1
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
2
|
Gani I, Sofi ZI, Kaur G, Goswami A, Bhat KA. Hemisynthesis and cytotoxic evaluation of manoyl oxide analogs from sclareol: effect of two tertiary hydroxyls & Heck coupling on cytotoxicity. Nat Prod Res 2024:1-10. [PMID: 38635350 DOI: 10.1080/14786419.2024.2342558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
Sclareol, a bioactive diterpene alcohol isolated from Salvia sclarea, was subjected to structural modification and cytotoxic evaluation. Boron-Heck-coupled analogs of manoyl oxide were prepared from sclareol in a two-step reaction scheme. In the first step manoyl oxide was prepared from sclareol using cerium (IV) ammonium nitrate. Further the structural modification of manoyl oxide via Palladium (II) catalysed Boron-Heck coupling reaction produced a new series of compounds. All the synthesised compounds were screened for in vitro cytotoxic evaluation against four cancer cell lines HCT-116, MCF-7, MDA-MB231and MDA-MB468. The results showed that manoyl oxide is less active than sclareol. Sclareol shows an IC50 of 2.0 µM compared to manoyl oxide with an IC50 of 50 µM against the MCF-7 cell line. From the results it was inferred that the presence of two tertiary hydroxyls in sclareol are necessary for its cytotoxic activity and Heck coupled analogs are more active than sclareol and manoyl oxide.
Collapse
Affiliation(s)
- Ifshana Gani
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Zahidul Islam Sofi
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
| | - Gursimar Kaur
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Khursheed Ahmad Bhat
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Khanum A, Bibi Y, Khan I, Mustafa G, Attia KA, Mohammed AA, Yang SH, Qayyum A. Molecular docking of bioactive compounds extracted and purified from selected medicinal plant species against covid-19 proteins and in vitro evaluation. Sci Rep 2024; 14:3736. [PMID: 38355953 PMCID: PMC10866962 DOI: 10.1038/s41598-024-54470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
Bioactive compounds are secondary metabolites of plants. They offer diverse pharmacological properties. Peganum harmala is reported to have pharmaceutical effects like insecticidal, antitumor, curing malaria, anti-spasmodic, vasorelaxant, antihistaminic effect. Rosa brunonii has medicinal importance in its flower and fruits effective against different diseases and juice of leaf is reported to be applied externally to cure wounds and cuts. Dryopteris ramosa aqueous leaf extract is used to treat stomach ulcers and stomachaches. Each of these three medicinal plants have been indicated to have anticancer, antiviral, antioxidant, cytotoxic and antifungal effects but efficacy of their bioactive compounds remained unexplored. Study was aimed to explore In-vitro and In-silico anticancer, antiviral, antioxidant, cytotoxic and antifungal effects of bioactive compounds of above three medicinal plants. DPPH and ABTS assay were applied for assessment of antioxidant properties of compounds. Antibacterial properties of compounds were checked by agar well diffusion method. Brine shrimp lethality assay was performed to check cytotoxic effect of compounds. Molecular docking was conducted to investigate the binding efficacy between isolated compounds and targeted proteins. The compound isomangiferrin and tiliroside presented strong antioxidant potential 78.32% (± 0.213) and 77.77% (± 0.211) respectively in DPPH assay while harmaline showed 80.71% (± 0.072) at 200 µg/mL in ABTS assay. The compound harmine, harmaline and PH-HM 17 exhibited highest zone of inhibition 22 mm, 23 mm, 22 mm respectively against Xanthomonas while Irriflophenone-3-C-β- D-glucopyranoside showed maximum zone of inhibition 34 mm against E. coli. The compound isomangiferrin and vasicine contained strong antibacterial activity 32 mm and 22 mm respectively against S. aureus. The compound mangiferrin, astragalin, tiliroside, quercitin-3-O-rhamnoside showed maximum inhibitory zone 32 mm, 26 mm, 24 mm and 22 mm respectively against Klebsiella pneumoniae. Highest cytotoxic effect was observed by compound tiliroside i.e. 95% with LD50 value 73.59 µg/mL. The compound tiliroside showed the best binding mode of interaction to all targeted proteins presenting maximum hydrophobic interactions and hydrogen bonds. The binding affinity of tiliroside was - 17.9, - 14.9, - 14.6, - 13.8, - 12.8 against different proteins 6VAR, 5C5S, IEA3, 2XV7 and 6LUS respectively. Bioactive compounds are significant natural antioxidants, which could help to prevent the progression of various diseases caused by free radicals. Based on molecular docking we have concluded that phytochemicals can have better anticancer and antiviral potential.
Collapse
Affiliation(s)
- Ayesha Khanum
- Department of Biology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, 46300, Pakistan.
| | - Ilham Khan
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| |
Collapse
|
4
|
Diao M, Li C, Lu J, Meng L, Xie N. Biotransformation of Sclareol by a Fungal Endophyte of Salvia sclarea. Chem Biodivers 2023; 20:e202301363. [PMID: 37899305 DOI: 10.1002/cbdv.202301363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Microbial endophytes are known as versatile producers of useful metabolites, which have extensive applications in pharmacy, fragrance, agriculture and food. This study aims to screen sclareol-biotransforming microorganisms from Salvia sclarea, an untapped source of diverse endophytes. In this study, 50 culturable endophytes were isolated from S. sclarea grown in Xinjiang using sclareol as the sole carbon source and screened for their potential to transform sclareol into analogues. A fungal endophyte, identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis, can produce labd-14-ene-3β,8α,13β-triol and 8α,13β-dihydroxylabd-14-en-3-one from sclareol, involving hydroxylation and carbonylation at the C3 site. Structures of the two metabolites were elucidated by HR-ESI-MS and NMR analysis. S. sclarea was proven to be a good source of endophytes that are prospective producers of secondary metabolites with valuable chemical and biological properties. This study is the first report regarding the isolation of endophytes from S. sclarea.
