1
|
Ma HC, Jiang HP, Yao ZH, Tan JF, Xing YY, Chen GJ, Dong YB. Binaphthyl-based chiral covalent organic frameworks for chiral drug separation. Chem Commun (Camb) 2024; 60:10580-10583. [PMID: 39233666 DOI: 10.1039/d4cc02028f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Separation of racemic drugs is of great importance and interest in chemistry and pharmacology. Here, we report the bottom-up synthesis of the binaphthyl-based chiral covalent organic frameworks (CCOFs), (R)-BHTP-COF. Then, high-performance liquid chromatography (HPLC) columns were prepared using (R)-BHTP-COF as a chiral stationary phase (CSP). Racemic ibuprofen was successfully baseline-separated on (R)-BHTP-COF-based CSP, and achieved excellent selectivity (α = 2.32) and chromatographic resolution (Rs = 3.39) factors. Meanwhile, the separation of six racemic drugs by the (R)-BHTP-COF-packed column exhibited high resolution, selectivity, and durability. The successful applications indicate the great potential of CCOFs as a novel stationary phase for efficient HPLC separation.
Collapse
Affiliation(s)
- Hui-Chao Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Hai-Ping Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zi-Hui Yao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jun-Feng Tan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yang-Yang Xing
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Gong-Jun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
2
|
Park JY, Park J, Baek J, Chang JW, Kim YG, Chang WS. Long-term results on the suppression of secondary brain injury by early administered low-dose baclofen in a traumatic brain injury mouse model. Sci Rep 2023; 13:18563. [PMID: 37903976 PMCID: PMC10616194 DOI: 10.1038/s41598-023-45600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Secondary injury from traumatic brain injury (TBI) perpetuates cerebral damages through varied ways. Attenuating neuroinflammation, which is a key feature of TBI, is important for long-term prognosis of its patients. Baclofen, a muscle relaxant, has shown promise in reducing excessive inflammation in other neurologic disorders. However, its effectiveness in TBI remains ambiguous. Thus, our study aimed to investigate whether early administration of baclofen could elicit potential therapeutic effects by diminishing exaggerated neuroinflammation in TBI mice. In this study, 80 C57BL/6 mice were used, of which 69 mice received controlled cortical impact. The mice were divided into six groups (11-16 mice each). Baclofen, administered at dose of 0.05, 0.2 and 1 mg/kg, was injected intraperitoneally a day after TBI for 3 consecutive weeks. 3 weeks after completing the treatments, the mice were assessed histologically. The results showed that mice treated with baclofen exhibited a significantly lower volume of lesion tissue than TBI mice with normal saline. Baclofen also reduced activated glial cells with neurotoxic immune molecules and inhibited apoptotic cells. Significant recovery was observed and sustained for 6 weeks at the 0.2 mg/kg dose in the modified neurological severity score. Furthermore, memory impairment was recovered with low-doses of baclofen in the Y-maze. Our findings demonstrate that early administration of low dose baclofen can regulate neuroinflammation, prevent cell death, and improve TBI motor and cognitive abnormalities.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junwon Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwon Baek
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Goo Kim
- Department of Neurosurgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Mok 5-dong, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Wang P, Nan S, Zhang Y, Fan J. Effects of GABA B receptor positive allosteric modulator BHF177 and IRS-1 on apoptosis of hippocampal neurons in rats with refractory epilepsy via the PI3K/Akt pathway. Cell Biol Int 2022; 46:1775-1786. [PMID: 35989486 DOI: 10.1002/cbin.11839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/12/2021] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
