1
|
Varshney S, Alam MA, Kaur A, Dhoundiyal S. Niosomes: A Smart Drug Delivery System for Brain Targeting. Pharm Nanotechnol 2024; 12:108-125. [PMID: 37226788 DOI: 10.2174/2211738511666230524143832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Niosomes are lipid-based nanovesicles that have the potential to act as drug-delivery vehicles for a variety of agents. They are effective drug delivery systems for both ASOs and AAV vectors, with advantages such as improved stability, bioavailability, and targeted administration. In the context of brain-targeted drug delivery, niosomes have been investigated as a drug delivery system for brain targeting, but more research is needed to optimize their formulation to improve their stability and release profile and address the challenges of scale-up and commercialization. Despite these challenges, several applications of niosomes have demonstrated the potential of novel nanocarriers for targeted drug delivery to the brain. This review briefly overviews the current use of niosomes in treating brain disorders and diseases.
Collapse
Affiliation(s)
- Sandesh Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Li C, Jin K. Chemical Strategies towards the Development of Effective Anticancer Peptides. Curr Med Chem 2024; 31:1839-1873. [PMID: 37170992 DOI: 10.2174/0929867330666230426111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.
Collapse
Affiliation(s)
- Cuicui Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
3
|
Sánchez-Navarro M, Giralt E. Peptide Shuttles for Blood–Brain Barrier Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14091874. [PMID: 36145622 PMCID: PMC9505527 DOI: 10.3390/pharmaceutics14091874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
The blood–brain barrier (BBB) limits the delivery of therapeutics to the brain but also represents the main gate for nutrient entrance. Targeting the natural transport mechanisms of the BBB offers an attractive route for brain drug delivery. Peptide shuttles are able to use these mechanisms to increase the transport of compounds that cannot cross the BBB unaided. As peptides are a group of biomolecules with unique physicochemical and structural properties, the field of peptide shuttles has substantially evolved in the last few years. In this review, we analyze the main classifications of BBB–peptide shuttles and the leading sources used to discover them.
Collapse
Affiliation(s)
- Macarena Sánchez-Navarro
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina ‘‘López Neyra” (CSIC), 18016 Granada, Spain
- Correspondence: (M.S.-N.); (E.G.)
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Correspondence: (M.S.-N.); (E.G.)
| |
Collapse
|
4
|
Todorovski T, Mendonça DA, Fernandes-Siqueira LO, Cruz-Oliveira C, Guida G, Valle J, Cavaco M, Limas FIV, Neves V, Cadima-Couto Í, Defaus S, Veiga AS, Da Poian AT, Castanho MARB, Andreu D. Targeting Zika Virus with New Brain- and Placenta-Crossing Peptide-Porphyrin Conjugates. Pharmaceutics 2022; 14:738. [PMID: 35456572 PMCID: PMC9032516 DOI: 10.3390/pharmaceutics14040738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.
Collapse
Affiliation(s)
- Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Lorena O. Fernandes-Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Giuseppina Guida
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Javier Valle
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Fernanda I. V. Limas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Íris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| |
Collapse
|
5
|
Sharma M, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S, Panda JJ. Self-Fluorescent Lone Tryptophan Nanoparticles as Theranostic Agents Against Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13079-13093. [PMID: 35263093 DOI: 10.1021/acsami.2c01090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aggregation of β-amyloid (Aβ42) peptide in the neural extracellular space leads to cellular dysfunction, resulting in Alzheimer's disease (AD). The hydrophobic core of the amyloidogenic Aβ42 peptide contains aromatic residues that play an important role in the self-assembly and subsequent aggregation of the peptide. Hence, targeting these hydrophobic core residues by potent low molecular agents can be a promising therapeutic approach toward AD. In the current work, we have developed self-fluorescent solo tryptophan nanoparticles (TNPs) as nanotheranostic systems against AD. We demonstrated that TNPs could significantly inhibit as well as disrupt the fibrils formed by both Aβ42 peptide and another reductionist approach-based amyloid model dipeptide, phenylalanine-phenylalanine (FF). More importantly, these nanostructures were nontoxic to neural cells and could protect the neurons from Aβ42 peptide and FF aggregate-induced cytotoxicity. In addition, efficacy studies performed in animal model further revealed that the TNPs could rescue spatial and learning memory in intracerebroventricular streptozotocin-administration-induced AD phenotype in rats. Moreover, our pharmacokinetics study further established the BBB permeability and brain delivery potency of TNPs. The inherent excellent fluorescent properties of these nanoparticles could be exploited further to use them as imaging modalities for tagging and detecting FF and Aβ42 peptide fibrils. Overall, our results clearly illustrated that the solo TNPs could serve as promising nanotheranostic agents for AD therapy.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Virendra Tiwari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Chaturvedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Shubha Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| |