Collapse
Affiliation(s)
- Mengxue Diao
- National key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Chi Li
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jian Lu
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Lijun Meng
- National key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Nengzhong Xie
- National key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| |
Collapse
|
5
|
Stojković P, Kostić A, Lupšić E, Jovanović NT, Novaković M, Nedialkov P, Trendafilova A, Pešić M, Opsenica IM. Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells. Bioorg Chem 2023; 138:106605. [PMID: 37201322 DOI: 10.1016/j.bioorg.2023.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The synthesis of 24 hybrid molecules, consisting of naturally occurring sclareol (SCL) and synthetic 1,2,4-triazolo[1,5-a]pyrimidines (TPs), is described. New compounds were designed with the aim of improving the cytotoxic properties, activity, and selectivity of the parent compounds. Six analogs (12a-f) contained 4-benzylpiperazine linkage, while 4-benzyldiamine linkage was present in eighteen derivatives (12g-r and 13a-f). Hybrids 13a-f consist of two TP units. After purification, all hybrids (12a-r and 13a-f), as well as their precursors (9a-e and 11a-c), were tested on human glioblastoma U87 cells. More than half of the tested synthesized molecules, 16 out of 31, caused a significant reduction of U87 cell viability (more than 75% reduction) at 30 µM. The concentration-dependent cytotoxicity of these 16 compounds was also examined on U87 cells, corresponding multidrug-resistant (MDR) U87-TxR cells with increased P-glycoprotein (P-gp) expression and activity, and normal lung fibroblasts MRC-5. Importantly, 12l and 12r were active in the nanomolar range, while seven compounds (11b, 11c, 12i, 12l, 12n, 12q, and 12r) were more selective towards glioblastoma cells than SCL. All compounds except 12r evaded MDR, showing even better cytotoxicity in U87-TxR cells. In particular, 11c, 12a, 12g, 12j, 12k, 12m, 12n, and SCL showed collateral sensitivity. Hybrid compounds 12l, 12q, and 12r decreased P-gp activity to the same extent as a well-known P-gp inhibitor - tariquidar (TQ). Hybrid compound 12l and its precursor 11c affected different cellular processes including the cell cycle, cell death, and mitochondrial membrane potential, and changed the levels of reactive oxygen and nitrogen species (ROS/RNS) in glioblastoma cells. Collateral sensitivity towards MDR glioblastoma cells was caused by the modulation of oxidative stress accompanied by inhibition of mitochondria.
Collapse
Affiliation(s)
- Pavle Stojković
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Ana Kostić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ema Lupšić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Terzić Jovanović
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia
| | - Miroslav Novaković
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000, Sofia, Bulgaria
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 9, 1113, Sofia, Bulgaria
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Igor M Opsenica
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski Trg 16, 11158 Belgrade, Serbia.
| |
Collapse
|
6
|
Yan J, Shan C, Zhang Z, Li F, Sun Y, Wang Q, He B, Luo K, Chang J, Liang Y. Autophagy-induced intracellular signaling fractional nano-drug system for synergistic anti-tumor therapy. J Colloid Interface Sci 2023; 645:986-996. [PMID: 37179196 DOI: 10.1016/j.jcis.2023.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Autophagy inducers increase the sensitivity of tumor cells to chemotherapeutic drugs and enhance anti-tumor efficacy. An autophagy-induced intracellular signaling fractional nano-drug system was constructed for the co-delivery of the autophagy inducer rapamycin (RAPA) and the anti-tumor drug 9-nitro-20(S)-camptothecin (9-NC). Link peptides, including cathepsin B-sensitive peptides (Ala-Leu-Ala-Leu, ALAL), nucleus-targeting peptides (TAT, sequence: YGRKKRRQRRR), and chrysin (CHR)-modified hydrophobic biodegradable polymers (poly(-caprolactone)) (PCL), were grafted onto hyaluronic acid (HA) to yield two amphiphiles, HA-ALAL-PCL-CHR (CPAH) and HA-ALAL-TAT-PCL-CHR (CPTAH). Spherical RAPA- and 9-NC-loaded micelles were obtained by the self-assembly of amphiphiles comprising CPAH and RAPA and CPTAH and 9-NC. In this fractional nano-drug system, RAPA was released earlier than 9-NC, as CPAH as a RAPA carrier lacked a nucleus-targeting TAT (unlike CPTAH as an 9-NC carrier). RAPA induced autophagy in tumor cells and improved their sensitivity, whereas the secondary nucleus-targeting micelles directly delivered 9-NC to the nucleus, considerably improving anti-tumor efficacy. Immunofluorescence staining, acridine orange (AO) staining, and western blotting results demonstrated that the system induced a high level of autophagy in combination chemotherapy. The proposed system possesses a high level of cytotoxicity in vitro and in vivo and provides a potential method for enhancing anti-tumor efficacy in clinical settings.
