMC5740895 DOI: 10.1186/s12967-017-1363-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Background The problem of drug resistance and bacterial persistence in tuberculosis is a cause of global alarm. Although, the UN’s Sustainable Development Goals for 2030 has targeted a Tb free world, the treatment gap exists and only a few new drug candidates are in the pipeline. In spite of large information from medicinal chemistry to ‘omics’ data, there has been a little effort from pharmaceutical companies to generate pipelines for the development of novel drug candidates against the multi drug resistant Mycobacterium tuberculosis. Methods In the present study, we describe an integrated methodology; utilizing systems level information to optimize ligand selection to lower the failure rates at the pre-clinical and clinical levels. In the present study, metabolic targets (Rv2763c, Rv3247c, Rv1094, Rv3607c, Rv3048c, Rv2965c, Rv2361c, Rv0865, Rv0321, Rv0098, Rv0390, Rv3588c, Rv2244, Rv2465c and Rv2607) in M. tuberculosis, identified using our previous Systems Biology and data-intensive genome level analysis, have been used to design potential lead molecules, which are likely to be non-toxic. Various in silico drug discovery tools have been utilized to generate small molecular leads for each of the 15 targets with available crystal structures. Results The present study resulted in identification of 20 novel lead molecules including 4 FDA approved drugs (droxidropa, tetroxoprim, domperidone and nemonapride) which can be further taken for drug repurposing. This comprehensive integrated methodology, with both experimental and in silico approaches, has the potential to not only tackle the MDR form of Mtb but also the most important persister population of the bacterium, with a potential to reduce the failures in the Tb drug discovery. Conclusion We propose an integrated approach of systems and structural biology for identifying targets that address the high attrition rate issue in lead identification and drug development We expect that this system level analysis will be applicable for identification of drug candidates to other pathogenic organisms as well. Electronic supplementary material The online version of this article (10.1186/s12967-017-1363-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Divneet Kaur
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shalu Mathew
- Centre for Open Innovation-Indian Centre for Social Transformation, Bengaluru, Karnataka, India
| | - Chinchu G S Nair
- Centre for Open Innovation-Indian Centre for Social Transformation, Bengaluru, Karnataka, India
| | - Azitha Begum
- Centre for Open Innovation-Indian Centre for Social Transformation, Bengaluru, Karnataka, India
| | - Ashwin K Jainanarayan
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Mukta Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Samir K Brahmachari
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India. .,Centre for Open Innovation-Indian Centre for Social Transformation, Bengaluru, Karnataka, India. .,Academy of Scientific and Innovative Research, New Delhi, India. .,CSIR-Open Source Drug Discovery Unit, New Delhi, India.
| |
Collapse
|
26
|
Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL. Structural Biology and the Design of New Therapeutics: From HIV and Cancer to Mycobacterial Infections: A Paper Dedicated to John Kendrew. J Mol Biol 2017; 429:2677-2693. [PMID: 28648615 DOI: 10.1016/j.jmb.2017.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Interest in applications of protein crystallography to medicine was evident, as the first high-resolution structures emerged in the 50s and 60s. In Cambridge, Max Perutz and John Kendrew sought to understand mutations in sickle cell and other genetic diseases related to hemoglobin, while in Oxford, the group of Dorothy Hodgkin became interested in long-lasting zinc-insulin crystals for treatment of diabetes and later considered insulin redesign, as synthetic insulins became possible. The use of protein crystallography in structure-guided drug discovery emerged as enzyme structures allowed the identification of potential inhibitor-binding sites and optimization of interactions of hits using the structure of the target protein. Early examples of this approach were the use of the structure of renin to design antihypertensives and the structure of HIV protease in design of AIDS antivirals. More recently, use of structure-guided design with fragment-based drug discovery, which reduces the size of screening libraries by decreasing complexity, has improved ligand efficiency in drug design and has been used to progress three oncology drugs through clinical trials to FDA approval. We exemplify current developments in structure-guided target identification and fragment-based lead discovery with efforts to develop new antimicrobials for mycobacterial infections.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - So Yeon Kim
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK.
| |
Collapse
|
27
|
Xu Z, Gao C, Ren QC, Song XF, Feng LS, Lv ZS. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2017; 139:429-440. [PMID: 28818767 DOI: 10.1016/j.ejmech.2017.07.059] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/18/2023]
Abstract
One-third of the world's population infected tuberculosis (TB), and more than 1 million deaths annually. The co-infection between the mainly pathogen Mycobacterium tuberculosis (MTB) and HIV, and the incidence of drug-resistant TB, multi-drug resistant TB, extensively drug-resistant TB as well as totally drug-resistant TB have further aggravated the mortality and spread of this disease. Thus, there is an urgent need to develop novel anti-TB agents against both drug-susceptible and drug-resistant TB. The wide spectrum of biological activities and successful utilization of pyrazole-containing drugs in clinic have inspired more and more attention towards this kind of heterocycles. Numerous of pyrazole-containing derivatives have been synthesized for searching new anti-TB agents, and some of them showed promising potency and may have novel mechanism of action. This review aims to outline the recent achievements in pyrazole-containing derivatives as anti-TB agents and their structure-activity relationship.