The present study was conducted to determine the effects of the γ-aminobutyric acid B (GABAB ) receptor positive allosteric modulator BHF177 on refractory epilepsy (RE). An RE rat model was initially established via treatment with lithium-pilocarpine. The RE rats were then treated with BHF177 or the GABAB receptor antagonist CGP46381, followed by recording of their seizure rate and assessment of their spatial learning in the Morris water maze test. Treatment of BHF177 reduced the seizure intensity, whereas this effect was revered upoj treatment with CGP46381. Immunohistochemistry revealed that BHF177 treatment diminished P-glycoprotein (P-gp) expression in the hippocampal tissues of RE rats. Next, we found that BHF177 activated GABAB receptor, resulting in upregulated expression of insulin receptor substrate 1 (IRS-1) and PI3K, as well as antiapoptotic factors (Bcl-2 and mTOR), along with suppression of the apoptosis factors Bax and cleaved caspase-3 in the hippocampal tissues. Further, activation of GABAB receptors by BHF177 alleviated the inflammatory response in hippocampal tissues of RE rats, as evidenced by reduced VCAM-1, ICAM-1, and tumor necrosis factor-α levels. Next, we treated primary cultured rat hippocampal neurons with BHF177 and the IRS-1 selective inhibitor NT157. BHF177 inhibited hippocampal apoptosis in rat hippocampal neurons by regulating the IRS-1/PI3K/Akt axis through crosstalk between GABAB and insulin-like growth factor-1 receptors. Collectively, our findings indicate that the BHF177 inhibited neuron apoptosis, thus protecting against RE through the IRS-1/PI3K/Akt axis, which may present a new therapeutic channel for RE.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Garsi JB, Guggari S, Deis T, Ma M, Hocine S, Hanessian S. 2-Oxa-5-azabicyclo[2.2.1]heptane as a Platform for Functional Diversity: Synthesis of Backbone-Constrained γ-Amino Acid Analogues. J Org Chem 2022; 87:11261-11273. [PMID: 35900070 DOI: 10.1021/acs.joc.2c01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We communicate a versatile synthetic approach to C-3 disubstituted 2-oxa-5-azabicyclo[2.2.1]heptanes as carbon-atom bridged morpholines, starting with 4R-hydroxy-l-proline as a chiron. Attaching an acetic acid moiety on the C-3 carbon of the 2-oxa-5-azabicyclo[2.2.1]heptane core reveals the framework of an embedded γ-amino butyric acid (GABA). Variations in the nature of the substituent on the tertiary C-3 atom with different alkyls or aryls led to backbone-constrained analogues of the U.S. Food and Drug Administration-approved drugs baclofen and pregabalin.
Collapse
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Solène Guggari
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Thomas Deis
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Myles Ma
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Sofiane Hocine
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
5
|
Lin TY, Lu CW, Hsieh PW, Chiu KM, Lee MY, Wang SJ. Natural Product Isoliquiritigenin Activates GABA B Receptors to Decrease Voltage-Gate Ca 2+ Channels and Glutamate Release in Rat Cerebrocortical Nerve Terminals. Biomolecules 2021; 11:biom11101537. [PMID: 34680170 PMCID: PMC8534184 DOI: 10.3390/biom11101537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Reduction in glutamate release is a key mechanism for neuroprotection and we investigated the effect of isoliquiritigenin (ISL), an active ingredient of Glycyrrhiza with neuroprotective activities, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). ISL produced a concentration-dependent inhibition of glutamate release and reduced the intraterminal [Ca2+] increase. The inhibition of glutamate release by ISL was prevented after removing extracellular Ca2+ or blocking P/Q-type Ca2+ channels. This inhibition was mediated through the γ-aminobutyric acid type B (GABAB) receptors because ISL was unable to inhibit glutamate release in the presence of baclofen (an GABAB agonist) or CGP3548 (an GABAB antagonist) and docking data revealed that ISL interacted with GABAB receptors. Furthermore, the ISL inhibition of glutamate release was abolished through the inhibition of Gi/o-mediated responses or Gβγ subunits, but not by 8-bromoadenosine 3′,5′-cyclic monophosphate or adenylate cyclase inhibition. The ISL inhibition of glutamate release was also abolished through the inhibition of protein kinase C (PKC), and ISL decreased the phosphorylation of PKC. Thus, we inferred that ISL, through GABAB receptor activation and Gβγ-coupled inhibition of P/Q-type Ca2+ channels, suppressed the PKC phosphorylation to cause a decrease in evoked glutamate release at rat cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; (T.-Y.L.); (C.-W.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan; (T.-Y.L.); (C.-W.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: ; Tel.: +88-62-2905-3465; Fax: +88-62-2905-2096
| |
Collapse
|
6
|
Maltsev DV, Spasov AA, Miroshnikov MV, Skripka MO. Current Approaches to the Search of Anxiolytic Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Jiang H, Yang K, Zhao X, Zhang W, Liu Y, Jiang J, Cui Y. Highly Stable Zr(IV)-Based Metal-Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography. J Am Chem Soc 2020; 143:390-398. [PMID: 33356210 DOI: 10.1021/jacs.0c11276] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity.