Collapse
Affiliation(s)
- Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhuoran Zhang
- Department of Dentistry, Qingdao Special Service Sanatorium of PLA Navy, Qingdao 266021, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Qian Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
7
|
Zhou J, Xie X, Tang H, Peng C, Peng F. The bioactivities of sclareol: A mini review. Front Pharmacol 2022; 13:1014105. [PMID: 36263135 PMCID: PMC9574335 DOI: 10.3389/fphar.2022.1014105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Sclareol, a diterpene alcohol isolated from the herbal and flavor plant clary sage (Salvia sclarea L.), is far-famed as the predominant ingredient in the refined oil of Salvia sclarea (L.). The empirical medicine of Salvia sclarea L. focused on various diseases, such as arthritis, oral inflammation, digestive system diseases, whereas the sclareol possessed more extensive and characteristic bioactivities, including anti-tumor, anti-inflammation and anti-pathogenic microbes, even anti-diabetes and hypertension. However, there is a deficiency of literature to integrate and illuminate the pharmacological attributes of sclareol based on well-documented investigations. Interestingly, sclareol has been recently considered as the potential candidate against COVID-19 and Parkinson’s disease. Accordingly, the bioactive attributes of sclareol in cancer, inflammation, even pharmacochemistry and delivery systems are reviewed for comprehensively dissecting its potential application in medicine.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Fu Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Fu Peng,
| |
Collapse
|
8
|
Jameel S, Farooq S, Gani I, Riyaz-Ul-Hassan S, Bhat KA. Ultrasound assisted facile synthesis of Boron-Heck coupled sclareol analogs as potential antibacterial agents against Staphylococcus aureus. J Appl Microbiol 2022; 133:3678-3689. [PMID: 36064938 DOI: 10.1111/jam.15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
AIM To evaluate the antimicrobial capability of sclareol and its derivatives against Staphylococcus aureus and its Methicillin-resistant strain (MRSA). METHODS AND RESULTS A new series of Boron-Heck-coupled sclareol analogs were prepared by structural modifications at C-15 terminal double bond of sclareol using ultrasonication. The structural modifications were designed to keep the stereochemistry of all the five chiral centres of sclareol intact. A two-step reaction scheme consisting of Boron-Heck coupling of sclareol followed by Wittig reaction was carried out to produce novel sclareol congeners for antintimicrobial evaluation. Three compounds SAJ-1, SAJ-2 and SB-11 exhibited strong antibacterial activity against Staphylococcus aureus and Methicillin-resistant strain (MRSA) with MIC values between 3 to 11 μM. Among all the screened compounds, SAJ-1 and SAJ-2 showed the best anti-biofilm profiles against both the strains. Moreover SAJ-1 and SAJ-2 acted synergistically with streptomycin against S. aureus while creating varying outcomes in combination with ciprofloxacin, penicillin, and ampicillin. SAJ-1 also acted synergistically with ampicillin against S. aureus, while SB-11 showed synergism with ciprofloxacin against both pathogens. Moreover, SAJ-1 and SAJ-2 also inhibited staphyloxanthin production in S. aureus and MRSA and induced post-antibiotic effects against both pathogens. CONCLUSIONS It can be inferred that SAJ-1, SAJ-2 and SB-11 may act as potential chemical entities for the development of antibacterial substances. The study revealed that SAJ-1 and SAJ-2 are most suitable sclareol analogs for further studies towards the development of antibacterial substances. SIGNIFICANCE AND IMPACT OF THE STUDY SAJ-1, SAJ-2 and SB-11 show promising antibacterial properties against Staphylococcus aureus. Efforts should be made and more research should be done, utilising in vivo models to determine their efficacy as antibiotics.
Collapse
Affiliation(s)
- Salman Jameel
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ifshana Gani
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Khursheed Ahmad Bhat
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
9
|
Alnuqaydan AM, Almutary A, Bhat GR, Mir TA, Wani SI, Rather MY, Mir SA, Alshehri B, Alnasser S, Ali Zainy FM, Rah B. Evaluation of the Cytotoxic, Anti-Inflammatory, and Immunomodulatory Effects of Withaferin A (WA) against Lipopolysaccharide (LPS)-Induced Inflammation in Immune Cells Derived from BALB/c Mice. Pharmaceutics 2022; 14:pharmaceutics14061256. [PMID: 35745829 PMCID: PMC9229769 DOI: 10.3390/pharmaceutics14061256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Inflammation is one of the primary responses of the immune system and plays a key role in the pathophysiology of various diseases. Recent reports suggest that various phytochemicals exhibit promising anti-inflammatory and immunomodulation activities with relatively few undesirable effects, thus offering a viable option to deal with inflammation and associated diseases. The current study evaluates the anti-inflammatory and immunomodulatory effects of withaferin A (WA) in immune cells extracted from BALB/c mice. (2) Methods: MTT assays were performed to assess the cell viability of splenocytes and anti-inflammatory doses of WA. Under aseptic conditions, the isolation of macrophages and splenocytes from BALB/c mice was performed to investigate the anti-inflammatory effects of WA. Analysis of the expression of proinflammatory cytokines and associated signaling mediators was performed using proinflammatory assay kits, real-time polymerase chain reaction (RT-PCR), and immunoblotting, while the quantification of B and T cells was performed by flow cytometry. (3) Results: Our results demonstrated that WA exhibits anti-inflammatory and immunomodulatory effects in LPS-stimulated macrophages and splenocytes derived from BALB/c mice, respectively. Mechanistically, we found that WA promotes an anti-inflammatory effect on LPS-stimulated macrophages by attenuating the secretion and expression of proinflammatory cytokines TNF-α, IL-1β, IL-6, and the inflammation modulator NO, both at the transcriptional and translational level, respectively. Further, WA inhibits LPS-stimulated inflammatory signaling by dephosphorylation of p-Akt-Ser473 and p-ERK1/2. This dephosphorylation does not allow IĸB-kinase activation to disrupt IĸB–NF-ĸB interaction. The consistent interaction of IĸB with NF-ĸB in WA-treated cells attenuates the activation of downstream inflammatory signaling mediators Cox-2 and iNOS expression, which play crucial roles in inflammatory signaling. Additionally, we observed significant immunomodulation of LPS-stimulated spleen-derived lymphocytes by suppression of B (CD19) and T (CD4+/CD8+) cell populations after treatment with WA. (4) Conclusion: WA exhibits anti-inflammatory and immunomodulatory activity by modulating Akt/ERK/NF-kB-mediated inflammatory signaling in macrophages and immunosuppression of B (CD19) and T cell (CD4+/CD8+) populations in splenocytes after LPS stimulation. These results suggest that WA could act as a potential anti-inflammatory/immunomodulatory molecule and support its use in the field of immunopharmacology to modulate immune system cells.
