1
|
Faugeras V, Duclos O, Bazile D, Thiam AR. Impact of Cyclization and Methylation on Peptide Penetration through Droplet Interface Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5682-5691. [PMID: 35452243 DOI: 10.1021/acs.langmuir.2c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-penetrating peptides enter cells via diverse mechanisms, such as endocytosis, active transport, or direct translocation. For the design of orally delivered cell-penetrating peptides, it is crucial to know the contribution of these different mechanisms. In particular, the ability of a peptide to translocate through a lipid bilayer remains a key parameter for the delivery of cargos. However, existing approaches used to assess translocation often provide discrepant results probably because they have different sensitivities to the distinct translocation mechanisms. Here, we focus on the passive permeation of a range of hydrophobic cyclic peptides inspired by somatostatin, a somatotropin release-inhibiting factor. Using droplet interface bilayers (DIB), we assess the passive membrane permeability of these peptides and study the impact of the peptide cyclization and backbone methylation on translocation rates. Cyclization systematically improved the permeability of the tested peptides while methylation did not. By studying the interaction of the peptides with the DIB interfaces, we found membrane insertion and peptide intrinsic diffusion to be two independent factors of permeability. Compared to the industrial gold standard Caco-2 and parallel artificial membrane permeability assay (PAMPA) models, DIBs provide intermediate membrane permeability values, closer to Caco-2. Even for conditions where Caco-2 and PAMPA are discrepant, the DIB approach also gives results closer to Caco-2. Thereupon, DIBs represent a robust alternative to the PAMPA approach for predicting the permeability of peptides, even if the latter present extremely small structural differences.
Collapse
Affiliation(s)
- Vincent Faugeras
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
- Pharmaceutics Development Platform, Sanofi R&D, 94250 Gentilly, France
| | - Olivier Duclos
- Integrated Drug Discovery Platform, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Didier Bazile
- Pharmaceutics Development Platform, Sanofi R&D, 94250 Gentilly, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
| |
Collapse
|
2
|
Tomassi S, D’Amore VM, Di Leva FS, Vannini A, Quilici G, Weinmüller M, Reichart F, Amato J, Romano B, Izzo AA, Di Maro S, Novellino E, Musco G, Gianni T, Kessler H, Marinelli L. Halting the Spread of Herpes Simplex Virus-1: The Discovery of an Effective Dual αvβ6/αvβ8 Integrin Ligand. J Med Chem 2021; 64:6972-6984. [PMID: 33961417 PMCID: PMC8279406 DOI: 10.1021/acs.jmedchem.1c00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Over recent years, αvβ6 and αvβ8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvβ6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvβ8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvβ6/αvβ8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.
Collapse
Affiliation(s)
- Stefano Tomassi
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D’Amore
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Saverio Di Leva
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Andrea Vannini
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Giacomo Quilici
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Michael Weinmüller
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Reichart
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jussara Amato
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Barbara Romano
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania
“Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Facoltà
di Medicina e Chirurgia, Università
Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy
| | - Giovanna Musco
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Tatiana Gianni
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Horst Kessler
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
3
|
Matabaro E, Song H, Chepkirui C, Kaspar H, Witte L, Naismith JH, Freeman MF, Künzler M. Enzyme-mediated backbone N-methylation in ribosomally encoded peptides. Methods Enzymol 2021; 656:429-458. [PMID: 34325794 DOI: 10.1016/bs.mie.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Backbone N-methylation as a posttranslational modification was recently discovered in a class of ribosomally encoded peptides referred to as borosins. The founding members of the borosins are the omphalotins (A-I), backbone N-methylated, macrocyclic dodecapeptides produced by the mushroom Omphalotus olearius. Omphalotins display a strong and selective toxicity toward the plant parasitic nematode Meloidogyne incognita. The primary product omphalotin A is synthesized via a concerted action of the omphalotin precursor protein (OphMA) and the dual function prolyloligopeptidase/macrocyclase (OphP). OphMA consists of α-N-methyltransferase domain that autocatalytically methylates the core peptide fused to its C-terminus via a clasp domain. Genome mining uncovered over 50 OphMA homologs from the fungal phyla Ascomycota and Basidiomycota. However, the derived peptide natural products have not been described yet, except for lentinulins, dendrothelins and gymnopeptides produced by the basidiomycetes Lentinula edodes, Dendrothele bispora and Gymnopus fusipes, respectively. In this chapter, we describe methods used to isolate and characterize these backbone N-methylated peptides and their precursor proteins both in their original hosts and in the heterologous hosts Escherichia coli and Pichia pastoris. These methods may pave the path for both the discovery of novel borosins with interesting bioactivities. In addition, understanding of borosin biosynthetic pathways may allow setting up a biotechnological platform for the production of pharmaceutical leads for orally available peptide drugs.
Collapse
Affiliation(s)
- Emmanuel Matabaro
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Haigang Song
- The Research Complex at Harwell, Harwell Campus, Didcot, United Kingdom; The Rosalind Franklin Institute, Harwell Campus, Didcot, United Kingdom
| | - Clara Chepkirui
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Hannelore Kaspar
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Luca Witte
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - James H Naismith
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, United Kingdom; The Research Complex at Harwell, Harwell Campus, Didcot, United Kingdom; The Rosalind Franklin Institute, Harwell Campus, Didcot, United Kingdom
| | - Michael F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
5
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
8
|
Mazuela J, Antonsson T, Knerr L, Marsden SP, Munday RH, Johansson MJ. Iridium‐Catalyzed Asymmetric Hydrogenation of
N
‐Alkyl α‐Aryl Furan‐Containing Imines: an Efficient Route to Unnatural
N
‐Alkyl Arylalanines and Related Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Javier Mazuela
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| | - Thomas Antonsson
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| | - Laurent Knerr
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| | | | - Rachel H. Munday
- AZ Catalysis Hub, Pharmaceutical Technology and DevelopmentAstraZeneca Silk Road Business Park Macclesfield SK10 2NA U.K
| | - Magnus J. Johansson
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| |
Collapse
|
9
|
Ongpipattanakul C, Nair SK. Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis. ACS Chem Biol 2018; 13:2989-2999. [PMID: 30204409 DOI: 10.1021/acschembio.8b00668] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-methylation of nucleic acids, proteins, and peptides is a chemical modification with significant impact on biological regulation. Despite the simplicity of the structural change, N-methylation can influence diverse functions including epigenetics, protein complex formation, and microtubule stability. While there are limited examples of N-methylation of the α-amino group of bacterial and eukaryotic proteins, there are no examples of catalysts that carry out post-translation methylation of backbone amides in proteins or peptides. Recent studies have identified enzymes that catalyze backbone N-methylation on a peptide substrate, a reaction with little biochemical precedent, in a family of ribosomally synthesized natural products produced in basidiomycetes. Here, we describe the crystal structures of Dendrothele bispora dbOphMA, a methyltransferase that catalyzes multiple N-methylations on the peptide backbone. We further carry out biochemical studies of this catalyst to determine the molecular details that promote this unusual chemical transformation. The structural and biochemical framework described here could facilitate biotechnological applications of catalysts for the rapid production of backbone N-methylated peptides.