Collapse
|
6
|
Mendonça DA, Bakker M, Cruz-Oliveira C, Neves V, Jiménez MA, Defaus S, Cavaco M, Veiga AS, Cadima-Couto I, Castanho MARB, Andreu D, Todorovski T. Penetrating the Blood-Brain Barrier with New Peptide-Porphyrin Conjugates Having anti-HIV Activity. Bioconjug Chem 2021; 32:1067-1077. [PMID: 34033716 PMCID: PMC8485325 DOI: 10.1021/acs.bioconjchem.1c00123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Passing
through the blood-brain barrier (BBB) to treat neurological
conditions is one of the main hurdles in modern medicine. Many drugs
with promising in vitro profiles become ineffective in vivo due to
BBB restrictive permeability. In particular, this includes drugs such
as antiviral porphyrins, with the ability to fight brain-resident
viruses causing diseases such as HIV-associated neurocognitive disorders
(HAND). In the last two decades, BBB shuttles, particularly peptide-based
ones, have shown promise in carrying various payloads across the BBB.
Thus, peptide–drug conjugates (PDCs) formed by covalent attachment
of a BBB peptide shuttle and an antiviral drug may become key therapeutic
tools in treating neurological disorders of viral origin. In this
study, we have used various approaches (guanidinium, phosphonium,
and carbodiimide-based couplings) for on-resin synthesis of new peptide–porphyrin
conjugates (PPCs) with BBB-crossing and potential antiviral activity.
After careful fine-tuning of the synthetic chemistry, DIC/oxyma has
emerged as a preferred method, by which 14 different PPCs have been
made and satisfactorily characterized. The PPCs are prepared by coupling
a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective
in vitro BBB translocation ability, low cytotoxicity toward mouse
brain endothelial cells, and low hemolytic activity. Three of the
PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity
in vitro, stand out as most promising. Their efficacy against other
brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently
under evaluation, with preliminary results confirming that PPCs are
a promising strategy to treat viral brain infections.
Collapse
Affiliation(s)
- Diogo A Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mariët Bakker
- Avans University of Applied Sciences, 5223 DE Breda, Netherlands
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Maria Angeles Jiménez
- Department of Biological Physical Chemistry, Institute of Physical Chemistry Rocasolano (IQFR-CSIC), 28006 Madrid, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Iris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Toni Todorovski
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Apostol CR, Hay M, Polt R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides 2020; 131:170369. [PMID: 32673700 PMCID: PMC7448947 DOI: 10.1016/j.peptides.2020.170369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Peptides are an important class of molecules with diverse biological activities. Many endogenous peptides, especially neuropeptides and peptide hormones, play critical roles in development and regulating homeostasis. Furthermore, as drug candidates their high receptor selectivity and potent binding leads to reduced off-target interactions and potential negative side effects. However, the therapeutic potential of peptides is severely hampered by their poor stability in vivo and low permeability across biological membranes. Several strategies have been successfully employed over the decades to address these concerns, and one of the most promising strategies is glycosylation. It has been demonstrated in numerous cases that glycosylation is an effective synthetic approach to improve the pharmacokinetic profiles and membrane permeability of peptides. The effects of glycosylation on peptide stability and peptide-membrane interactions in the context of blood-brain barrier penetration will be explored. Numerous examples of glycosylated analogues of endogenous peptides targeting class A and B G-protein coupled receptors (GPCRs) with an emphasis on O-linked glycopeptides will be reviewed. Notable examples of N-, S-, and C-linked glycopeptides will also be discussed. A small section is devoted to synthetic methods for the preparation of glycopeptides and requisite amino acid glycoside building blocks.