Collapse
Affiliation(s)
- Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia; (A.M.A.); (A.A.)
| | - Abdulmajeed Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia; (A.M.A.); (A.A.)
| | - Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India; (G.R.B.); (S.I.W.)
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplantation Research & Innovation (Dpt)-R, King Faisal Specialist Hospital and Research Centre, MBC 03, Riyadh 11211, Saudi Arabia;
| | - Shadil Ibrahim Wani
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India; (G.R.B.); (S.I.W.)
| | - Mohd Younis Rather
- Multidisplinary Research Unit, Government Medical College, Srinagar 190010, Jammu and Kashmir, India;
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.A.M.); (B.A.)
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia; (S.A.M.); (B.A.)
| | - Sulaiman Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Faten M. Ali Zainy
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Bilal Rah
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia; (A.M.A.); (A.A.)
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India; (G.R.B.); (S.I.W.)
- Correspondence: or or
| |
Collapse
|
10
|
de Souza-Ferrari J, Silva-Júnior EA, Vale JA, de Albuquerque Simões LA, de Moraes-Júnior MO, Dantas BB, de Araújo DAM. A late-stage diversification via Heck-Matsuda arylation: Straightforward synthesis and cytotoxic/antiproliferative profiling of novel aryl-labdane-type derivatives. Bioorg Med Chem Lett 2021; 52:128393. [PMID: 34606997 DOI: 10.1016/j.bmcl.2021.128393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
In the current study a late-stage diversification of unactivated olefins labd-8(17)-en-15-oic acid (1a) and methyl labd-8(17)-en-15-oate (1b) via Heck-Matsuda arylation is described. The reaction provided straightforward and practical access to a series of novel aryl-labdane-type derivatives (HM adducts 3a-h) in moderate to good yields in a highly regio- and stereoselective manner at room temperature under air atmosphere. The cytotoxic activity of these compounds was investigated in vitro against three different human cell lines (THP-1, K562, MCF-7). Of these, HM adduct 3h showed a selective effect in all cancer cell lines tested and was selected for extended biological investigations in a leukemia cell line (K562), which demonstrated that the cytotoxic/antiproliferative activity observed in this compound might be mediated by induction of cell cycle arrest at the sub-G1 phase and by autophagy-induced cell death. Taken together, these findings indicate that further investigation into the anticancer activity against chronic myeloid leukemia from aryl-labdane-type derivatives may be fruitful.
Collapse
Affiliation(s)
- Jailton de Souza-Ferrari
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil.
| | - Edvaldo Alves Silva-Júnior
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Juliana Alves Vale
- Department of Chemistry, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | | | - Manoel Oliveira de Moraes-Júnior
- Department of Biotechnology, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Bruna Braga Dantas
- Department of Biotechnology, Federal University of Paraiba, Cidade Universitária, Campus I. CEP 58051-900, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
11
|
Diorganotin(IV) complexes derived from thiazole Schiff bases: synthesis, characterization, antimicrobial and cytotoxic studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Alnuqaydan AM, Rah B. Tamarix articulata Inhibits Cell Proliferation, Promotes Cell Death Mechanisms and Triggers G 0/G 1 Cell Cycle Arrest in Hepatocellular Carcinoma Cells. Food Technol Biotechnol 2021; 59:162-173. [PMID: 34316277 PMCID: PMC8284106 DOI: 10.17113/ftb.59.02.21.6904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/21/2021] [Indexed: 01/10/2023] Open
Abstract
RESEARCH BACKGROUND From ancient times plants have been used for medicinal purposes against various ailments. In the modern era, plants are a major source of drugs and are an appealing drug candidate for the anticancer therapeutics against various molecular targets. Here we tested methanolic extract of dry leaves of Tamarix articulata for anticancer activity against a panel of hepatocellular carcinoma cells. EXPERIMENTAL APPROACH Cell viability of hepatocellular carcinoma cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after a dose-dependent treatment with the extract of T. articulata. Phase-contrast microscopy and 4՛,6-diamidino-2-phenylindole (DAPI) staining served to analyse cellular and nuclear morphology. Immunoblotting was performed to determine the expression of proteins associated with autophagy, apoptosis and cell cycle. However, flow cytometry was used for the quantification of apoptotic cells and the analysis of cells in different phases of the cycle after the treatment with various doses of T. articulata. Additionally, acridine orange staining and 2՛,7՛-dichlorofluorescein diacetate (DCFH-DA) dye were used to analyse the quantification of autophagosomes and reactive oxygen species. RESULTS AND CONCLUSION Our results demonstrate that T. articulata methanolic extract exhibits promising antiproliferative activity with IC50 values (271.1±4.4), (298.3±7.1) and (336.7±6.1) µg/mL against hepatocellular carcinoma HepG2, Huh7D12 and Hep3B cell lines, respectively. Mechanistically, we found that T. articulata methanolic extract induces cell death by activating apoptosis and autophagy pathways. First, T. articulata methanolic extract promoted autophagy, which was confirmed by acridine orange staining. The immunoblotting analysis further confirmed that the extract at higher doses consistently induced the conversion of LC3I to LC3II form with a gradual decrease in the expression of autophagy substrate protein p62. Second, T. articulata methanolic extract promoted reactive oxygen species production in hepatocellular carcinoma cells and activated reactive oxygen species-mediated apoptosis. Flow cytometry and immunoblotting analysis showed that the plant methanolic extract induced dose-dependent apoptosis and activated proapoptotic proteins caspase-3 and PARP1. Additionally, the extract triggered the arrest of the G0/G1 phase of the cell cycle and upregulated the protein expression of p27/Kip and p21/Cip, with a decrease in cyclin D1 expression in hepatocellular carcinoma cells. NOVELTY AND SCIENTIFIC CONTRIBUTION The current study demonstrates that T. articulata methanolic extract exhibits promising anticancer potential to kill tumour cells by programmed cell death type I and II mechanisms and could be explored for potential drug candidate molecules to curtail cancer in the future.