Collapse
Affiliation(s)
- Zhi Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Hubei, PR China
| | - Chuan Gao
- WuXi AppTec (Wuhan), Hubei, PR China
| | | | - Xu-Feng Song
- Beijing University of Technology, Beijing, PR China
| | | | - Zao-Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Hubei, PR China.
| |
Collapse
|
28
|
Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev 2017; 38:684-740. [DOI: 10.1002/med.21454] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
- Present address: Department of Chemistry; Akal University; Talwandi Sabo Punjab 151 302 India
| | - Sanjay Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| |
Collapse
|
29
|
Affiliation(s)
- Ram Vishwakarma
- Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research)
| |
Collapse
|
30
|
Song L, Risseeuw MDP, Froeyen M, Karalic I, Goeman J, Cappoen D, Van der Eycken J, Cos P, Munier-Lehmann H, Van Calenbergh S. Elaboration of a proprietary thymidylate kinase inhibitor motif towards anti-tuberculosis agents. Bioorg Med Chem 2016; 24:5172-5182. [PMID: 27614917 DOI: 10.1016/j.bmc.2016.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023]
Abstract
We report the design and synthesis of a series of non-nucleoside MtbTMPK inhibitors (1-14) based on the gram-positive bacterial TMPK inhibitor hit compound 1. A practical synthesis was developed to access these analogues. Several compounds show promising MtbTMPK inhibitory potency and allow the establishment of a structure-activity relationship, which is helpful for further optimization.
Collapse
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteemweg 460, B-9000 Ghent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteemweg 460, B-9000 Ghent, Belgium
| | - Matheus Froeyen
- Medicinal Chemistry (Rega Institute), Department of Pharmaceutical and Pharmacological Sciences, KU LEUVEN, Minderbroedersstraat 10 blok x-box 1030, 3000 Leuven, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteemweg 460, B-9000 Ghent, Belgium
| | - Jan Goeman
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, B-9000 Ghent, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerpen,. Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, B-9000 Ghent, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerpen,. Belgium
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523, Paris, France
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteemweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
31
|
Johnson CN, Erlanson DA, Murray CW, Rees DC. Fragment-to-Lead Medicinal Chemistry Publications in 2015. J Med Chem 2016; 60:89-99. [PMID: 27739691 DOI: 10.1021/acs.jmedchem.6b01123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fragment-based drug discovery (FBDD) is now well-established as a technology for generating new chemical leads and drugs. This Miniperspective provides a tabulated overview of the fragment-to-lead literature published in the year 2015, together with a commentary on trends observed across the FBDD field during this time. It is hoped that this tabulated summary will provide a useful point of reference for both FBDD practitioners and the wider medicinal chemistry community.
Collapse
Affiliation(s)
- Christopher N Johnson
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Carmot Therapeutics Inc. , 409 Illinois Street, San Francisco, California 94158, United States
| | - Christopher W Murray
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - David C Rees
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
32
|
Mendes V, Blundell TL. Targeting tuberculosis using structure-guided fragment-based drug design. Drug Discov Today 2016; 22:546-554. [PMID: 27742535 DOI: 10.1016/j.drudis.2016.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Fragment-based drug discovery is now widely used in academia and industry to obtain small molecule inhibitors for a given target and is established for many fields of research including antimicrobials and oncology. Many molecules derived from fragment-based approaches are already in clinical trials and two - vemurafenib and venetoclax - are on the market, but the approach has been used sparsely in the tuberculosis field. Here, we describe the progress of our group and others, and examine the most recent successes and challenges in developing compounds with antimycobacterial activity.
Collapse
Affiliation(s)
- Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK.
| |
Collapse
|
33
|
Mohammadi AA, Taheri S, Amouzegar A. An Efficient One‐Pot Four‐Component Synthesis of Some New Spirooxindole Dihydropyridine Using Alum as a Heterogeneous Green Catalyst. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ali A. Mohammadi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) PO Box 14335‐186 Tehran Iran
| | - Salman Taheri
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) PO Box 14335‐186 Tehran Iran
| | - Ali Amouzegar
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) PO Box 14335‐186 Tehran Iran
| |
Collapse
|
34
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
35
|
Liu J, Yan SJ, Cao ZM, Cui SS, Lin J. Synthesis of bicyclic 2-pyridones by regioselective annulations of heterocyclic ketene aminals with anhydrides. RSC Adv 2016. [DOI: 10.1039/c6ra23451h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient strategy for the synthesis of substituted bicyclic 2-pyridones is developed. The proposed approach is based on the regioselective N-acylation of heterocyclic ketene aminals (HKAs) with methacrylic anhydride or crotonic anhydride.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Zheng-Mao Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Shi-Sheng Cui
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
36
|
Efficient one-pot synthesis of 3,7-disubstituted 1,6-naphthyridin-2(1H)-ones through regioselective palladium-catalyzed cross-coupling and SNAr reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|