Collapse
|
10
|
Schumacher-Klinger A, Fanous J, Merzbach S, Weinmüller M, Reichart F, Räder AFB, Gitlin-Domagalska A, Gilon C, Kessler H, Hoffman A. Enhancing Oral Bioavailability of Cyclic RGD Hexa-peptides by the Lipophilic Prodrug Charge Masking Approach: Redirection of Peptide Intestinal Permeability from a Paracellular to Transcellular Pathway. Mol Pharm 2018; 15:3468-3477. [PMID: 29976060 DOI: 10.1021/acs.molpharmaceut.8b00466] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophilic peptides constitute most of the active peptides. They mostly permeate via tight junctions (paracellular pathway) in the intestine. This permeability mechanism restricts the magnitude of their oral absorption and bioavailability. We hypothesized that concealing the hydrophilic residues of the peptide using the lipophilic prodrug charge masking approach (LPCM) can improve the bioavailability of hydrophilic peptides. To test this hypothesis, a cyclic N-methylated hexapeptide containing Arg-Gly-Asp (RGD) and its prodrug derivatives, masking the Arg and Asp charged side chains, were synthesized. The library was evaluated for intestinal permeability in vitro using the Caco-2 model. Further investigation of metabolic stability ex vivo models in rat plasma, brush border membrane vesicles (BBMVs), and isolated CYP3A4 microsomes and pharmacokinetic studies was performed on a selected peptide and its prodrug (peptide 12). The parent drug analogues were found to have a low permeability rate in vitro, corresponding to atenolol, a marker for paracellular permeability. Moreover, palmitoyl carnitine increased the Papp of peptide 12 by 4-fold, indicating paracellular permeability. The Papp of the prodrug derivatives was much higher than that of their parent peptides. For instance, the Papp of the prodrug 12P was 20-fold higher than the Papp of peptide 12 in the apical to basolateral (AB) direction. Whereas the permeability in the opposite direction (BA of the Caco-2 model) was significantly faster than the Papp AB, indicating the involvement of an efflux system. These results were corroborated when verapamil, a P-gp inhibitor, was added to the Caco-2 model and increased the Papp AB of prodrug 12P by 3-fold. The prodrug 12P was stable in the BBMVs environment, yet degraded quickly (less than 5 min) in the plasma into the parent peptide 12. Pharmacokinetic studies in rats showed an increase in the bioavailability of peptide 12 > 70-fold (from 0.58 ± 0.11% to 43.8 ± 14.9%) after applying the LPCM method to peptide 12 and converting it to the prodrug 12P. To conclude, the LPCM approach converted the absorption mechanism of the polar peptides from a paracellular to transcellular pathway that tremendously affects their oral bioavailability. The LPCM method provides a solution for the poor bioavailability of RGD cyclohexapeptides and paves the way for other active hydrophilic and charged peptides with poor oral bioavailability.
Collapse
Affiliation(s)
- Adi Schumacher-Klinger
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Joseph Fanous
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Shira Merzbach
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Michael Weinmüller
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Andreas F B Räder
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Agata Gitlin-Domagalska
- Institute of Chemistry , The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram Campus, The Hebrew University , Jerusalem 91904 , Israel
| | - Chaim Gilon
- Institute of Chemistry , The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram Campus, The Hebrew University , Jerusalem 91904 , Israel
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| |
Collapse
|
11
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
12
|
Merlino F, Daniele S, La Pietra V, Di Maro S, Di Leva FS, Brancaccio D, Tomassi S, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Reichart F, Cavallini C, Costa B, Piccarducci R, Taliani S, Da Settimo F, Martini C, Kessler H, Novellino E, Marinelli L. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J Med Chem 2018; 61:4791-4809. [PMID: 29775303 DOI: 10.1021/acs.jmedchem.8b00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Collapse
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Simona Daniele
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Salvatore Di Maro
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Stefano Tomassi
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Florian Reichart
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Chiara Cavallini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Barbara Costa
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Rebecca Piccarducci
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Claudia Martini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| |
Collapse
|
13
|
Cleverdon ER, Davis TR, Hougland JL. Functional group and stereochemical requirements for substrate binding by ghrelin O-acyltransferase revealed by unnatural amino acid incorporation. Bioorg Chem 2018; 79:98-106. [PMID: 29738973 DOI: 10.1016/j.bioorg.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/02/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT's tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling.
