1
|
Collins VJ, Ludwig KR, Nelson AE, Rajan SS, Yeung C, Vulikh K, Isanogle KA, Mendoza A, Difilippantonio S, Karim BO, Caplen NJ, Heske CM. Enhancing Standard of Care Chemotherapy Efficacy Using DNA-Dependent Protein Kinase (DNA-PK) Inhibition in Preclinical Models of Ewing Sarcoma. Mol Cancer Ther 2024; 23:1109-1123. [PMID: 38657228 PMCID: PMC11293986 DOI: 10.1158/1535-7163.mct-23-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on nonhomologous end joining to repair DNA damage. In this study, we investigated if pharmacologic inhibition of the enzyme responsible for nonhomologous end joining, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe additivity model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single-agent TOP2 poisons induced G2M arrest and little apoptotic response while adding DNA-PKi-mediated apoptosis. In vivo, the combination of AZD7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.
Collapse
Affiliation(s)
- Victor J. Collins
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariana E. Nelson
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Choh Yeung
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kristine A. Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Arnulfo Mendoza
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christine M. Heske
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
3
|
Spriano F, Chung EYL, Gaudio E, Tarantelli C, Cascione L, Napoli S, Jessen K, Carrassa L, Priebe V, Sartori G, Graham G, Selvanathan SP, Cavalli A, Rinaldi A, Kwee I, Testoni M, Genini D, Ye BH, Zucca E, Stathis A, Lannutti B, Toretsky JA, Bertoni F. The ETS Inhibitors YK-4-279 and TK-216 Are Novel Antilymphoma Agents. Clin Cancer Res 2019; 25:5167-5176. [PMID: 31182435 DOI: 10.1158/1078-0432.ccr-18-2718] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Transcription factors are commonly deregulated in cancer, and they have been widely considered as difficult to target due to their nonenzymatic mechanism of action. Altered expression levels of members of the ETS-transcription factors are often observed in many different tumors, including lymphomas. Here, we characterized two small molecules, YK-4-279 and its clinical derivative, TK-216, targeting ETS factors via blocking the protein-protein interaction with RNA helicases, for their antilymphoma activity. EXPERIMENTAL DESIGN The study included preclinical in vitro activity screening on a large panel of cell lines, both as single agent and in combination; validation experiments on in vivo models; and transcriptome and coimmunoprecipitation experiments. RESULTS YK-4-279 and TK-216 demonstrated an antitumor activity across several lymphoma cell lines, which we validated in vivo. We observed synergistic activity when YK-4-279 and TK-216 were combined with the BCL2 inhibitor venetoclax and with the immunomodulatory drug lenalidomide. YK-4-279 and TK-216 interfere with protein interactions of ETS family members SPIB, in activated B-cell-like type diffuse large B-cell lymphomas, and SPI1, in germinal center B-cell-type diffuse large B-cell lymphomas. CONCLUSIONS The ETS inhibitor YK-4-279 and its clinical derivative TK-216 represent a new class of agents with in vitro and in vivo antitumor activity in lymphomas. Although their detailed mechanism of action needs to be fully defined, in DLBCL they might act by targeting subtype-specific essential transcription factors.
Collapse
Affiliation(s)
- Filippo Spriano
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Elaine Yee Lin Chung
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Laura Carrassa
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valdemar Priebe
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Giulio Sartori
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Garrett Graham
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Saravana P Selvanathan
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Andrea Cavalli
- Università della Svizzera italiana, Institute of Biomedical Research, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland
| | - Monica Testoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Genini
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - B Hilda Ye
- Department of Cell Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, New York
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.
| |
Collapse
|
4
|
Chander S, Tang CR, Penta A, Wang P, Bhagwat DP, Vanthuyne N, Albalat M, Patel P, Sankpal S, Zheng YT, Sankaranarayanan M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg Chem 2018; 79:212-222. [DOI: 10.1016/j.bioorg.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 02/08/2023]
|
5
|
Liu XW, Yang J, Wang GL, Gong Y, Feng TT, Liu XL, Cao Y, Zhou Y, Yuan WC. Molecular Hybridization-Guided Construction of Convolutamydine A-fused β
-Ionone Scaffolds and their Biological Evaluation for Anticancer Activities. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiong-Wei Liu
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Jun Yang
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Guan-Lian Wang
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Yi Gong
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Ting-Ting Feng
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Xiong-Li Liu
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Yu Cao
- Department of Dermatology; Hospital Affiliated to Guiyang Medical College; Guiyang 550025 People's Republic of China
| | - Ying Zhou
- Guizhou Medicine Edicine Edible Plant Resources Research and Development Center; Guizhou University; Guiyang 550025 People's Republic of China
| | - Wei-Cheng Yuan
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 People's Republic of China
| |
Collapse
|
6
|
Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome. J Inorg Biochem 2017; 170:46-54. [DOI: 10.1016/j.jinorgbio.2017.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
|
7
|
Novel Therapies and Future Directions in Treatment of Musculoskeletal Sarcomas. Sarcoma 2017. [DOI: 10.1007/978-3-319-43121-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Soini Y. Epigenetic and genetic changes in soft tissue sarcomas: a review. APMIS 2016; 124:925-934. [PMID: 27670825 DOI: 10.1111/apm.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
Abstract
Soft tissue sarcomas are a versatile group of tumors with a proposed origin from mesenchymal stem cells. During recent years, the molecular biologic mechanisms behind the histogenesis of these tumors have become clearer. In addition to translocations and other genomic changes, epigenetic mechanisms have been shown to be greatly involved in the histogenesis of sarcomas as well as other cancers. Even though the molecular mechanisms behind sarcomas appear to be more complex than previously expected, epigenetic mechanisms bring new opportunities and means for the treatment of these complex diseases.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, University of Eastern Finland, Kuopio and Cancer Center of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
9
|
Zhang QB, Jia WL, Ban YL, Zheng Y, Liu Q, Wu LZ. Autoxidation/Aldol Tandem Reaction of 2-Oxindoles with Ketones: A Green Approach for the Synthesis of 3-Hydroxy-2-Oxindoles. Chemistry 2016; 22:2595-8. [PMID: 26714924 DOI: 10.1002/chem.201504282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 01/27/2023]
Abstract
In the presence of tetrabutylammonium fluoride and molecular sieves (MS) 4 Å in DMF, an efficient autoxidation reaction of 2-oxindoles with ketones under air at room temperature has been developed. This approach may provide a green, practical, and metal-free protocol for a wide range of biologically important 3-hydroxy-3-(2-oxo-alkyl)-2-oxindoles.