Collapse
Affiliation(s)
| | - Bilal Rah
- Corresponding authors: Phone: +966558764066, +966506166275, E-mail: ,
| |
Collapse
|
13
|
Assani I, Du Y, Wang CG, Chen L, Hou PL, Zhao SF, Feng Y, Liu LF, Sun B, Li Y, Liao ZX, Huang RZ. Anti-proliferative effects of diterpenoids from Sagittaria trifolia L. tubers on colon cancer cells by targeting the NF-κB pathway. Food Funct 2021; 11:7717-7726. [PMID: 32789317 DOI: 10.1039/d0fo00228c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new labdane-type diterpenoid, ent-19-ol-13-epi-manoyl oxide,19-undecane ester, together with ten known diterpenes, were isolated from the ethanolic crude extract of the fresh tubers of Sagittaria trifolia L. The chemical structures of these compounds were determined by extensive 2-D NMR experiments and by comparison with the data reported in the literature. These compounds showed different inhibitory effects on various human cancer cells. Among these, compound 11 exhibited potential inhibition effects against human colon cancer cells. Moreover, flow cytometry demonstrated that compound 11 arrested the cell cycle at the G1 phase and induced cellular apoptosis, accompanied by mitochondrial membrane potential reduction. Mechanistic studies revealed that treatment with compound 11 inhibited IKKα/β phosphorylation and IκBα phosphorylation, which subsequently caused the blockage of NF-κB p65 phosphorylation and nuclear translocation. Compound 11 also inhibited the expression of c-Myc, Cyclin D1, and Bcl-2, the downstream targets of NF-κB. Therefore, our findings provided insight into the anticancer components of Sagittaria trifolia L. tubers, which could facilitate their utilization as functional food ingredients.
Collapse
Affiliation(s)
- Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Ying Du
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Chun-Gu Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Lei Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Pei-Lei Hou
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shi-Feng Zhao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Yan Feng
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Ling-Fei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Bo Sun
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Yan Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Ri-Zhen Huang
- College of Biotechnology, Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
14
|
Liu Q, Wang YM, Fu WH, Zhang AH. Gas chromatography coupled with mass spectrometry for the rapid characterization and screening of volatile oil of euphorbia fischeriana steud. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_265_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Borges GSM, Prazeres PHDM, Souza ÂMD, Yoshida MI, Vilela JMC, Silva ATME, Oliveira MS, Gomes DA, Andrade MS, Souza-Fagundes EMD, Ferreira LAM. Nanostructured lipid carriers as a novel tool to deliver sclareol: physicochemical characterisation and evaluation in human cancer cell lines. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000418497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Gromova MA, Kharitonov YV, Rybalova TV, Shults EE. Synthetic studies on tricyclic diterpenoids: convenient synthesis of 16-arylisopimaranes. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
18
|
Alnuqaydan AM, Rah B. Comparative assessment of biological activities of different parts of halophytic plant Tamarix articulata (T. articulata) growing in Saudi Arabia. Saudi J Biol Sci 2020; 27:2586-2592. [PMID: 32994715 PMCID: PMC7499369 DOI: 10.1016/j.sjbs.2020.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Owing to extremely high salinity and harsh environmental conditions, T. articulata is one of the most abundant wild plants growing in the deserts of Saudi Arabia. Such plants may contain novel compounds to display promising biological activities. Here, in this study, we evaluate the biological activities of methanolic extracts of fresh leaves, dry leaves, stem, and roots of T. articulata. The antioxidant activity was determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic and flavonoid content were determined using standard colorimetric methods. Whereas antimicrobial and ant-proliferative activities were determined by standard well-diffusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. Our results demonstrate that all methanolic extracts of T. articulata showed antioxidant activity, however, the methanolic extract of dry leaves exhibits promising antioxidant effect with IC₅₀ value 49.08 ± 1.98, which was strongly supported by total phenolic (409.92 ± 6.03 mg GAE/g DW) and flavonoid (177.71 mg QE/g DW) content. Although, antimicrobial activity was also exhibited by all the methanolic extracts, however, methanolic extract of dry leaves exhibits promising antimicrobial activity in Gram-positive bacteria Staphylococcus epidemidis. Furthermore, MTT assay revealed that all methanolic extracts exhibit antiproliferative activity in MCF-7 (breast cancer) and RKO (colorectal cancer) cells with IC₅₀ values ranges from 219 ± 5.112 µg/ml to 253 ± 5.231 µg/ml and 220 ± 4.330 µg/ml to 325 ± 6.213 µg/ml, respectively. However, the most promising antiproliferative effect was displayed by methanolic extract of dry leaves with IC₅₀ values 219 ± 5.112 µg/ml and 220 ± 4.330 µg/ml, respectively. In summary, these findings provide evidence that T. articulata has promising biological activities and can be used for many pharmaceutical activities in the future.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Bilal Rah
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| |
Collapse
|
19
|
Shakeel-u-Rehman, Bhat KA, Lone SH, Malik FA. Click chemistry inspired facile synthesis and bioevaluation of novel triazolyl analogs of D-(+)-pinitol. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Crusco A, Whiteland H, Baptista R, Forde-Thomas JE, Beckmann M, Mur LAJ, Nash RJ, Westwell AD, Hoffmann KF. Antischistosomal Properties of Sclareol and Its Heck-Coupled Derivatives: Design, Synthesis, Biological Evaluation, and Untargeted Metabolomics. ACS Infect Dis 2019; 5:1188-1199. [PMID: 31083889 DOI: 10.1021/acsinfecdis.9b00034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sclareol, a plant-derived diterpenoid widely used as a fragrance and flavoring substance, is well-known for its promising antimicrobial and anticancer properties. However, its activity on helminth parasites has not been previously reported. Here, we show that sclareol is active against larval (IC50 ≈ 13 μM), juvenile (IC50 = 5.0 μM), and adult (IC50 = 19.3 μM) stages of Schistosoma mansoni, a parasitic trematode responsible for the neglected tropical disease schistosomiasis. Microwave-assisted synthesis of Heck-coupled derivatives improved activity, with the substituents choice guided by the Matsy decision tree. The most active derivative 12 showed improved potency and selectivity on larval (IC50 ≈ 2.2 μM, selectivity index (SI) ≈ 22 in comparison to HepG2 cells), juvenile (IC50 = 1.7 μM, SI = 28.8), and adult schistosomes (IC50 = 9.4 μM, SI = 5.2). Scanning electron microscopy studies revealed that compound 12 induced blebbing of the adult worm surface at sublethal concentration (12.5 μM); moreover, the compound inhibited egg production at the lowest concentration tested (3.13 μM). The observed phenotype and data obtained by untargeted metabolomics suggested that compound 12 affects membrane lipid homeostasis by interfering with arachidonic acid metabolism. The same methodology applied to praziquantel (PZQ)-treated worms revealed sugar metabolism alterations that could be ascribed to the previously reported action of PZQ on serotonin signaling and/or effects on glycolysis. Importantly, our data suggest that compound 12 and PZQ exert different antischistosomal activities. More studies will be necessary to confirm the generated hypothesis and to progress the development of more potent antischistosomal sclareol derivatives.