Collapse
Affiliation(s)
| | - Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
14
|
Durek T, Cromm PM, White AM, Schroeder CI, Kaas Q, Weidmann J, Ahmad Fuaad A, Cheneval O, Harvey PJ, Daly NL, Zhou Y, Dellsén A, Österlund T, Larsson N, Knerr L, Bauer U, Kessler H, Cai M, Hruby VJ, Plowright AT, Craik DJ. Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1. J Med Chem 2018; 61:3674-3684. [PMID: 29605997 DOI: 10.1021/acs.jmedchem.8b00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrastable cyclic peptide frameworks offer great potential for drug design due to their improved bioavailability compared to their linear analogues. Using the sunflower trypsin inhibitor-1 (SFTI-1) peptide scaffold in combination with systematic N-methylation of the grafted pharmacophore led to the identification of novel subtype selective melanocortin receptor (MCR) agonists. Multiple bicyclic peptides were synthesized and tested toward their activity at MC1R and MC3-5R. Double N-methylated compound 18 showed a p Ki of 8.73 ± 0.08 ( Ki = 1.92 ± 0.34 nM) and a pEC50 of 9.13 ± 0.04 (EC50 = 0.75 ± 0.08 nM) at the human MC1R and was over 100 times more selective for MC1R. Nuclear magnetic resonance structural analysis of 18 emphasized the role of peptide bond N-methylation in shaping the conformation of the grafted pharmacophore. More broadly, this study highlights the potential of cyclic peptide scaffolds for epitope grafting in combination with N-methylation to introduce receptor subtype selectivity in the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Philipp M Cromm
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia.,Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Andrew M White
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Abdullah Ahmad Fuaad
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Norelle L Daly
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Yang Zhou
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Torben Österlund
- Discovery Biology, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden.,Drug Safety and Metabolism, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Udo Bauer
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Minying Cai
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Alleyn T Plowright
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit , AstraZeneca , Gothenburg 43183 Sweden
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
15
|
Kapp TG, Di Leva FS, Notni J, Räder AFB, Fottner M, Reichart F, Reich D, Wurzer A, Steiger K, Novellino E, Marelli UK, Wester HJ, Marinelli L, Kessler H. N-Methylation of isoDGR Peptides: Discovery of a Selective α5β1-Integrin Ligand as a Potent Tumor Imaging Agent. J Med Chem 2018; 61:2490-2499. [DOI: 10.1021/acs.jmedchem.7b01752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tobias G. Kapp
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Andreas F. B. Räder
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Maximilian Fottner
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Dominik Reich
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Alexander Wurzer
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Katja Steiger
- Department of Pathology, Technische Universität München, Trogerstraße 18, 81675 München, Germany
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
16
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
17
|
New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:molecules22081282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
|
18
|
Bernhagen D, De Laporte L, Timmerman P. High-Affinity RGD-Knottin Peptide as a New Tool for Rapid Evaluation of the Binding Strength of Unlabeled RGD-Peptides to α vβ 3, α vβ 5, and α 5β 1 Integrin Receptors. Anal Chem 2017; 89:5991-5997. [PMID: 28492301 DOI: 10.1021/acs.analchem.7b00554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe a highly sensitive competition ELISA to measure integrin-binding of RGD-peptides in high-throughput without using cells, ECM-proteins, or antibodies. The assay measures (nonlabeled) RGD-peptides' ability to inhibit binding of a biotinylated "knottin"-RGD peptide to surface-immobilized integrins and, thus, enables quantification of the binding strength of high-, medium-, and low-affinity RGD-binders. We introduced the biotinylated knottin-RGD peptide instead of biotinylated cyclo[RGDfK] (as reported by Piras et al.), as integrin-binding was much stronger and clearly detectable for all three integrins. In order to maximize sensitivity and cost-efficiency, we first optimized several parameters, such as integrin-immobilization levels, knottin-RGD concentration, buffer compositions, type of detection tag (biotin, His- or cMyc-tag), and spacer length. We thereby identified two key factors, that is, (i) the critical spacer length (longer than Gly) and (ii) the presence of Ca2+ and Mg2+ in all incubation and washing buffers. Binding of knottin-RGD peptide was strongest for αvβ3 but also detectable for both αvβ5 and α5β1, while binding of biotinylated cyclo[RGDfK] was very weak and only detectable for αvβ3. For assay validation, we finally determined IC50 values for three unlabeled peptides, that is: (i) linear GRGDS, (ii) cyclo[RGDfK], and (iii) the knottin-RGD itself for binding to three different integrin receptors (αvβ3, αvβ5, α5β1). Major benefits of the novel assay are (i) the extremely low consumption of integrin (50 ng/peptide), (ii) the fact that neither antibodies/ECM-proteins nor integrin-expressing cells are required for detection, and (iii) its suitability for high-throughput screening of (RGD-)peptide libraries.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics , Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Peter Timmerman
- Pepscan Therapeutics , Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam , Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem 2017; 9:199-221. [PMID: 28111982 DOI: 10.4155/fmc-2016-0189] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Short peptides have many advantages, such as low molecular weight, selectivity for a specific target, organelles or cells with minimal toxicity. We describe properties of short peptides, which interfere with communication networks in tumor cells and within microenvironment of malignant gliomas, the most common brain tumors. We focus on ligand/receptor axes and intracellular signaling pathways critical for gliomagenesis that could be targeted with interfering peptides. We review structures and efficacy of organelle-specific and cell-penetrating peptides and describe diverse chemical modifications increasing proteolytic stability and protecting synthetic peptides against degradation. We report results of application of short peptides in glioma therapy clinical trials, their rises and falls. The most advanced examples of therapeutics such as short interfering peptides combined with cell-penetrating peptides that show good effectiveness in disease models are presented. It is foreseen that identification of peptides with better clinical properties may improve their success rates in clinical trials.
Collapse
|
20
|
Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, Reuning U, Notni J, Wester HJ, Mas-Moruno C, Spatz J, Geiger B, Kessler H. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Sci Rep 2017; 7:39805. [PMID: 28074920 PMCID: PMC5225454 DOI: 10.1038/srep39805] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid phase binding assay.