Collapse
Affiliation(s)
- Qing-Bao Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Liang Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yong-Liang Ban
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yong Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
10
|
Hou C, Tsodikov OV. Structural Basis for Dimerization and DNA Binding of Transcription Factor FLI1. Biochemistry 2015; 54:7365-74. [PMID: 26618620 DOI: 10.1021/acs.biochem.5b01121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FLI1 (Friend leukemia integration 1) is a metazoan transcription factor that is upregulated in a number of cancers. In addition, rearrangements of the fli1 gene cause sarcomas, leukemias, and lymphomas. These rearrangements encode oncogenic transcription factors, in which the DNA binding domain (DBD or ETS domain) of FLI1 on the C-terminal side is fused to a part of an another protein on the N-terminal side. Such abnormal cancer cell-specific fusions retain the DNA binding properties of FLI1 and acquire non-native protein-protein or protein-nucleic acid interactions of the substituted region. As a result, these fusions trigger oncogenic transcriptional reprogramming of the host cell. Interactions of FLI1 fusions with other proteins and with itself play a critical role in the oncogenic regulatory functions, and they are currently under intense scrutiny, mechanistically and as potential novel anticancer drug targets. We report elusive crystal structures of the FLI1 DBD, alone and in complex with cognate DNA containing a GGAA recognition sequence. Both structures reveal a previously unrecognized dimer of this domain, consistent with its dimerization in solution. The homodimerization interface is helix-swapped and dominated by hydrophobic interactions, including those between two interlocking Phe362 residues. A mutation of Phe362 to an alanine disrupted the propensity of this domain to dimerize without perturbing its structure or the DNA binding function, consistent with the structural observations. We propose that FLI1 DBD dimerization plays a role in transcriptional activation and repression by FLI1 and its fusions at promoters containing multiple FLI1 binding sites.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
11
|
Sampson VB, Vetter NS, Kamara DF, Collier AB, Gresh RC, Kolb EA. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways. PLoS One 2015; 10:e0142704. [PMID: 26571493 PMCID: PMC4646493 DOI: 10.1371/journal.pone.0142704] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/26/2015] [Indexed: 11/03/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have been evaluated in patients with Ewing sarcoma (EWS) but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor) plus the alkylating agent temozolomide (ST). Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS) production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.
Collapse
Affiliation(s)
- Valerie B. Sampson
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Nancy S. Vetter
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Davida F. Kamara
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Anderson B. Collier
- Department of Pediatrics, Division of Hematology and Oncology, Children's Healthcare of Mississippi, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Renee C. Gresh
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sand LGL, Szuhai K, Hogendoorn PCW. Sequencing Overview of Ewing Sarcoma: A Journey across Genomic, Epigenomic and Transcriptomic Landscapes. Int J Mol Sci 2015; 16:16176-215. [PMID: 26193259 PMCID: PMC4519945 DOI: 10.3390/ijms160716176] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma is an aggressive neoplasm occurring predominantly in adolescent Caucasians. At the genome level, a pathognomonic EWSR1-ETS translocation is present. The resulting fusion protein acts as a molecular driver in the tumor development and interferes, amongst others, with endogenous transcription and splicing. The Ewing sarcoma cell shows a poorly differentiated, stem-cell like phenotype. Consequently, the cellular origin of Ewing sarcoma is still a hot discussed topic. To further characterize Ewing sarcoma and to further elucidate the role of EWSR1-ETS fusion protein multiple genome, epigenome and transcriptome level studies were performed. In this review, the data from these studies were combined into a comprehensive overview. Presently, classical morphological predictive markers are used in the clinic and the therapy is dominantly based on systemic chemotherapy in combination with surgical interventions. Using sequencing, novel predictive markers and candidates for immuno- and targeted therapy were identified which were summarized in this review.
Collapse
Affiliation(s)
- Laurens G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
13
|
Sun Q, Tian H, Qu H, Sun D, Chen Z, Duan L, Zhang W, Qian J. Discrimination between streptavidin and avidin with fluorescent affinity-based probes. Analyst 2015; 140:4648-53. [DOI: 10.1039/c5an00585j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SPS3 showed a high fluorescence response toward streptavidin and could discriminate biotin receptor over-expressed Hela cells from other cells.
Collapse
Affiliation(s)
- Qian Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haiyu Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haoran Qu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Deheng Sun
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- China
| | - Zhuo Chen
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- China
| | - Liping Duan
- National Institute of Parasitic Diseases
- Chinese Center for Disease Control and Prevention
- Shanghai
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|