Collapse
Affiliation(s)
- Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiangxiang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Miró R, Cunillera A, Margalef J, Lutz D, Börner A, Pamiès O, Diéguez M, Godard C. Rh-Catalyzed Asymmetric Hydroaminomethylation of α-Substituted Acrylamides: Application in the Synthesis of RWAY. Org Lett 2020; 22:9036-9040. [PMID: 33164527 DOI: 10.1021/acs.orglett.0c03433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The successful rhodium-catalyzed asymmetric hydroformylation and hydroaminomethylation of α-substituted acrylamides is described using 1,3-phosphite-phosphoramidite ligands based on a sugar backbone. A broad scope of chiral aldehydes and amines were afforded in high yields and excellent enantioselectivities (up to 99%). Furthermore, the synthetic potential of this method is demonstrated by the single-step synthesis of the brain imaging molecule RWAY.
Collapse
Affiliation(s)
- Roger Miró
- Departament de Química Física i Inorgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Anton Cunillera
- Departament de Química Física i Inorgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Jèssica Margalef
- Departament de Química Física i Inorgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Domke Lutz
- Leibniz-Institut für Katalyse e.V. Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Armin Börner
- Leibniz-Institut für Katalyse e.V. Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Oscar Pamiès
- Departament de Química Física i Inorgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Montserrat Diéguez
- Departament de Química Física i Inorgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Cyril Godard
- Departament de Química Física i Inorgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| |
Collapse
|
9
|
Evenseth LSM, Gabrielsen M, Sylte I. The GABA B Receptor-Structure, Ligand Binding and Drug Development. Molecules 2020; 25:molecules25133093. [PMID: 32646032 PMCID: PMC7411975 DOI: 10.3390/molecules25133093] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
The γ-aminobutyric acid (GABA) type B receptor (GABAB-R) belongs to class C of the G-protein coupled receptors (GPCRs). Together with the GABAA receptor, the receptor mediates the neurotransmission of GABA, the main inhibitory neurotransmitter in the central nervous system (CNS). In recent decades, the receptor has been extensively studied with the intention being to understand pathophysiological roles, structural mechanisms and develop drugs. The dysfunction of the receptor is linked to a broad variety of disorders, including anxiety, depression, alcohol addiction, memory and cancer. Despite extensive efforts, few compounds are known to target the receptor, and only the agonist baclofen is approved for clinical use. The receptor is a mandatory heterodimer of the GABAB1 and GABAB2 subunits, and each subunit is composed of an extracellular Venus Flytrap domain (VFT) and a transmembrane domain of seven α-helices (7TM domain). In this review, we briefly present the existing knowledge about the receptor structure, activation and compounds targeting the receptor, emphasizing the role of the receptor in previous and future drug design and discovery efforts.
Collapse
Affiliation(s)
- Linn Samira Mari Evenseth
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Mari Gabrielsen
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
10
|
Abstract
Baclofen, β-(4-chlorophenyl)-γ-aminobutyric acid, holds a unique position in neuroscience, remaining the only U.S. Food and Drug Administration (FDA) approved GABAB agonist. While intended to be a more brain penetrant, i.e, ability to cross the blood-brain barrier (BBB), version of GABA (γ-aminobutyric acid) for the potential treatment of epilepsy, baclofen's highly efficacious muscle relaxant properties led to its approval, as a racemate, for the treatment of spasticity. Interestingly, baclofen received FDA approval before its receptor, GABAB, was discovered and its exact mechanism of action was known. In recent times, baclofen has a myriad of off-label uses, with the treatment for alcohol abuse and drug addiction garnering a great deal of attention. This Review aims to capture the >60 year legacy of baclofen by walking through the history, pharmacology, synthesis, drug metabolism, routes of administration, and societal impact of this Classic in chemical neuroscience.
