1
|
Shi X, Jiang Y, Yang D, Zhao H, Tian Y, Li Z. Reversibly switching the conformation of short peptide through in-tether chiral sulfonium auxiliary. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Rousseau H, Rousseau-Gueutin M, Dauvergne X, Boutte J, Simon G, Marnet N, Bouchereau A, Guiheneuf S, Bazureau JP, Morice J, Ravanel S, Cabello-Hurtado F, Ainouche A, Salmon A, Wendel JF, Ainouche ML. Evolution of DMSP (dimethylsulfoniopropionate) biosynthesis pathway: Origin and phylogenetic distribution in polyploid Spartina (Poaceae, Chloridoideae). Mol Phylogenet Evol 2017; 114:401-414. [PMID: 28694102 DOI: 10.1016/j.ympev.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
Abstract
DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.
Collapse
Affiliation(s)
- Hélène Rousseau
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Mathieu Rousseau-Gueutin
- UMR IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, F-35653 Le Rheu Cedex, France
| | - Xavier Dauvergne
- EA 2219 Géoarchitecture, Université de Bretagne Occidentale, 6 av. le Gorgeu - CS93837, 29238 Brest Cedex 3, France
| | - Julien Boutte
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Gaëlle Simon
- Plateforme technologique de Résonance Magnétique Nucléaire, Résonance Paramagnétique Electronique et Spectrométrie de Masse, 6, av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2), Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | - Alain Bouchereau
- UMR IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, F-35653 Le Rheu Cedex, France
| | - Solène Guiheneuf
- UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jean-Pierre Bazureau
- UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jérôme Morice
- UMR IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, F-35653 Le Rheu Cedex, France
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire & Végétale, UMR 5168 CNRS-CEA-UMR 1417 INRA-Université Grenoble Alpes, Grenoble, France
| | | | - Abdelkader Ainouche
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Armel Salmon
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Malika L Ainouche
- UMR CNRS 6553 Ecobio, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes Cedex, France.
| |
Collapse
|
3
|
Boulmier A, Feng X, Oms O, Mialane P, Rivière E, Shin CJ, Yao J, Kubo T, Furuta T, Oldfield E, Dolbecq A. Anticancer Activity of Polyoxometalate-Bisphosphonate Complexes: Synthesis, Characterization, In Vitro and In Vivo Results. Inorg Chem 2017; 56:7558-7565. [PMID: 28631925 PMCID: PMC5535315 DOI: 10.1021/acs.inorgchem.7b01114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We synthesized a series of polyoxometalate-bisphosphonate complexes containing MoVIO6 octahedra, zoledronate, or an N-alkyl (n-C6 or n-C8) zoledronate analogue, and in two cases, Mn as a heterometal. Mo6L2 (L = Zol, ZolC6, ZolC8) and Mo4L2Mn (L = Zol, ZolC8) were characterized by using single-crystal X-ray crystallography and/or IR spectroscopy, elemental and energy dispersive X-ray analysis and 31P NMR. We found promising activity against human nonsmall cell lung cancer (NCI-H460) cells with IC50 values for growth inhibition of ∼5 μM per bisphosphonate ligand. The effects of bisphosphonate complexation on IC50 decreased with increasing bisphosphonate chain length: C0 ≈ 6.1×, C6 ≈ 3.4×, and C8 ≈ 1.1×. We then determined the activity of one of the most potent compounds in the series, Mo4Zol2Mn(III), against SK-ES-1 sarcoma cells in a mouse xenograft system finding a ∼5× decrease in tumor volume than found with the parent compound zoledronate at the same compound dosing (5 μg/mouse). Overall, the results are of interest since we show for the first time that heteropolyoxomolybdate-bisphosphonate hybrids kill tumor cells in vitro and significantly decrease tumor growth, in vivo, opening up new possibilities for targeting both Ras as well as epidermal growth factor receptor driven cancers.
Collapse
Affiliation(s)
- Amandine Boulmier
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Xinxin Feng
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Olivier Oms
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Christopher J. Shin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Jiaqi Yao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Tadahiko Kubo
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Taisuke Furuta
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois 61801, USA
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
4
|
In Vitro and In Vivo Investigation of the Inhibition of Trypanosoma brucei Cell Growth by Lipophilic Bisphosphonates. Antimicrob Agents Chemother 2015; 59:7530-9. [PMID: 26392508 DOI: 10.1128/aac.01873-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
We report the results of a screen of a library of 925 potential prenyl synthase inhibitors against Trypanosoma brucei farnesyl diphosphate synthase (TbFPPS) and against T. brucei, the causative agent of human African trypanosomiasis. The most potent compounds were lipophilic analogs of the bone resorption drug zoledronate, some of which had submicromolar to low micromolar activity against bloodstream form T. brucei and selectivity indices of up to ∼ 300. We evaluated the effects of two such inhibitors on survival and parasitemia in a T. brucei mouse model of infection and found that survival increased by up to 16 days. We also investigated the binding of three lipophilic bisphosphonates to an expressed TbFPPS using crystallography and investigated the thermodynamics of binding using isothermal titration calorimetry.