Collapse
Affiliation(s)
- Tobias G Kapp
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Oleg V Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Elisabetta A Cavalcanti-Adam
- Max-Planck-Institute for Medical Research, Department of Biointerface Science and Technology, Heidelberg, Postal address: Heisenbergstr. 3, 70 569 Stuttgart, Germany
| | - Revital Zarka
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics &Gynecology, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Johannes Notni
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, and Centre for Research in NanoEngineering (CRNE), Technical University of Catalonia, 08028-Barcelona, Spain
| | - Joachim Spatz
- Max-Planck-Institute for Medical Research, Department of Biointerface Science and Technology, Heidelberg, Postal address: Heisenbergstr. 3, 70 569 Stuttgart, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
21
|
Hilimire TA, Bennett RP, Stewart RA, Garcia-Miranda P, Blume A, Becker J, Sherer N, Helms ED, Butcher SE, Smith HC, Miller BL. N-Methylation as a Strategy for Enhancing the Affinity and Selectivity of RNA-binding Peptides: Application to the HIV-1 Frameshift-Stimulating RNA. ACS Chem Biol 2016; 11:88-94. [PMID: 26496521 PMCID: PMC4720131 DOI: 10.1021/acschembio.5b00682] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Human Immunodeficiency
Virus (HIV) type 1 uses a −1 programmed
ribosomal frameshift (−1 PRF) event to translate its enzymes
from the same transcript used to encode the virus’ structural
proteins. The frequency of this event is highly regulated, and significant
deviation from the normal 5–10% frequency has been demonstrated
to decrease viral infectivity. Frameshifting is primarily regulated
by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically
stable, highly conserved stem loop that has been proposed as a therapeutic
target. We describe the design, synthesis, and testing of a series
of N-methyl peptides able to bind the HIV-1 FSS RNA
stem loop with low nanomolar affinity and high selectivity. Surface
plasmon resonance (SPR) data indicates increased affinity is a reflection
of a substantially enhanced on rate. Compounds readily penetrate cell
membranes and inhibit HIV infectivity in a pseudotyped virus assay.
Viral infectivity inhibition correlates with compound-dependent changes
in the ratios of Gag and Gag-Pol in virus particles. As the first
compounds with both single digit nanomolar affinities for the FSS
RNA and an ability to inhibit HIV in cells, these studies support
the use of N-methylation for enhancing the affinity,
selectivity, and bioactivity of RNA-binding peptides.
Collapse
Affiliation(s)
| | | | | | - Pablo Garcia-Miranda
- Department
of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Alex Blume
- Department
of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jordan Becker
- McArdle
Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nathan Sherer
- McArdle
Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric D. Helms
- Department
of Chemistry, SUNY Geneseo, Geneseo, New York 14454, United States
| | - Samuel E. Butcher
- Department
of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
22
|
Maltsev OV, Marelli UK, Kapp TG, Di Leva FS, Di Maro S, Nieberler M, Reuning U, Schwaiger M, Novellino E, Marinelli L, Kessler H. Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands. Angew Chem Int Ed Engl 2015; 55:1535-9. [PMID: 26663660 DOI: 10.1002/anie.201508709] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Indexed: 12/15/2022]
Abstract
The αvβ6 integrin binds the RGD-containing peptide of the foot and mouth disease virus with high selectivity. In this study, the long binding helix of this ligand was downsized to an enzymatically stable cyclic peptide endowed with sub-nanomolar binding affinity toward the αvβ6 receptor and remarkable selectivity against other integrins. Computational studies were performed to disclose the molecular bases underlying the high binding affinity and receptor subtype selectivity of this peptide. Finally, the utility of the ligand for use in biomedical studies was also demonstrated here.
Collapse
Affiliation(s)
- Oleg V Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Udaya Kiran Marelli
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Salvatore Di Maro
- DiSTABiF, Secondo Università di Napoli, Via Vivaldi 43, 81100, Caserta, Italy
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, University Hospital rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, München, Germany
| | - Ute Reuning
- Klinische Forschergruppe der Frauenklinik, University Hospital rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, München, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, University Hospital rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, München, Germany
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany.
| |
Collapse
|
23
|
Maltsev OV, Marelli UK, Kapp TG, Di Leva FS, Di Maro S, Nieberler M, Reuning U, Schwaiger M, Novellino E, Marinelli L, Kessler H. Stabile Peptide statt “gestapelte Peptide”: hochaffine αvβ6-selektive Integrinliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Oleg V. Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Udaya Kiran Marelli
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia; Università di Napoli Federico II; Via D. Montesano 49 80131 Napoli Italien
| | - Salvatore Di Maro
- DiSTABiF; Secondo Università di Napoli; Via Vivaldi 43 81100 Caserta Italien
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery; University Hospital rechts der Isar, Technische Universität München; Ismaninger Straße 22 81675 München Deutschland
| | - Ute Reuning
- Klinische Forschergruppe der Frauenklinik; University Hospital rechts der Isar, Technische Universität München; Ismaninger Straße 22 81675 München Deutschland
| | - Markus Schwaiger
- Department of Nuclear Medicine; University Hospital rechts der Isar, Technische Universität München; Ismaninger Straße 22 81675 München Deutschland
| | - Ettore Novellino
- Dipartimento di Farmacia; Università di Napoli Federico II; Via D. Montesano 49 80131 Napoli Italien
| | - Luciana Marinelli
- Dipartimento di Farmacia; Università di Napoli Federico II; Via D. Montesano 49 80131 Napoli Italien
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
24
|
Fernández-Llamazares AI, Spengler J, Albericio F. Review backboneN-modified peptides: How to meet the challenge of secondary amine acylation. Biopolymers 2015; 104:435-52. [DOI: 10.1002/bip.22696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Ana I. Fernández-Llamazares
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Jan Spengler
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
- School of Chemistry and Physics; University of KwaZulu-Natal; 4001 Durban South Africa
- School of Life Sciences, Department of Chemistry, Yachay Tech, Yachay City of Knowledge; Urcuquι 100119 Ecuador. Department of Chemistry; College of Science, King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
25
|
Paissoni C, Ghitti M, Belvisi L, Spitaleri A, Musco G. Metadynamics Simulations Rationalise the Conformational Effects Induced by
N
‐Methylation of RGD Cyclic Hexapeptides. Chemistry 2015; 21:14165-70. [DOI: 10.1002/chem.201501196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina Paissoni
- Biomolecular NMR Unit, Ospedale S. Raffaele, Via Olgettina 58, 20132 Milan (Italy)
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan (Italy)
| | - Michela Ghitti
- Biomolecular NMR Unit, Ospedale S. Raffaele, Via Olgettina 58, 20132 Milan (Italy)
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan (Italy)
| | - Andrea Spitaleri
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa (Italy)
| | - Giovanna Musco
- Biomolecular NMR Unit, Ospedale S. Raffaele, Via Olgettina 58, 20132 Milan (Italy)
| |
Collapse
|
26
|
Vasco AV, Pérez CS, Morales FE, Garay HE, Vasilev D, Gavín JA, Wessjohann LA, Rivera DG. Macrocyclization of Peptide Side Chains by the Ugi Reaction: Achieving Peptide Folding and Exocyclic N-Functionalization in One Shot. J Org Chem 2015; 80:6697-707. [DOI: 10.1021/acs.joc.5b00858] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aldrin V. Vasco
- Center
for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
- Facultad
de Ingeniería Química, Instituto Superior Politécnico José Antonio Echeverría, CUJAE, Calle 114 # 11901, 11500, La Habana, Cuba
| | - Carlos S. Pérez
- Center
for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Fidel E. Morales
- Center
for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Hilda E. Garay
- Synthetic Peptides
Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, La Habana, Cuba
| | - Dimitar Vasilev
- Department
of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany
| | - José A. Gavín
- Instituto
Universitario de Bioorgánica Antonio González and Departamento
de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Ludger A. Wessjohann
- Department
of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany
| | - Daniel G. Rivera
- Center
for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| |
Collapse
|
27
|
Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc Natl Acad Sci U S A 2015; 111:17504-9. [PMID: 25416591 DOI: 10.1073/pnas.1417611111] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.