Collapse
Affiliation(s)
- Caitlin N. Kent
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Charlotte Park
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Wu L, Wang L, Chen P, Guo Y, Liu G. Enantioselective Copper‐Catalyzed Radical Ring‐Opening Cyanation of Cyclopropanols and Cyclopropanone Acetals. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lianqian Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinghong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin‐Long Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Cunillera A, de los Bernardos MD, Urrutigoïty M, Claver C, Ruiz A, Godard C. Efficient synthesis of chiral γ-aminobutyric esters via direct rhodium-catalysed enantioselective hydroaminomethylation of acrylates. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01797f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first successful rhodium catalysed asymmetric hydroaminomethylation of alkenes using a single catalyst is reported with ees up to 86%.
Collapse
Affiliation(s)
- Anton Cunillera
- Departament de Química Física i Inorgànica
- Universitat Rovira I Virgili
- Tarragona
- Spain
| | | | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination
- LCC
- Université de Toulouse
- CNRS
- 31030 Toulouse Cedex 4
| | - Carmen Claver
- Departament de Química Física i Inorgànica
- Universitat Rovira I Virgili
- Tarragona
- Spain
- Centre Tecnològic de Química de Catalunya-Eurecat
| | - Aurora Ruiz
- Departament de Química Física i Inorgànica
- Universitat Rovira I Virgili
- Tarragona
- Spain
| | - Cyril Godard
- Departament de Química Física i Inorgànica
- Universitat Rovira I Virgili
- Tarragona
- Spain
| |
Collapse
|
13
|
Kniazeff J. The different aspects of the GABAB receptor allosteric modulation. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:83-113. [DOI: 10.1016/bs.apha.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Lima Neto JX, Bezerra KS, Barbosa ED, Oliveira JIN, Manzoni V, Soares-Rachetti VP, Albuquerque EL, Fulco UL. Exploring the Binding Mechanism of GABAB Receptor Agonists and Antagonists through in Silico Simulations. J Chem Inf Model 2019; 60:1005-1018. [DOI: 10.1021/acs.jcim.9b01025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Emmanuel D. Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Vinícius Manzoni
- Instituto de Física, Universidade Federal do Alagoas, 57072-970 Maceió-AL, Brazil
| | - Vanessa P. Soares-Rachetti
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Eudenilson L. Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
15
|
Cirujano FG. Engineered MOFs and Enzymes for the Synthesis of Active Pharmaceutical Ingredients. ChemCatChem 2019. [DOI: 10.1002/cctc.201900131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francisco G. Cirujano
- Centre for Surface Chemistry and CatalysisKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
16
|
Geisel O, Hellweg R, Wernecke KD, Wiedemann K, Müller CA. Total and acylated ghrelin plasma levels as potential long-term response markers in alcohol-dependent patients receiving high-dose of the GABA-B receptor agonist baclofen. Psychiatry Res 2019; 272:431-437. [PMID: 30611960 DOI: 10.1016/j.psychres.2018.12.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023]
Abstract
The orexigenic hormone ghrelin is involved in the regulation of food intake and energy balance. Previous findings suggest its involvement in the modulation of mesolimbic reward pathways, thus potentially being relevant in the pathophysiology of substance use disorders such as alcohol dependence. In the present study, we assessed plasma levels of total and acylated ghrelin within the BACLAD trial, where alcohol-dependent patients received individually titrated high-dose baclofen (30-270 mg/d) within a randomized, placebo-controlled design. Plasma levels of total ghrelin and acylated ghrelin were measured at baseline, during treatment with individually titrated high-dose baclofen and after termination of the study medication within a timeframe of up to 20 weeks. Multivariate longitudinal non-parametric analysis revealed that plasma levels of total ghrelin significantly decreased in the group of abstinent patients receiving high-dose baclofen. In addition, plasma levels of total ghrelin correlated negatively with days of abstinence during treatment with high-dose baclofen. Plasma levels of acylated ghrelin increased during the study in the group of relapsed patients under baclofen and placebo treatment. These findings suggest that the long-term response to baclofen treatment in alcohol use disorder (AUD) might be monitored by assessing total and acylated ghrelin plasma levels.