Collapse
Affiliation(s)
- Christopher R Apostol
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meredith Hay
- Evelyn F. McKnight Brain Institute, Dept. of Physiology, The University of Arizona, Tucson, AZ 85724, USA
| | - Robin Polt
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Balalaie S, Malakoutikhah M, Teixidó M, Fathi Vavsari V, Giralt E, Haghighatnia Y, Hamdan F, Arabanian A. Efficient Synthesis of Norbuprenorphines Coupled with Enkephalins and Investigation of Their Permeability. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1277-1287. [PMID: 32641938 PMCID: PMC6934973 DOI: 10.22037/ijpr.2019.14712.12602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
An efficient approach for the synthesis of norbuprenorphin derivatives through coupling of enkephalins and norbuprenorphine intermediates is described. Norbuprenorphine derivative was synthesized from thebaine and then, its reaction with succinic acid and phthalic acid was also studied. Meanwhile, the synthesis of enkephalins was done using solid phase peptide synthesis approach. Furthermore, after cleavage of the peptide from the surface of the resin, the coupling of enkephalins with norbuprenorphine derivative was done using TBTU as a coupling reagent then the derivatives were purified using preparative high-pressure liquid chromatography and their structures were confirmed using high-resolution mass spectrometry data. Later, their permeability across membranes was investigated. After PAMPA studies, it was found that the permeability of all norbuprenorphin-enkephalin derivatives was increased; however, succinic and phthalic acid derivatives showed higher permeability than norbuprenorphine-Leu-enkephalin.
Collapse
Affiliation(s)
- Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Malakoutikhah
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Yaghoub Haghighatnia
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Fatima Hamdan
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Armin Arabanian
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Design and synthesis of selective and blood-brain barrier-permeable hydroxamate-based gelatinase inhibitors. Bioorg Chem 2020; 94:103365. [DOI: 10.1016/j.bioorg.2019.103365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022]
|
10
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Eden BD, Rice AJ, Lovett TD, Toner OM, Geissler EP, Bowman WE, Young SC. Microwave-assisted synthesis and in vitro stability of N-benzylamide non-steroidal anti-inflammatory drug conjugates for CNS delivery. Bioorg Med Chem Lett 2019; 29:1487-1491. [PMID: 30987893 DOI: 10.1016/j.bmcl.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
More effective delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to the brain could treat the underlying inflammatory pathology of a range of CNS diseases and conditions. Use of a blood-brain barrier shuttle such as the N-benzylamide moiety, which has been largely unexplored for this purpose, could improve the brain bioavailabilities of NSAIDs. A series of novel N-benzylamide NSAID conjugates was synthesized via a three-step process with a microwave-assisted bimolecular nucleophilic substitution as the final step. We explored conditions to promote substitution over a competing elimination reaction, which was successfully suppressed with isopropyl alcohol solvent. All molecules exhibit physicochemical properties consistent with those of brain-penetrant molecules. Furthermore, they exhibit long (>48 h) half-lives in phosphate-buffered saline (PBS; pH 7.4) and short to moderate half-lives in human plasma. N-Benzylamide NSAID conjugates represent promising CNS drug discovery leads.
Collapse
Affiliation(s)
- Brandon D Eden
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Andrew J Rice
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Troy D Lovett
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Olivia M Toner
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Evan P Geissler
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - William E Bowman
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States.