Collapse
|
28
|
Md. Abdur Rauf S, Arvidsson PI, Albericio F, Govender T, Maguire GEM, Kruger HG, Honarparvar B. The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: a DFT study. Org Biomol Chem 2015; 13:9993-10006. [DOI: 10.1039/c5ob01565k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Methylation of amino acid derivatives (Ac-X-OMe, X = Gly, Val, Leu, Ile, Phe, Met, Cys, Ser, Asp and His) leads to an increase in aqueous solubility, lipophilicity and lowering of the cis/trans amide conformational energy barrier (EA).
Collapse
Affiliation(s)
- Shah Md. Abdur Rauf
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Glenn E. M. Maguire
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
29
|
Hegemann JD, De Simone M, Zimmermann M, Knappe TA, Xie X, Di Leva FS, Marinelli L, Novellino E, Zahler S, Kessler H, Marahiel MA. Rational Improvement of the Affinity and Selectivity of Integrin Binding of Grafted Lasso Peptides. J Med Chem 2014; 57:5829-34. [DOI: 10.1021/jm5004478] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julian D. Hegemann
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Mariarosaria De Simone
- Department
of Chemistry, Institute for Advanced Study, Center of Integrated Protein
Science (CIPSM), Technische Universität München, Lichtenbergstrasse
4, 85747 Garching, Germany
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Marcel Zimmermann
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Thomas A. Knappe
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Xiulan Xie
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department
of Pharmacy, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Stefan Zahler
- Department
of Pharmacy, Ludwig Maximilian University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Horst Kessler
- Department
of Chemistry, Institute for Advanced Study, Center of Integrated Protein
Science (CIPSM), Technische Universität München, Lichtenbergstrasse
4, 85747 Garching, Germany
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Marahiel
- Department
of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
30
|
Kim Y, Komoda E, Miyashita M, Miyagawa H. Continuous stimulation of the plant immune system by the peptide elicitor PIP-1 is required for phytoalexin biosynthesis in tobacco cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5781-8. [PMID: 24881999 DOI: 10.1021/jf501679p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The peptide elicitor PIP-1 (YGIHTH-nh2) induced various defense responses in tobacco cells. Types of defense responses induced by PIP-1 were different based on its concentration range: oxidative burst (an early response) was induced at low micromolar levels, but phytoalexin production (a late response) required about 10-50-fold higher concentrations than those required for oxidative burst. We assumed that rapid decreases in the PIP-1 concentration due to enzymatic hydrolysis in the culture media could cause this difference. To examine the potential impact of such degradation particularly on induction of phytoalexin biosynthesis, we designed a degradation-resistant analogue, MePIP-1, in which the amide bond between the fifth and sixth residues was N-methylated. MePIP-1 was considerably more stable than PIP-1 and induced significant phytoalexin production upon treatment at low micromolar levels. Further investigation of the mechanism of action of MePIP-1 showed a requirement of continuous elicitor stimulation for 3-6 h for the phytoalexin production, which is likely to be regulated by long-lasting MAP kinase activation.
Collapse
Affiliation(s)
- Yonghyun Kim
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
31
|
Simeček J, Notni J, Kapp TG, Kessler H, Wester HJ. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). Mol Pharm 2014; 11:1687-95. [PMID: 24669840 DOI: 10.1021/mp5000746] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The αvβ3-integrin addressing cyclic pentapeptide cyclo(RGDfK) was conjugated to NOPO, 1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid], a bifunctional chelator with exceptional gallium-68 labeling properties. NOPO-c(RGDfK) and its Ga(III) and Cu(II) complexes showed high affinity to αvβ3 integrin (IC50 = 0.94 ± 0.06, 1.02 ± 0.09, and 0.51 ± 0.06 nM, respectively). (68)Ga labeling of NOPO-c(RGDfK) in an automated GMP-compliant procedure was performed with near-quantitative radiochemical yield, using precursor amounts as low as 0.5 nmol (approximately 0.6 μg). (68)Ga-NOPO-c(RGDfK) was obtained with high purity (>99% by radio-HPLC/TLC) and, optionally, could be produced with specific activities up to 6 TBq/μmol. M21/M21L (human melanoma with high/low αvβ3 integrin expression) xenografted athymic CD-1 nude mice were used for biodistribution, in vivo stability studies, and PET imaging. (68)Ga-NOPO-c(RGDfK) showed rapid and specific uptake in M21 tumor xenografts (2.02 ± 0.34% ID/g at 60 min p.i.) and was found stable in vivo. Its high hydrophilicity is reflected by an octanol-water distribution coefficient (log D = -4.6) which is more than 1 order of magnitude lower compared to respective NOTA or DOTA analogues. As expected, (68)Ga-NOPO-c(RGDfK) thus showed fast renal clearance from nontargeted tissues. We conclude that NOPO might generally prove a useful means to improve renal clearance of corresponding radiopharmaceuticals by increasing the polarity of its bioconjugates. Favorable labeling properties render NOPO conjugates highly recommendable for reliable routine production of (68)Ga-radiopharmaceuticals in a clinical setting.