Collapse
Affiliation(s)
- Olga Geisel
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Rainer Hellweg
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Klaus Wiedemann
- Department of Psychiatry, Universitätsklinikum Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian A Müller
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
QSAR and Molecular Docking Studies of the Inhibitory Activity of Novel Heterocyclic GABA Analogues over GABA-AT. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23112984. [PMID: 30445747 PMCID: PMC6278377 DOI: 10.3390/molecules23112984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022]
Abstract
We have previously reported the synthesis, in vitro and in silico activities of new GABA analogues as inhibitors of the GABA-AT enzyme from Pseudomonas fluorescens, where the nitrogen atom at the γ-position is embedded in heterocyclic scaffolds. With the goal of finding more potent inhibitors, we now report the synthesis of a new set of GABA analogues with a broader variation of heterocyclic scaffolds at the γ-position such as thiazolidines, methyl-substituted piperidines, morpholine and thiomorpholine and determined their inhibitory potential over the GABA-AT enzyme from Pseudomonas fluorescens. These structural modifications led to compound 9b which showed a 73% inhibition against this enzyme. In vivo studies with PTZ-induced seizures on male CD1 mice show that compound 9b has a neuroprotective effect at a 0.50 mmole/kg dose. A QSAR study was carried out to find the molecular descriptors associated with the structural changes in the GABA scaffold to explain their inhibitory activity against GABA-AT. Employing 3D molecular descriptors allowed us to propose the GABA analogues enantiomeric active form. To evaluate the interaction with Pseudomonas fluorescens and human GABA-AT by molecular docking, the constructions of homology models was carried out. From these calculations, 9b showed a strong interaction with both GABA-AT enzymes in agreement with experimental results and the QSAR model, which indicates that bulky ligands tend to be the better inhibitors especially those with a sulfur atom on their structure.
Collapse
|
18
|
Sowaileh MF, Salyer AE, Roy KK, John JP, Woods JR, Doerksen RJ, Hockerman GH, Colby DA. Agonists of the γ-aminobutyric acid type B (GABA B) receptor derived from β-hydroxy and β-amino difluoromethyl ketones. Bioorg Med Chem Lett 2018; 28:2697-2700. [PMID: 29657102 PMCID: PMC6152937 DOI: 10.1016/j.bmcl.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 01/26/2023]
Abstract
β-Hydroxy difluoromethyl ketones represent the newest class of agonists of the GABA-B receptor, and they are structurally distinct from all other known agonists at this receptor because they do not display the carboxylic acid or amino group of γ-aminobutyric acid (GABA). In this report, the design, synthesis, and biological evaluation of additional analogues of β-hydroxy difluoromethyl ketones characterized the critical nature of the substituted aromatic group on the lead compound. The importance of these new data is interpreted by docking studies using the X-ray structure of the GABA-B receptor. Moreover, we also report that the synthesis and biological evaluation of β-amino difluoromethyl ketones provided the most potent compound across these two series.
Collapse
Affiliation(s)
- Munia F Sowaileh
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
| | - Amy E Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Kuldeep K Roy
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
| | - Jinu P John
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - James R Woods
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States.