Collapse
Affiliation(s)
- Alessandra Crusco
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Rafael Baptista
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Josephine E. Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Robert J. Nash
- PhytoQuest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, Wales, United Kingdom
| | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| |
Collapse
|
21
|
Dash AK, Nayak D, Hussain N, Mintoo MJ, Bano S, Katoch A, Mondhe DM, Goswami A, Mukherjee D. Synthesis and Investigation of the Role of Benzopyran Dihydropyrimidinone Hybrids in Cell Proliferation, Migration and Tumor Growth. Anticancer Agents Med Chem 2018; 19:276-288. [PMID: 30179143 DOI: 10.2174/1871520618666180903101422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer is the second leading cause of mortality worldwide after heart diseases, and lung cancer is the topmost cause of all cancer-related deaths in both sexes. Dihydropyrimidinones (DHPMs) are medicinally important class of molecules with diverse pharmacological activities including anticancer activity. The present study focuses on the molecular hybridization of novel Benzopyran with Dihydropyrimidinone and evaluation of the resulting hybrids for cancer cell proliferation, migration and tumor growth. METHODS We have synthesized a focused library of dihydropyrimidinone benzopyran hybrids (compounds 1-11) by joining the aromatic as well as pyran portions of the benzopyran core with dihydropyrimidinone. All the synthesized hybrid molecules were evaluated for their cytotoxic activities against a panel of four human cancer cell lines of diverse tissue origin, viz: A549 (lung carcinoma), MCF7 (mammary gland adenocarcinoma), HCT-116 (colorectal carcinoma), and PANC-1 (pancreatic duct carcinoma) with the help of MTT cell viability assay. A structure-activity relationship was made on the basis of IC50 values of different hybrids. Effect on cell proliferation was examined through colony formation assay, reactive oxygen species generation and mitochondrial membrane potential studies. Wound healing assays and cell scattering assays were employed to check the effect on cell migration. Western blotting experiments were performed to find out the molecular mechanism of action and anti-tumor studies were carried out to evaluate the in vivo efficacy of the selected lead molecule. RESULTS Two types of novel hybrids were synthesized efficiently from benzopyran aldehydes, ethylacetoacetate and urea under heteropolyacid catalysis. Compound 3 was found to be the most potent hybrid among the synthesized compounds with consistent cytotoxic activities against four human cancer cell lines (IC50 values: 0.139 - 2.32 μM). Compound 3 strongly inhibited proliferation abilities of A549 cells in colony formation assay. Compound 3 exerted oxidative stress-mediated mitochondrial dysfunction, in which mitochondrial reactive oxygen species (ROS) generation as a mechanism of its anti-proliferative effects was analysed. Further, the molecule abrogated migration and cell scattering properties of aggressive PANC-1 cells. Mechanistic studies revealed that compound 3 modulated NF-kB expression and its downstream oncogenic proteins involved in cancer cell proliferation and invasion. Finally, compound 3 confirmed its in vivo anti-tumor efficacy; there observed 41.87% tumor growth inhibition at a dose of 30 mg/kg/body weight against a mouse model of Ehrlich solid tumor. CONCLUSION Our study unravels a potential anticancer lead (compound 3) from DHPMs that have opened up new research avenues for the development of promising anticancer therapeutic agents.
Collapse
Affiliation(s)
- Ashutosh K Dash
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Schoolof pharmaceutical sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan-173229 (HP), India
| | - Debasis Nayak
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nazar Hussain
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mubashir J Mintoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sumera Bano
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Archana Katoch
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilip M Mondhe
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
22
|
Duan G, Hou S, Ji J, Deng B. The study of sclareol in inhibiting proliferation of osteosarcoma cells by apoptotic induction and loss of mitochondrial membrane potential. Cancer Biomark 2018; 22:29-34. [PMID: 29562495 DOI: 10.3233/cbm-170698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article has been retracted, and the online PDF replaced with this retraction notice.
Collapse
Affiliation(s)
- Guoqing Duan
- Department of Bone and Joint Surgery
- Department of Bone and Joint Surgery
| | - Su Hou
- Pediatric Surgery, Zoucheng People’s Hospital, Zoucheng, Shandong, China
- Department of Bone and Joint Surgery
| | - Jianjun Ji
- Department of Bone Surgery, Zoucheng People’s Hospital, Zoucheng, Shandong, China
| | - Bin Deng
- Department of Bone Surgery, Zoucheng People’s Hospital, Zoucheng, Shandong, China
| |
Collapse
|
23
|
Lone SH, Bhat MA, Lone RA, Jameel S, Lone JA, Bhat KA. Hemisynthesis, computational and molecular docking studies of novel nitrogen containing steroidal aromatase inhibitors: testolactam and testololactam. NEW J CHEM 2018. [DOI: 10.1039/c8nj00063h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined DFT and molecular docking studies of synthesized steroidal lactams reveal their potential as aromatase inhibitors.