Collapse
|
5
|
El Moll H, Zhu W, Oldfield E, Rodriguez-Albelo LM, Mialane P, Marrot J, Vila N, Mbomekallé IM, Rivière E, Duboc C, Dolbecq A. Polyoxometalates functionalized by bisphosphonate ligands: synthesis, structural, magnetic, and spectroscopic characterizations and activity on tumor cell lines. Inorg Chem 2012; 51:7921-31. [PMID: 22725619 DOI: 10.1021/ic3010079] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species. In V(5)(Ale)(2) and V(5)(Zol)(2) a central V(IV) ion is surrounded by two V(V) dimers bound to bisphosphonate ligands. V(6)(Ale)(4) can be viewed as the condensation of one V(5)(Ale)(2) with one additional V(IV) ion and two Ale ligands, while V(3)(Zol)(3) is a triangular V(IV) POM. These new POM bisphosphonates complexes were all characterized by single-crystal X-ray diffraction. The stability of the Mo and W POMs was studied by (31)P NMR spectroscopy and showed that all compounds except the mononuclear Mo(Ale)(2) and W(Ale)(2) were stable in solution. EPR measurements performed on the vanadium derivatives confirmed the oxidation state of the V ions and evidenced their stability in aqueous solution. Electrochemical studies on V(5)(Ale)(2) and V(5)(Zol)(2) showed reduction of V(V) to V(IV), and magnetic susceptibility investigations on V(3)(Zol)(3) enabled a detailed analysis of the magnetic interactions. The presence of zoledronate or vanadium correlated with the most potent activity (IC(50)~1-5 μM) against three human tumor cell lines.
Collapse
Affiliation(s)
- Hani El Moll
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters. J Mol Model 2011; 18:929-36. [DOI: 10.1007/s00894-011-1114-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 04/28/2011] [Indexed: 11/26/2022]
|
7
|
Zhang Y, Cao R, Yin F, Lin FY, Wang H, Krysiak K, No JH, Mukkamala D, Houlihan K, Li J, Morita CT, Oldfield E. Lipophilic pyridinium bisphosphonates: potent gammadelta T cell stimulators. Angew Chem Int Ed Engl 2010; 49:1136-8. [PMID: 20039246 PMCID: PMC2819003 DOI: 10.1002/anie.200905933] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yonghui Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Cao R, Yin F, Lin FY, Wang H, Krysiak K, No JH, Mukkamala D, Houlihan K, Li J, Morita C, Oldfield E. Lipophilic Pyridinium Bisphosphonates: Potent γδ T Cell Stimulators. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200905933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Simoni D, Gebbia N, Invidiata FP, Eleopra M, Marchetti P, Rondanin R, Baruchello R, Provera S, Marchioro C, Tolomeo M, Marinelli L, Limongelli V, Novellino E, Kwaasi A, Dunford J, Buccheri S, Caccamo N, Dieli F. Design, synthesis, and biological evaluation of novel aminobisphosphonates possessing an in vivo antitumor activity through a gammadelta-T lymphocytes-mediated activation mechanism. J Med Chem 2008; 51:6800-7. [PMID: 18937434 DOI: 10.1021/jm801003y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small series of aminobisphosphonates (N-BPs) structurally related to zoledronic acid was synthesized with the aim of improving activity toward activation of human gammadelta T cells and in turn their in vivo antitumor activity. The absence of the 1-OH moiety, together with the position and the different basicity of the nitrogen, appears crucial for antitumor activity. In comparison to zoledronic acid, compound 6a shows a greater ability to activate gammadelta T cells expression (100 times more) and a proapoptotic effect that is better than zoledronic acid. The potent activation of gammadelta T cells, in addition to evidence of the in vivo antitumor activity of 6a, suggests it may be a new potential drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Daniele Simoni
- Dipartimento di Scienze Farmaceutiche, Universita di Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
K-M Chen C, Hudock MP, Zhang Y, Guo RT, Cao R, No JH, Liang PH, Ko TP, Chang TH, Chang SC, Song Y, Axelson J, Kumar A, Wang AHJ, Oldfield E. Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation. J Med Chem 2008; 51:5594-607. [PMID: 18800762 DOI: 10.1021/jm800325y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the X-ray structures of several bisphosphonate inhibitors of geranylgeranyl diphosphate synthase, a target for anticancer drugs. Bisphosphonates containing unbranched side chains bind to either the farnesyl diphosphate (FPP) substrate site, the geranylgeranyl diphosphate (GGPP) product site, and in one case, both sites, with the bisphosphonate moiety interacting with 3 Mg (2+) that occupy the same position as found in FPP synthase. However, each of three "V-shaped" bisphosphonates bind to both the FPP and GGPP sites. Using the Glide program, we reproduced the binding modes of 10 bisphosphonates with an rms error of 1.3 A. Activities of the bisphosphonates in GGPPS inhibition were predicted with an overall error of 2x by using a comparative molecular similarity analysis based on a docked-structure alignment. These results show that some GGPPS inhibitors can occupy both substrate and product site and that binding modes as well as activity can be accurately predicted, facilitating the further development of GGPPS inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Cammy K-M Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|