| |
Collapse
|
19
|
Farokhnia M, Sheskier MB, Lee MR, Le AN, Singley E, Bouhlal S, Ton T, Zhao Z, Leggio L. Neuroendocrine response to GABA-B receptor agonism in alcohol-dependent individuals: Results from a combined outpatient and human laboratory experiment. Neuropharmacology 2018; 137:230-239. [PMID: 29665351 PMCID: PMC6050109 DOI: 10.1016/j.neuropharm.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the nervous system, plays an important role in biobehavioral processes that regulate alcohol seeking, food intake, and stress response. The metabotropic GABA-B receptor has been investigated as a potential therapeutic target for alcohol use disorder, by using orthosteric agonists (e.g., baclofen) and positive allosteric modulators. Whether and how pharmacological manipulation of the GABA-B receptor, in combination with alcohol intake, may affect feeding- and stress-related neuroendocrine pathways remains unknown. In the present randomized, double-blind, placebo-controlled study, thirty-four alcohol-dependent individuals received baclofen (30 mg/day) or placebo in a naturalistic outpatient setting for one week, and then performed a controlled laboratory experiment which included alcohol cue-reactivity, fixed-dose priming, and self-administration procedures. Blood samples were collected, and the following neuroendocrine markers were measured: ghrelin, leptin, amylin, glucagon-like peptide-1 (GLP-1), insulin, prolactin, thyroid-stimulating hormone, growth hormone, cortisol, and adrenocorticotropic hormone (ACTH). During the outpatient phase, baclofen significantly increased blood concentrations of acyl-ghrelin (p = 0.01), leptin (p = 0.01), amylin (p = 0.004), and GLP-1 (p = 0.02). Significant drug × time-point interaction effects for amylin (p = 0.001) and insulin (p = 0.03), and trend-level interaction effects for GLP-1 (p = 0.06) and ACTH (p = 0.10) were found during the laboratory experiment. Baclofen, compared to placebo, had no effect on alcohol drinking in this study (p's ≥ 0.05). Together with previous studies, these findings shed light on the role of the GABAergic system and GABA-B receptors in the shared neurobiology of alcohol-, feeding-, and stress-related behaviors.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mikela B Sheskier
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - April N Le
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Erick Singley
- Clinical Core Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sofia Bouhlal
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Timmy Ton
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Zhao
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Tovar-Gudiño E, Guevara-Salazar JA, Bahena-Herrera JR, Trujillo-Ferrara JG, Martínez-Campos Z, Razo-Hernández RS, Santiago Á, Pastor N, Fernández-Zertuche M. Novel-Substituted Heterocyclic GABA Analogues. Enzymatic Activity against the GABA-AT Enzyme from Pseudomonas fluorescens and In Silico Molecular Modeling. Molecules 2018; 23:molecules23051128. [PMID: 29747438 PMCID: PMC6099672 DOI: 10.3390/molecules23051128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the central nervous system, and a deficiency of GABA is associated with serious neurological disorders. Due to its low lipophilicity, there has been an intensive search for new molecules with increased lipophilicity to cross the blood-brain barrier to raise GABA concentrations. We have designed and evaluated in vitro and in silico some new analogues of GABA, where the nitrogen atom at the γ-position is embedded in heterocyclic scaffolds and determined their inhibitory potential over the GABA-AT enzyme from Pseudomonas fluorescens. These modifications lead to compounds with inhibitory activity as it occurs with compounds 18a and 19a. The construction of Pseudomonas fluorescens and human GABA-AT models were carried out by homology modeling. Docking assays were done for these compounds over the GABA-AT enzyme models where 19a showed a strong interaction with both GABA-AT enzymes.
Collapse
Affiliation(s)
- Erika Tovar-Gudiño
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
| | - Juan Alberto Guevara-Salazar
- Departmento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Cd Mexico 11340, Mexico.
| | - José Raúl Bahena-Herrera
- Departmento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Cd Mexico 11340, Mexico.
| | | | - Zuleyma Martínez-Campos
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
| | - Rodrigo Said Razo-Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
| | - Ángel Santiago
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
| | - Mario Fernández-Zertuche
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico.
| |
Collapse
|
21
|
Varani AP, Pedrón VT, Aon AJ, Höcht C, Acosta GB, Bettler B, Balerio GN. Nicotine-induced molecular alterations are modulated by GABA B receptor activity. Addict Biol 2018; 23:230-246. [PMID: 28419642 DOI: 10.1111/adb.12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
Abstract
It has been demonstrated that GABAB receptors modulate nicotine (NIC) reward effect; nevertheless, the mechanism implicated is not well known. In this regard, we evaluated the involvement of GABAB receptors on the behavioral, neurochemical, biochemical and molecular alterations associated with the rewarding effects induced by NIC in mice, from a pharmacological and genetic approach. NIC-induced rewarding properties (0.5 mg/kg, subcutaneously, sc) were evaluated by conditioned place preference (CPP) paradigm. CPP has three phases: preconditioning, conditioning and postconditioning. GABAB receptor antagonist 2-hydroxysaclofen (0.25, 0.5 and 1 mg/kg; intraperitoneally, ip) or the GABAB receptor agonist baclofen (3 mg/kg; ip) was injected before NIC during the conditioning phase. GABAB1 knockout (GABAB1 KO) mice received NIC during the conditioning phase. Vehicle and wild-type controls were employed. Neurochemical (dopamine, serotonin and their metabolites), biochemical (nicotinic receptor α4β2, α4β2nAChRs) and molecular (c-Fos) alterations induced by NIC were analyzed after the postconditioning phase by high-performance liquid chromatography (HPLC), receptor-ligand binding assays and immunohistochemistry, respectively, in nucleus accumbens (Acb), prefrontal cortex (PFC) and ventral tegmental area (VTA). NIC induced rewarding effects in the CPP paradigm and increased dopamine levels in Acb and PFC, α4β2nAChRs density in VTA and c-Fos expression in Acb shell (AcbSh), VTA and PFC. We showed that behavioral, neurochemical, biochemical and molecular alterations induced by NIC were prevented by baclofen. However, in 2-hydroxysaclofen pretreated and GABAB1 KO mice, these alterations were potentiated, suggesting that GABAB receptor activity is necessary to control alterations induced by NIC-induced rewarding effects. Therefore, the present findings provided important contributions to the mechanisms implicated in NIC-induced rewarding effects.