Collapse
Affiliation(s)
- Jakub Simeček
- Pharmaceutical Radiochemistry and ‡Institute for Advanced Study and Center of Integrated Protein Science, Technische Universität München , München, Germany
| | | | | | | | | |
Collapse
|
32
|
Pallarola D, Bochen A, Boehm H, Rechenmacher F, Sobahi TR, Spatz JP, Kessler H. Interface Immobilization Chemistry of cRGD-based Peptides Regulates Integrin Mediated Cell Adhesion. ADVANCED FUNCTIONAL MATERIALS 2014; 24:943-956. [PMID: 25810710 PMCID: PMC4368046 DOI: 10.1002/adfm.201302411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/28/2013] [Indexed: 05/29/2023]
Abstract
The interaction of specific surface receptors of the integrin family with different extracellular matrix-based ligands is of utmost importance for the cellular adhesion process. A ligand consists of an integrin-binding group, here cyclic RGDfX, a spacer molecule that lifts the integrin-binding group from the surface and a surface anchoring group. c(-RGDfX-) peptides are bound to gold nanoparticle structured surfaces via polyproline, polyethylene glycol or aminohexanoic acid containing spacers of different lengths. Although keeping the integrin-binding c(-RGDfX-) peptides constant for all compounds, changes of the ligand's spacer chemistry and length reveal significant differences in cell adhesion activation and focal adhesion formation. Polyproline-based peptides demonstrate improved cell adhesion kinetics and focal adhesion formation compared with common aminohexanoic acid or polyethylene glycol spacers. Binding activity can additionally be improved by applying ligands with two head groups, inducing a multimeric effect. This study gives insights into spacer-based differences in integrin-driven cell adhesion processes and remarkably highlights the polyproline-based spacers as suitable ligand-presenting templates for surface functionalization.
Collapse
Affiliation(s)
- Diego Pallarola
- Department of New Materials and Biosystems, Max Planck Institute for intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany ; Department of Biophysical Chemistry, University of Heidelberg 69120, Heidelberg, Germany
| | - Alexander Bochen
- Institute for Advanced Study and Center for Integrated Protein Science Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747, Garching, Germany
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany ; Department of Biophysical Chemistry, University of Heidelberg 69120, Heidelberg, Germany ; CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747, Garching, Germany
| | - Tariq R Sobahi
- Chemistry Department Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for intelligent Systems Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747, Garching, Germany ; Chemistry Department Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
33
|
Li Z, Wu L, Zhang T, Huang Z, Qiu G, Zhou Z, Jin L. N-2-Hydroxybenzaldehyde acylhydrazone–Fe(iii) complex: synthesis, crystal structure and its efficient and selective N-methylation. Dalton Trans 2014; 43:7554-60. [DOI: 10.1039/c4dt00121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The n-acylhydrazone–Fe(iii) complexes permit ligand's amide N to be easily methylated and suppress the O-methylation side reactions of phenol.
Collapse
Affiliation(s)
- Zhiyou Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan, P. R. China
| | - Lamei Wu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan, P. R. China
| | - Tao Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan, P. R. China
| | - Zhengxi Huang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan, P. R. China
| | - Guofu Qiu
- College of Pharmacy
- Wuhan University
- Wuhan, China
| | - Zhongqiang Zhou
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan, P. R. China
| | - Longfei Jin
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan, P. R. China
| |
Collapse
|
34
|
Dutt Konar A, Vass E, Hollósi M, Majer Z, Grüber G, Frese K, Sewald N. Conformational properties of secondary amino acids: replacement of pipecolic acid by N-methyl-l-alanine in efrapeptin C. Chem Biodivers 2013; 10:942-51. [PMID: 23681735 DOI: 10.1002/cbdv.201300086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 11/08/2022]
Abstract
The efrapeptins, a family of naturally occurring peptides with inhibitory activities against ATPases, contain several α,α-disubstituted α-amino acids such as α-aminoisobutyric acid (Aib) or isovaline (Iva) besides pipecolic acid (Pip), β-Ala, Leu, Gly, and a C-terminal heterocyclic residue. Secondary α-amino acids such as proline are known to stabilize discrete conformations in peptides. A similar influence is ascribed to N-alkyl α-amino acids. We synthesized two efrapeptin C analogs with replacement of Pip by N-methyl-L-alanine (MeAla) using a combination of solid- and solution-phase techniques in a fragment-condensation strategy to compare the conformational bias of both secondary amino acids. The solution conformation was investigated by vibrational circular dichroism (VCD) to probe whether the analogs adopt a 310 -helical conformation. The MeAla-containing analogs [MeAla(1,3) ]efrapeptin C and [MeAla(1,3,11) ]efrapeptin C inhibit ATP hydrolysis by the A3 B3 complex of A1 A0 -ATP synthase from Methanosarcina mazei Gö1.
Collapse
|
35
|
|
36
|
Cecere G, Koenig CM, Alleva JL, MacMillan DWC. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling. J Am Chem Soc 2013; 135:11521-4. [PMID: 23869694 PMCID: PMC3786402 DOI: 10.1021/ja406181e] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated N-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Importantly, this photoinduced transformation allows direct and enantioselective access to α-amino aldehyde products that do not require postreaction manipulation.