| |
Collapse
|
12
|
Stefanucci A, Lei W, Pieretti S, Novellino E, Dimmito MP, Marzoli F, Streicher JM, Mollica A. On resin click-chemistry-mediated synthesis of novel enkephalin analogues with potent anti-nociceptive activity. Sci Rep 2019; 9:5771. [PMID: 30962495 PMCID: PMC6453917 DOI: 10.1038/s41598-019-42289-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/20/2019] [Indexed: 11/22/2022] Open
Abstract
Here, we report the chemical synthesis of two DPDPE analogues 7a (NOVA1) and 7b (NOVA2). This entailed the solid-phase synthesis of two enkephalin precursor chains followed by a CuI-catalyzed azide-alkyne cycloaddition, with the aim of improving in vivo analgesic efficacy versus DPDPE. NOVA2 showed good affinity and selectivity for the μ-opioid receptor (KI of 59.2 nM, EC50 of 12.9 nM, EMax of 87.3%), and long lasting anti-nociceptive effects in mice when compared to DPDPE.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Francesca Marzoli
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
13
|
Arranz-Gibert P, Guixer B, Prades R, Ciudad S, Giralt E, Teixidó M. A MALDI-TOF-based Method for Studying the Transport of BBB Shuttles-Enhancing Sensitivity and Versatility of Cell-Based In Vitro Transport Models. Sci Rep 2019; 9:4875. [PMID: 30890722 PMCID: PMC6424956 DOI: 10.1038/s41598-019-40973-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
In recent decades, peptide blood-brain barrier shuttles have emerged as a promising solution for brain drugs that are not able to enter this organ. The research and development of these compounds involve the use of in vitro cell-based models of the BBB. Nevertheless, peptide transport quantification implies the use of large amounts of peptide (upper micromolar range for RP-HPLC-PDA) or of derivatives (e.g. fluorophore or quantum-dot attachment, radiolabeling) in the donor compartment in order to enhance the detection of these molecules in the acceptor well, although their structure is highly modified. Therefore, these methodologies either hamper the use of low peptide concentrations, thus hindering mechanistic studies, or do not allow the use of the unmodified peptide. Here we successfully applied a MALDI-TOF MS methodology for transport quantification in an in vitro BBB cell-based model. A light version of the acetylated peptide was evaluated, and the transport was subsequently quantified using a heavy internal standard (isotopically acetylated). We propose that this MALDI-TOF MS approach could also be applied to study the transport across other biological barriers using the appropriate in vitro transport models (e.g. Caco-2, PAMPA).
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Bernat Guixer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Roger Prades
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Sonia Ciudad
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain. .,Department of Inorganic and Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona, E-08028, Spain.
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, E-08028, Spain.
| |
Collapse
|
14
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
15
|
Hay M, Polt R, Heien ML, Vanderah TW, Largent-Milnes TM, Rodgers K, Falk T, Bartlett MJ, Doyle KP, Konhilas JP. A Novel Angiotensin-(1-7) Glycosylated Mas Receptor Agonist for Treating Vascular Cognitive Impairment and Inflammation-Related Memory Dysfunction. J Pharmacol Exp Ther 2019; 369:9-25. [PMID: 30709867 DOI: 10.1124/jpet.118.254854] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.
Collapse
Affiliation(s)
- Meredith Hay
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Robin Polt
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Michael L Heien
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Todd W Vanderah
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Kathleen Rodgers
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Torsten Falk
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Mitchell J Bartlett
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - Kristian P Doyle
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| | - John P Konhilas
- Departments of Physiology (M.H., J.P.K.), Chemistry and Biochemistry (R.P., M.L.H.), Pharmacology (T.W.V., T.M.L.-M., K.R., T.F., M.J.B.), Neurology (T.F., M.J.B.), and Immunobiology (K.P.D.), Evelyn F. McKnight Brain Institute (M.H.), Sarver Heart Center (M.H., J.P.K.), and Center for Innovation in Brain Science (M.H., T.W.V., K.R.), University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Monsen PJ, Luzzio FA. Antiangiogenic Activity and Chemical Derivatization of the Neurotoxic Acetogenin Annonacin Isolated from Asimina triloba. JOURNAL OF NATURAL PRODUCTS 2018; 81:1905-1909. [PMID: 30028612 DOI: 10.1021/acs.jnatprod.8b00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Annonacin (1) was isolated from the North American pawpaw ( Asimina triloba), as reported earlier from these laboratories. Natural 1 was submitted to the rat aortic ring bioassay for evaluation of antiangiogenic activity and was found to inhibit microvessel growth (IC50 value of 3 μM). 4,10,15,20-Tetraazido derivatives of 1 were prepared by permesylation followed by azide displacement or by iodination followed by azide displacement. The tetraazide derived from mesylation/azidation was antiangiogenic, while that derived from iodination/azidation exhibited no appreciable activity. The membrane permeability of natural 1 was evaluated using the parallel artificial membrane permeability assay and was found to be marginally permeable as compared to several clinically relevant compounds.
Collapse
Affiliation(s)
- Paige J Monsen
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Frederick A Luzzio
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| |
Collapse
|
17
|
Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles. Bioorg Med Chem 2018; 26:2099-2106. [PMID: 29567297 DOI: 10.1016/j.bmc.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 01/12/2023]
Abstract
N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe)4-CONH2, was more lipophilic than its non-methylated analog Ac-(Phe)4-CONH2. In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe)4-CONH2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay.
