1
|
Skwarecki AS, Nowak MG, Milewska MJ. Amino Acid and Peptide-Based Antiviral Agents. ChemMedChem 2021; 16:3106-3135. [PMID: 34254457 DOI: 10.1002/cmdc.202100397] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/10/2023]
Abstract
A significant number of antiviral agents used in clinical practice are amino acids, short peptides, or peptidomimetics. Among them, several HIV protease inhibitors (e. g. lopinavir, atazanavir), HCV protease inhibitors (e. g. grazoprevir, glecaprevir), and HCV NS5A protein inhibitors have contributed to a significant decrease in mortality from AIDS and hepatitis. However, there is an ongoing need for the discovery of new antiviral agents and the development of existing drugs; amino acids, both proteinogenic and non-proteinogenic in nature, serve as convenient building blocks for this purpose. The synthesis of non-proteinogenic amino acid components of antiviral agents could be challenging due to the need for enantiomerically or diastereomerically pure products. Herein, we present a concise review of antiviral agents whose structures are based on amino acids of both natural and unnatural origin. Special attention is paid to the synthetic aspects of non-proteinogenic amino acid components of those agents.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
2
|
Vadhadiya PM, Jean MA, Bouzriba C, Tremblay T, Lagüe P, Fortin S, Boukouvalas J, Giguère D. Diversity-Oriented Synthesis of Diol-Based Peptidomimetics as Potential HIV Protease Inhibitors and Antitumor Agents. Chembiochem 2018; 19:1779-1791. [PMID: 29858881 DOI: 10.1002/cbic.201800247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Peptidomimetic HIV protease inhibitors are an important class of drugs used in the treatment of AIDS. The synthesis of a new type of diol-based peptidomimetics is described. Our route is flexible, uses d-glucal as an inexpensive starting material, and makes minimal use of protection/deprotection cycles. Binding affinities from molecular docking simulations suggest that these compounds are potential inhibitors of HIV protease. Moreover, the antiproliferative activities of compounds 33 a, 35 a, and 35 b on HT-29, M21, and MCF7 cancer cell lines are in the low micromolar range. The results provide a platform that could facilitate the development of medically relevant asymmetrical diol-based peptidomimetics.
Collapse
Affiliation(s)
- Paresh M Vadhadiya
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Marc-Alexandre Jean
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Chahrazed Bouzriba
- CHU de Québec-Université Laval Research Center, Oncology Division, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Thomas Tremblay
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Patrick Lagüe
- Départment de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, 1045, Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Sébastien Fortin
- CHU de Québec-Université Laval Research Center, Oncology Division, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - John Boukouvalas
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
3
|
Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 2016; 59:5172-208. [PMID: 26799988 PMCID: PMC5598487 DOI: 10.1021/acs.jmedchem.5b01697] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 protease inhibitors continue to play an important role in the treatment of HIV/AIDS, transforming this deadly ailment into a more manageable chronic infection. Over the years, intensive research has led to a variety of approved protease inhibitors for the treatment of HIV/AIDS. In this review, we outline current drug design and medicinal chemistry efforts toward the development of next-generation protease inhibitors beyond the currently approved drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gary Prato
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
4
|
Venkatakrishnan B, Palii ML, Agbandje-McKenna M, McKenna R. Mining the protein data bank to differentiate error from structural variation in clustered static structures: an examination of HIV protease. Viruses 2012; 4:348-62. [PMID: 22590675 PMCID: PMC3347031 DOI: 10.3390/v4030348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/22/2022] Open
Abstract
The Protein Data Bank (PDB) contains over 71,000 structures. Extensively studied proteins have hundreds of submissions available, including mutations, different complexes, and space groups, allowing for application of data-mining algorithms to analyze an array of static structures and gain insight about a protein’s structural variation and possibly its dynamics. This investigation is a case study of HIV protease (PR) using in-house algorithms for data mining and structure superposition through generalized formulæ that account for multiple conformations and fractional occupancies. Temperature factors (B-factors) are compared with spatial displacement from the mean structure over the entire study set and separately over bound and ligand-free structures, to assess the significance of structural deviation in a statistical context. Space group differences are also examined.
Collapse
|
5
|
Genoni A, Morra G, Merz KM, Colombo G. Computational study of the resistance shown by the subtype B/HIV-1 protease to currently known inhibitors. Biochemistry 2010; 49:4283-95. [PMID: 20415450 DOI: 10.1021/bi100569u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 protease (HIV-1 PR) is an essential enzyme in the HIV-1 life cycle. As such, this protein represents a major drug target in AIDS therapy, but emerging resistance to antiretroviral inhibitor cocktails, caused by high viral mutation rates, represents a significant challenge in AIDS treatment. Many mutations are not located within the active site or binding pocket, nor they do significantly modify the three-dimensional structural organization of the enzyme; hence, the mechanism(s) by which they alter inhibitor affinity for the protease remains uncertain. In this article, we present an all-atom computational analysis of the dynamic residue-residue coordination between the active site residues and the rest of the protein and of the energetic properties of different HIV-1 PR complexes. We analyze both the wild-type form and mutated forms that induce drug resistance. In particular, the results show differences between the wild type and the mutants in their mechanism of dynamic coordination, in the signal propagation between the active site residues and the rest of the protein, and in the energy networks responsible for the stabilization of the bound inhibitor conformation. Finally, we propose a dynamic and energetic explanation for HIV-1 protease drug resistance, and, through this model, we identify a possible new site that could be helpful in the design of a new family of HIV-1 PR allosteric inhibitors.
Collapse
Affiliation(s)
- Alessandro Genoni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | | | | |
Collapse
|
6
|
Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Eur J Med Chem 2010; 45:227-35. [DOI: 10.1016/j.ejmech.2009.09.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
|
7
|
Ramu E, Venkateswara Rao B. A short approach to the synthesis of the ritonavir and lopinavir core and its C-3 epimer via cross metathesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|