Collapse
Affiliation(s)
- Giuseppe Cecere
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544
| | - Christian M. Koenig
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544
| | - Jennifer L. Alleva
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
37
|
Šimeček J, Hermann P, Havlíčková J, Herdtweck E, Kapp TG, Engelbogen N, Kessler H, Wester HJ, Notni J. A cyclen-based tetraphosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 2013; 19:7748-57. [PMID: 23613345 DOI: 10.1002/chem.201300338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Indexed: 01/17/2023]
Abstract
The cyclen-based tetraphosphinate chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis[methylene(2-carboxyethyl)phosphinic acid] (DOTPI) comprises four additional carboxylic acid moieties for bioconjugation. The thermodynamic stability constants (logK(ML)) of metal complexes, as determined by potentiometry, were 23.11 for Cu(II), 20.0 for Lu(III), 19.6 for Y(III), and 21.0 for Gd(III). DOTPI was functionalized with four cyclo(Arg-Gly-Asp-D-Phe-Lys) (RGD) peptides through polyethylene glycol (PEG4) linkers. The resulting tetrameric conjugate DOTPI(RGD)4 was radiolabeled with (177)Lu and (64)Cu and showed improved labeling efficiency compared with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The labeled compounds were fully stable in transchelation challenges against trisodium diethylenetriaminepentaacetate (DTPA) and disodium ethylenediaminetetraacetic acid (ETDA), in phosphate buffered saline (PBS), and human plasma. Integrin αvβ3 affinities of the non-radioactive Lu(III) and Cu(II) complexes of DOTPI(RGD)4 were 18 times higher (both IC50 about 70 picomolar) than that of the c(RGDfK) peptide (IC50 = 1.3 nanomolar). Facile access to tetrameric conjugates and the possibility of radiolabeling with therapeutic and diagnostic radionuclides render DOTPI suitable for application in peptide receptor radionuclide imaging (PRRI) and therapy (PRRT).
Collapse
Affiliation(s)
- Jakub Šimeček
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meissner Strasse 3, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bochen A, Marelli UK, Otto E, Pallarola D, Mas-Moruno C, Di Leva FS, Boehm H, Spatz JP, Novellino E, Kessler H, Marinelli L. Biselectivity of isoDGR peptides for fibronectin binding integrin subtypes α5β1 and αvβ6: conformational control through flanking amino acids. J Med Chem 2013; 56:1509-19. [PMID: 23362923 DOI: 10.1021/jm301221x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are the major class of cell adhesion proteins. Their interaction with different ligands of the extracellular matrix is diverse. To get more insight into these interactions, artificial ligands endowed with a well-defined activity/selectivity profile are necessary. Herein, we present a library of cyclic pentapeptides, based on our previously reported peptide motif c(-phg-isoDGR-X-), in which high activity toward fibronectin binding integrins α5β1 and αvβ6 and not on vitronectin binding integrins αvβ3 and αvβ5 has been achieved by changing the flanking amino acids. The structure of the most promising candidates has been determined using a combined approach of NMR, distance geometry, and molecular dynamics simulations, and docking studies have been further used to elucidate the peptide-integrin interactions at the molecular level. The peptides' binding affinity has been characterized by enzyme linked immunosorbent assay experiments, and the results have been verified by cell adhesion experiments on specifically functionalized surfaces.
Collapse
Affiliation(s)
- Alexander Bochen
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Konar AD. The unique crystallographic signature of a β-turn mimic nucleated by N-methylated phenylalanine and Aib as corner residue: conformational and self-assembly studies. CrystEngComm 2013. [DOI: 10.1039/c3ce41448e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Chatterjee J, Rechenmacher F, Kessler H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed Engl 2012; 52:254-69. [PMID: 23161799 DOI: 10.1002/anie.201205674] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 11/06/2022]
Abstract
N-Methylation is one of the simplest chemical modifications often occurring in peptides and proteins of prokaryotes and higher eukaryotes. Over years of evolution, nature has employed N-methylation of peptides as an ingenious technique to modulate biological function, often as a mode of survival through the production of antibiotics. This small structural change can not only mobilize large protein complexes (as in the histone methylation), but also inhibits the action of enzymes by selective recognition of protein-protein interaction surfaces. In recent years through the advancement in synthetic approaches, the potential of N-methylation has begun to be revealed, not only in modulating biological activity and selectivity as well as pharmacokinetic properties of peptides, but also in delivering novel drugs. Herein, we summarize the current knowledge of the versatility of N-methylation in modulating biological, structural, and pharmacokinetic properties of peptides.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Genome biology unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Chatterjee J, Rechenmacher F, Kessler H. N-Methylierung von Peptiden und Proteinen: ein wichtiges Element für die Regulation biologischer Funktionen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205674] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Flick J, Tristram F, Wenzel W. Modeling loop backbone flexibility in receptor-ligand docking simulations. J Comput Chem 2012; 33:2504-15. [DOI: 10.1002/jcc.23087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/15/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022]
|
43
|
Abstract
This protocol presents a detailed description of the synthesis of N-methylated cyclic peptides. N-methylation is a powerful technique to modulate the physicochemical properties of peptides by introducing one or more methyl groups into the peptidic amide bonds. Together with peptide cyclization, this procedure confers unprecedented pharmacokinetic properties to the peptides, including metabolic stability, membrane permeability and even oral bioavailability. Here we describe two simplified methods of N-methylation of linear peptides on solid supports, which can be performed in less than 2 h and are applicable to any amino acid. Finally, we also describe two methods of peptide cyclization, which can be used to obtain the N-methylated cyclic peptide and which are not limited to specific peptide sequences. With this protocol, multiply N-methylated cyclic peptides can be synthesized in as little as 4-5 d.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Garching, Germany
| | | | | |
Collapse
|
44
|
Bollinger M, Manzenrieder F, Kolb R, Bochen A, Neubauer S, Marinelli L, Limongelli V, Novellino E, Moessmer G, Pell R, Lindner W, Fanous J, Hoffman A, Kessler H. Tailoring of integrin ligands: probing the charge capability of the metal ion-dependent adhesion site. J Med Chem 2012; 55:871-82. [PMID: 22185640 DOI: 10.1021/jm2013826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intervention in integrin-mediated cell adhesion and integrin signaling pathways is an ongoing area of research in medicinal chemistry and drug development. One key element in integrin-ligand interaction is the coordination of the bivalent cation at the metal ion-dependent adhesion site (MIDAS) by a carboxylic acid function, a consistent feature of all integrin ligands. With the exception of the recently discovered hydroxamic acids, all bioisosteric attempts to replace the carboxylic acid of integrin ligands failed. We report that phosphinates as well as monomethyl phosphonates represent excellent isosters, when introduced into integrin antagonists for the platelet integrin αIIbβ3. The novel inhibitors exhibit in vitro and ex vivo activities in the low nanomolar range. Steric and charge requirements of the MIDAS region were unraveled, thus paving the way for an in silico prediction of ligand activity and in turn the rational design of the next generation of integrin antagonists.