Collapse
Affiliation(s)
- Shabir H. Lone
- Department of Chemistry
- Govt Degree College Khanabal
- Anantnag
- India
| | - Muzzaffar A. Bhat
- Department of Chemistry
- Islamic University of Science and Technology
- Awantipora
- India
| | - Rayees A. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| | - Salman Jameel
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| | - Javeed A. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine
- Srinagar
- India
| |
Collapse
|
24
|
Lone SH, Jameel S, Bhat MA, Lone RA, Butcher RJ, Bhat KA. Synthesis of an unusual quinazoline alkaloid: theoretical and experimental investigations of its structural, electronic, molecular and biological properties. RSC Adv 2018; 8:8259-8268. [PMID: 35542000 PMCID: PMC9082197 DOI: 10.1039/c8ra00138c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/16/2018] [Indexed: 11/21/2022] Open
Abstract
An unusual quinazoline alkaloid (1) was obtained when 2-aminobenzaldehyde was refluxed with pyrrolidine in ethanol for 12 h. The synthesized compound was characterized using spectral data analysis augmented with X-ray and literature precedent. Single crystal analysis depicted four conformations differing slightly in bond angles and bond lengths. Compound 1 crystallizes in a triclinic crystal system with a P1̄ space group having two molecules within the unit cell. The experimentally obtained parameters were compared to those obtained theoretically, which depicted a good agreement. Using the DFT/B3LYP/6-31G (d,p) level of theory, HOMO–LUMO energy gap, molecular electrostatic potential (MEP), vibrational (IR) and NMR analyses were carried out. The HOMO–LUMO energy gap allowed the calculation of chemical hardness, chemical inertness, electronegativity and the electrophilicity index of the molecule, which depicted its potential kinetic stability and reactivity. Prediction of activity spectra of the target compound revealed that compound 1 possesses notable antineoplastic activity with Pa = 0.884. The molecule was therefore evaluated against various cancerous cell lines in an in vitro SRB assay which depicted that compound 1 possesses the highest growth inhibition activity against THP-1 cell lines with an IC50 of 7 μM. A comparative overview of theoretical and experimental studies concerning the electronic, structural and biological domains of the synthesized unusual quinazoline alkaloid is presented.![]()
Collapse
Affiliation(s)
| | - Salman Jameel
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine
- Srinagar
- India 190005
| | - Muzzaffar A. Bhat
- Department of Chemistry
- Islamic University of Science and Technology
- Awantipora
- India
| | - Rayees A. Lone
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine
- Srinagar
- India 190005
| | | | - Khursheed A. Bhat
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine
- Srinagar
- India 190005
| |
Collapse
|
25
|
Ayoob I, Lone SH, Masood-ur-Rahman, Zargar OA, Bashir R, Shakeel-u-Rehman, Khuroo MA, Bhat KA. New Semi-Synthetic Rosmarinic Acid-Based Amide Derivatives as Effective Antioxidants. ChemistrySelect 2017. [DOI: 10.1002/slct.201701812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Iram Ayoob
- Department of Chemistry; University of Kashmir, Hazratbal; Srinagar, Kashmir India 190006
| | - Shabir H. Lone
- Centre for Scientific Research; Department of Chemistry; GDC boys Anantnag, Kashmir; India 192102
| | - Masood-ur-Rahman
- Indian Institute of Integrative Medicine, Sanatnagar; Srinagar, Kashmir India 190005
- National Institute of Technology, Hazratbal, Kashmir; India 190006
| | - Ovais A. Zargar
- Department of Biochemistry; University of Kashmir, Hazratbal; Srinagar Kashmir India 190006
| | - Rohina Bashir
- Department of Biochemistry; University of Kashmir, Hazratbal; Srinagar Kashmir India 190006
| | - Shakeel-u-Rehman
- National Institute of Technology, Hazratbal, Kashmir; India 190006
| | - Mohd A. Khuroo
- Department of Chemistry; University of Kashmir, Hazratbal; Srinagar, Kashmir India 190006
| | - Khursheed A. Bhat
- Indian Institute of Integrative Medicine, Sanatnagar; Srinagar, Kashmir India 190005
| |
Collapse
|
26
|
Kumar C, Rasool RU, Iqra Z, Nalli Y, Dutt P, Satti NK, Sharma N, Gandhi SG, Goswami A, Ali A. Alkyne-azide cycloaddition analogues of dehydrozingerone as potential anti-prostate cancer inhibitors via the PI3K/Akt/NF-kB pathway. MEDCHEMCOMM 2017; 8:2115-2124. [PMID: 30108729 PMCID: PMC6072283 DOI: 10.1039/c7md00267j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
Herein, we report the isolation and synthetic modification of dehydrozingerone (DHZ, 1), a secondary metabolite present in the rhizome of Zingiber officinale. We synthesized O-propargylated dehydrozingerone, which was subsequently coupled by alkyne-azide cycloaddition (3-20) using click chemistry. The compounds (1-20) were evaluated for their in vitro cytotoxic activity in a panel of three cancer cell lines. Among all the DHZ derivatives, 3, 6, 7, 8, 9 and 15 displayed potent cytotoxic potential with an IC50 value ranging from 1.8-3.0 μM in MCF-7, PC-3 and HCT-116 cell lines. Furthermore, compound 7 has proven to be the most potent cytotoxic compound in all the three distinct cancer cell lines and also demonstrated significant anti-invasive potential in prostate cancer. The mechanistic study of compound 7 showed that it not only suppressed the AKT/mTOR signalling which regulates nuclear transcription factor-NF-kB but also augmented the expression of anti-invasive markers E-cadherin and TIMP. Compound 7 significantly decreased the expression of pro-invasive markers vimentin, MMP-2 and MMP-9, respectively. This study underscores an efficient synthetic approach employed to evaluate the structure-activity relationship of dehydrozingerone (1) in search of potential new anticancer agents.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Reyaz Ur Rasool
- Academy of Scientific & Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi-110001 , India
- Cancer Pharmacology Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India .