Collapse
Affiliation(s)
- Andres P Varani
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Valeria T Pedrón
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Amira J Aon
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Gabriela B Acosta
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Switzerland
| | - Graciela N Balerio
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
22
|
Flohr A, Hutter R, Mueller B, Bohnert C, Pellisson M, Schaffhauser H. Discovery of the first low-shift positive allosteric modulators for the muscarinic M1 receptor. Bioorg Med Chem Lett 2017; 27:5415-5419. [PMID: 29146472 DOI: 10.1016/j.bmcl.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 11/16/2022]
Abstract
Positive modulation of the muscarinic M1-receptor has for a long time attracted scientists and drug developers for the potential treatment of Alzheimer's disease or Schizophrenia. The precognitive potential of M1 activation has however not been clinically demonstrated as a result of side effects associated both with agonists and positive allosteric modulators (PAM's) of the M1-receptor. To avoid excessive activation of the M1-receptor we have designed a new screening format and developed the first low-shift positive allosteric modulators for the M1 receptor. Low-shift PAM's offer the potential of "use-dependent" attenuation of transmitter-signaling while avoiding pseudo-agonistic behavior in vivo as a common limitation of the so far described high-shift PAM's. With these novel M1-PAM's, the M1 receptor is potentially the first GPCR for which both, high- and low shift PAM's have become available.
Collapse
Affiliation(s)
- Alexander Flohr
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland.
| | - Roman Hutter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Barbara Mueller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Claudia Bohnert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Mélanie Pellisson
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Hervé Schaffhauser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
23
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
24
|
Abdel-Magid AF. Therapeutic Advantage of the Positive Allosteric Modulators of the GABA-B Receptor. ACS Med Chem Lett 2017; 8:474-475. [PMID: 28523095 DOI: 10.1021/acsmedchemlett.7b00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 11/29/2022] Open
|
25
|
Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 2017; 12:e0173889. [PMID: 28323850 PMCID: PMC5360267 DOI: 10.1371/journal.pone.0173889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system, and disturbances in the GABAergic system have been implicated in numerous neurological and neuropsychiatric diseases. The GABAB receptor is a heterodimeric class C G protein-coupled receptor (GPCR) consisting of GABAB1a/b and GABAB2 subunits. Two GABAB receptor ligand binding sites have been described, namely the orthosteric GABA binding site located in the extracellular GABAB1 Venus fly trap domain and the allosteric binding site found in the GABAB2 transmembrane domain. To date, the only experimentally solved three-dimensional structures of the GABAB receptor are of the Venus fly trap domain. GABAB receptor allosteric modulators, however, show great therapeutic potential, and elucidating the structure of the GABAB2 transmembrane domain may lead to development of novel drugs and increased understanding of the allosteric mechanism of action. Despite the lack of x-ray crystal structures of the GABAB2 transmembrane domain, multiple crystal structures belonging to other classes of GPCRs than class A have been released within the last years. More closely related template structures are now available for homology modelling of the GABAB receptor. Here, multiple homology models of the GABAB2 subunit of the GABAB receptor have been constructed using templates from class A, B and C GPCRs, and docking of five clusters of positive allosteric modulators and decoys has been undertaken to select models that enrich the active compounds. Using this ligand-guided approach, eight GABAB2 homology models have been chosen as possible structural representatives of the transmembrane domain of the GABAB2 subunit. To the best of our knowledge, the present study is the first to describe homology modelling of the transmembrane domain of the GABAB2 subunit and the docking of positive allosteric modulators in the receptor.