Collapse
Affiliation(s)
- Markus Bollinger
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tal-Gan Y, Freeman NS, Klein S, Levitzki A, Gilon C. Metabolic stability of peptidomimetics: N-methyl and aza heptapeptide analogs of a PKB/Akt inhibitor. Chem Biol Drug Des 2011; 78:887-92. [PMID: 21824328 DOI: 10.1111/j.1747-0285.2011.01207.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Linear peptides suffer from poor pharmacokinetic and pharmacodynamic properties. Peptidomimetics are designed to overcome these pharmacological drawbacks while maintaining the biological effects of the parent peptides. Aza-peptides, in which an alpha carbon is replaced with nitrogen, are promising peptidomimetic analogs; however, little is known about the stability of these analogs toward enzymatic degradation. We performed systematic aza and N-methyl scans of a PKB/Akt inhibitor, PTR6154. We evaluated the stability of the aza-scan and N-methyl scan libraries toward enzymatic degradation by trypsin/chymotrypsin. Our results indicate that the modification site is important for metabolic stability and that aza-peptides have a more global effect than N-methylation, affecting cleavage sites distant from the modification site.
Collapse
Affiliation(s)
- Yftah Tal-Gan
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
46
|
Erhöhung der αvβ3-Selektivität des Angiogenese hemmenden Wirkstoffs Cilengitid durch N-Methylierung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Mas-Moruno C, Beck JG, Doedens L, Frank AO, Marinelli L, Cosconati S, Novellino E, Kessler H. Increasing αvβ3 selectivity of the anti-angiogenic drug cilengitide by N-methylation. Angew Chem Int Ed Engl 2011; 50:9496-500. [PMID: 21948451 DOI: 10.1002/anie.201102971] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/27/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Institute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chatterjee J, Laufer B, Beck JG, Helyes Z, Pintér E, Szolcsányi J, Horvath A, Mandl J, Reubi JC, Kéri G, Kessler H. N-Methylated sst2 Selective Somatostatin Cyclic Peptide Analogue as a Potent Candidate for Treating Neurogenic Inflammation. ACS Med Chem Lett 2011; 2:509-14. [PMID: 24900340 DOI: 10.1021/ml200032v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
A focused multiply N-methylated library of a cyclic hexapeptidic somatostatin analogue: MK678 cyclo(-MeAYwKVF-) was generated, which resulted in the unexpected observation of an efficacious tetra-N-methylated analogue, cyclo(-MeAYMewMeKVMeF-) with a potent inhibitory action on sensory neuropeptide release in vitro and on acute neurogenic inflammatory response in vivo. The analogue shows selectivity toward somatostatin receptor subtype 2 (sst2). Extensive 2D NMR spectroscopy and molecular dynamics simulation revealed the solution conformation of the analogue, which can be adopted as a lead for the further structure-activity relationship studies targeting neurogenic inflammation.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Burkhardt Laufer
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Johannes G. Beck
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624, Hungary
| | - Aniko Horvath
- Pathobiochemistry Research Group of Hungarian Academy of Sciences in Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, H-1094, Hungary
| | - Jozsef Mandl
- Pathobiochemistry Research Group of Hungarian Academy of Sciences in Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, H-1094, Hungary
| | - Jean C. Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Bern, Bern, CH-3010 Switzerland
| | - György Kéri
- Pathobiochemistry Research Group of Hungarian Academy of Sciences in Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, H-1094, Hungary
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| |
Collapse
|
49
|
Chelate oxorhenium to assemble new integrin antagonists. J Inorg Biochem 2011; 105:880-6. [DOI: 10.1016/j.jinorgbio.2011.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/22/2022]
|
50
|
Ovadia O, Greenberg S, Chatterjee J, Laufer B, Opperer F, Kessler H, Gilon C, Hoffman A. The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. Mol Pharm 2011; 8:479-87. [PMID: 21375270 DOI: 10.1021/mp1003306] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent progress in peptide synthesis simplified the synthesis of multiple N-methylation of peptides. To evaluate how multiple N-methylation affects the bioavailability of peptides, a poly alanine cyclic hexapeptide library (n = 54), varying in the number of N-methyl (N-Me) groups (1-5 groups) and their position, was synthesized. The peptides were evaluated for their intestinal permeability in vitro using the Caco-2 model. Further evaluation of the transport route of chosen analogues was performed using rat excised viable intestinal tissue, a novel colorimetric liposomal model and the parallel artificial membrane permeability assay (PAMPA). While most members were found to have poor permeability (permeability coefficient, P(app) < 1 x 10⁻⁶ cm/s, lower than mannitol, the marker for paracellular permeability), 10 analogues were found to have high Caco-2 permeability, (P(app) > 1 x 10⁻⁵ cm/s, similar to testosterone, a marker of transcellular permeability). No correlation was found between the number of N-methylated groups and the enhanced permeability. However, 9/10 permeable peptides in the Caco-2 model included an N-Me placed adjacently to the D-Ala position. While the exact transport route was not fully characterized, the data suggests a facilitated diffusion. It can be concluded that multiple N-methylation of peptides may improve intestinal permeability, and therefore can be utilized in the design of orally available peptide-based therapeutics.
Collapse
Affiliation(s)
- Oded Ovadia
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|