| | - Zainab Iqra
- Cancer Pharmacology Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India .
| | - Yedukondalu Nalli
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Prabhu Dutt
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Naresh K Satti
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Neha Sharma
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Sumit G Gandhi
- Plant Biotechnology division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu , India
| | - Anindya Goswami
- Cancer Pharmacology Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India .
| | - Asif Ali
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| |
Collapse
|
27
|
Li D, Zhang S, Song Z, Wang G, Li S. Bioactivity-guided mixed synthesis accelerate the serendipity in lead optimization: Discovery of fungicidal homodrimanyl amides. Eur J Med Chem 2017; 136:114-121. [PMID: 28486209 DOI: 10.1016/j.ejmech.2017.04.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
The bioactivity-guided mixed synthesis was conceived, in which the designed mix-reactions were run in parallel for simultaneous construction of different kinds of analogs. The valuable ones were protruded by biological screening. This tactic will facilitate more rapid incorporation of bioactive candidates into pesticide chemists' repertoire, exemplified by the optimization of less explored homodrimanes as antifungal ingredients. The discovery of D9 as a potent fungicidal agent can be completed in <2 weeks by one student, with EC50 of 3.33 mg/L and 2.45 mg/L against S. sclerotiorum and B. cinerea, respectively. To confirm the practicability, time-efficiency, and reliability, specific homodrimanes (82 derivatives) were synthesized and elucidated separately and determined for EC50 values. The SAR correlated well with the intentionally mixed synthesis and the potential was further confirmed by the in vivo bioassay. This methodology will foster more efficient exploration of biologically relevant chemical space of natural products in pesticide discovery, and can also be tailored readily for the lead optimization in medicinal chemistry.
Collapse
Affiliation(s)
- Dangdang Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Shasha Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Zehua Song
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Guotong Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Shengkun Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China.
| |
Collapse
|
28
|
Mohammad Y, Fazili KM, Bhat KA, Ara T. Synthesis and biological evaluation of novel 3-O-tethered triazoles of diosgenin as potent antiproliferative agents. Steroids 2017; 118:1-8. [PMID: 27864018 DOI: 10.1016/j.steroids.2016.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/16/2016] [Accepted: 11/10/2016] [Indexed: 01/21/2023]
Abstract
Diosgenin, a promising anticancer steroidal sapogenin, was isolated from Dioscorea deltoidea. Keeping its stereochemistry rich architecture intact, a scheme for the synthesis of novel diosgenin analogues was designed using Cu (I)-catalysed alkyne-azide cycloaddition in order to study their structure-activity relationship. Both diosgenin and its analogues exhibited interesting anti-proliferative effect against four human cancer cell lines viz. HBL-100 (breast), A549 (lung), HT-29 (colon) and HCT-116 (colon) using [3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide] (MTT) assay. Among the synthesized analogues, Dgn-1 bearing a simple phenyl R moiety attached via triazole to the parent molecule was identified as the most potent analogue against A549 cancer cell line having IC50 of 5.54μM, better than the positive control (BEZ-235). Dgn-2 and Dgn-5 bearing o-nitrophenyl and o-cyanophenyl R moieties respectively, displayed impressive anti-proliferative activity against all the tested human cancer cell lines with IC50 values ranging from 5.77 to 9.44μM. The structure-activity relationship (SAR) revealed that the analogues with simple phenyl R moiety or electron withdrawing ortho substituted R moieties seem to have beneficial impact on the anti-proliferative activity.
Collapse
Affiliation(s)
- Younis Mohammad
- Department of Biotechnology, University of Kashmir, Jammu & Kashmir 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Jammu & Kashmir 190006, India
| | - Khursheed Ahmad Bhat
- Bioorganic Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Jammu & Kashmir 190005, India
| | - Tabassum Ara
- Department of Chemistry, National Institute of Technology, Jammu & Kashmir 190006, India.
| |
Collapse
|
29
|
Abstract
Terpenoids are a very prominent class of natural compounds produced in diverse genera of plants, fungi, algae and sponges. They gained significant pharmaceutical value since prehistoric times, due to their broad spectrum of medical applications. The fragrant leaves of Eucalyptus trees are a rich source of terpenoids. Therefore this review starts by summarizing the main terpenoid compounds present in Eucalyptus globulus, E. citriodora, E. radiata and E. resinifera and describing their biosynthetic pathways. Of the enormous number of pharmaceutically important terpenoids, this paper also reviews some well established and recently discovered examples and discusses their medical applications. In this context, the synthetic processes for (–)-menthol, (–)- cis-carveol, (+)-artemisinine, (+)-merrilactone A and (–)-sclareol are presented. The tricyclic sesquiterpene (–)-englerin A isolated from the stem bark of the Phyllanthus engleri plant ( Euphorbiaceae) is highly active against certain renal cancer cell lines. In addition, recent studies showed that englerin A is also a potent and selective activator of TRPC4 and TRPC5 calcium channels. These important findings were the motivation for several renowned research labs to achieve a total synthesis of (–)-englerin A. Two prominent examples – Christmann and Metz – are compared and discussed in detail.
Collapse
Affiliation(s)
- Rolf Jaeger
- Formerly Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz, 24098 Kiel, Germany
| | - Eckehard Cuny
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Darmstadt Technical University, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|