Collapse
Affiliation(s)
- Thibaud Freyd
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Dawid Warszycki
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Stefan Mordalski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Ordóñez M, Cativiela C, Romero-Estudillo I. An update on the stereoselective synthesis of γ-amino acids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Song Y, Rundberget JT, Evenseth LM, Xie L, Gomes T, Høgåsen T, Iguchi T, Tollefsen KE. Whole-Organism Transcriptomic Analysis Provides Mechanistic Insight into the Acute Toxicity of Emamectin Benzoate in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11994-12003. [PMID: 27704796 DOI: 10.1021/acs.est.6b03456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emamectin benzoate (EMB) is an antisea lice chemical widely used in the aquaculture that may also unintentionally affect nontarget crustaceans in the environment. Although the adverse effects of this compound are well documented in various species, the full modes of action (MoAs) are still not well characterized. The current study was therefore conducted to characterize the MoAs of EMB and link perturbations of key toxicological pathways to adverse effects in the model freshwater crustacean Daphnia magna. Effects on molting and survival were determined after 48 h exposure to EMB, whereas global transcriptional changes and the ecdysone receptor (EcR) binding potency was determined to characterize the MoA. The results showed that the molting frequency and survival of D. magna decreased in a concentration-dependent manner, and the observed changes could not be attributed to direct interactions with the EcR. Major MoAs such as activation of glutamate-gated chloride channels and gamma-aminobutyric acid signaling, disruption of neuroendocrine regulation of molting, perturbation of energy homeostasis, suppression of DNA repair and induction of programmed cell death were observed by transcriptional analysis and successfully linked to the adverse effects. This study has demonstrated that acute exposure to intermediate and high pM levels of EMB may pose hazards to nontarget crustaceans in the aquatic environment.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment , Gaustadalléen 21, N-0349 Oslo, Norway
| | - Jan Thomas Rundberget
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment , Gaustadalléen 21, N-0349 Oslo, Norway
| | - Linn Mari Evenseth
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway , NO-9037 Tromsø, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment , Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU) , Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD). P.O. Box 5003, N-1432 Ås, Oslo, Norway
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment , Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU) , Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD). P.O. Box 5003, N-1432 Ås, Oslo, Norway
| | - Tore Høgåsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment , Gaustadalléen 21, N-0349 Oslo, Norway
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI, Graduate University for Advanced Studies , 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment , Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU) , Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD). P.O. Box 5003, N-1432 Ås, Oslo, Norway
| |
Collapse
|
28
|
Pham TH, Mendez-David I, Defaix C, Guiard BP, Tritschler L, David DJ, Gardier AM. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology 2016; 112:198-209. [PMID: 27211253 DOI: 10.1016/j.neuropharm.2016.05.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 11/18/2022]
Abstract
Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT]ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT]ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT]ext following intra-mPFCx ketamine bilateral injection (0.25 μg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT]ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following the blockade of glutamatergic NMDA receptors. Tight interactions between mPFCx glutamatergic and serotonergic systems may explain the differences in this activity between ketamine and fluoxetine in vivo. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- T H Pham
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, INSERM UMR-S 1178, Chatenay Malabry, 92290, France
| | - I Mendez-David
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, INSERM UMR-S 1178, Chatenay Malabry, 92290, France
| | - C Defaix
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, INSERM UMR-S 1178, Chatenay Malabry, 92290, France
| | - B P Guiard
- UMR5169 CNRS "Centre de Recherches sur la Cognition Animale », Toulouse, 31062, France
| | - L Tritschler
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, INSERM UMR-S 1178, Chatenay Malabry, 92290, France
| | - D J David
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, INSERM UMR-S 1178, Chatenay Malabry, 92290, France
| | - A M Gardier
- Université Paris-Saclay, Univ. Paris-Sud, Faculté de Pharmacie, INSERM UMR-S 1178, Chatenay Malabry, 92290, France.
| |
Collapse
|