Collapse
|
18
|
Van der Poorten O, Legrand B, Vezenkov LL, García-Pindado J, Bettache N, Knuhtsen A, Pedersen DS, Sánchez-Navarro M, Martinez J, Teixidó M, Garcia M, Tourwé D, Amblard M, Ballet S. Indoloazepinone-Constrained Oligomers as Cell-Penetrating and Blood-Brain-Barrier-Permeating Compounds. Chembiochem 2018; 19:696-705. [PMID: 29377388 DOI: 10.1002/cbic.201700678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/29/2022]
Abstract
Non-cationic and amphipathic indoloazepinone-constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [l-Aia-Xxx]n oligomers were investigated by circular dichroism (CD) and NMR spectroscopy. Whereas Boc-[l-Aia-Gly]2,4 -OBn oligomers 12 and 13 and Boc-[l-Aia-β3 -h-l-Ala]2,4 -OBn oligomers 16 and 17 were totally or partially disordered, Boc-[l-Aia-l-Ala]2 -OBn (14) induced a typical turn stabilized by C5 - and C7 -membered H-bond pseudo-cycles and aromatic interactions. Boc-[l-Aia-l-Ala]4 -OBn (15) exhibited a unique structure with remarkable T-shaped π-stacking interactions involving the indole rings of the four l-Aia residues forming a dense hydrophobic cluster. All of the proposed FITC-6-Ahx-[l-Aia-Xxx]4 -NH2 oligomers 19-23, with the exception of FITC-6-Ahx-[l-Aia-Gly]4 -NH2 (18), were internalized by MDA-MB-231 cells with higher efficiency than the positive references penetratin and Arg8 . In parallel, the compounds of this series were successfully explored in an in vitro blood-brain barrier (BBB) permeation assay. Although no passive diffusion permeability was observed for any of the tested Ac-[l-Aia-Xxx]4 -NH2 oligomers in the PAMPA model, Ac-[l-Aia-l-Arg]4 -NH2 (26) showed significant permeation in the in vitro cell-based human model of the BBB, suggesting an active mechanism of cell penetration.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Lubomir L Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
19
|
Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev 2018; 45:4690-707. [PMID: 27188322 DOI: 10.1039/c6cs00076b] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain delivery is one of the major challenges in drug development because of the high number of patients suffering from neural diseases and the low efficiency of the treatments available. Although the blood-brain barrier (BBB) prevents most drugs from reaching their targets, molecular vectors - known as BBB shuttles - offer great promise to safely overcome this formidable obstacle. In recent years, peptide shuttles have received growing attention because of their lower cost, reduced immunogenicity, and higher chemical versatility than traditional Trojan horse antibodies and other proteins.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain. and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
20
|
McCully M, Sánchez-Navarro M, Teixidó M, Giralt E. Peptide Mediated Brain Delivery of Nano- and Submicroparticles: A Synergistic Approach. Curr Pharm Des 2018; 24:1366-1376. [PMID: 29205110 PMCID: PMC6110044 DOI: 10.2174/1381612824666171201115126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
The brain is a complex, regulated organ with a highly controlled access mechanism: The Blood-Brain Barrier (BBB). The selectivity of this barrier is a double-edged sword, being both its greatest strength and weakness. This weakness is evident when trying to target therapeutics against diseases within the brain. Diseases such as metastatic brain cancer have extremely poor prognosis due to the poor permeability of many therapeutics across the BBB. Peptides can be designed to target BBB receptors and gain access to the brain by transcytosis. These peptides (known as BBB-shuttles) can carry compounds, usually excluded from the brain, across the BBB. BBB-shuttles are limited by poor loading of therapeutics and degradation of the peptide and cargo. Likewise, nano- submicro- and microparticles can be fine-tuned to limit their degradation and with high loading of therapeutics. However, most nano- and microparticles' core materials completely lack efficient targeting, with a few selected materials able to cross the BBB passively. Combining the selectivity of peptides with the high loading potential of nano-, microparticles offers an exciting strategy to develop novel, targeted therapeutics towards many brain disorders and diseases. Nevertheless, at present the field is diverse, in both scope and nomenclature, often with competing or contradictory names. In this review, we will try to address some of these issues and evaluate the current state of peptide mediated nano,-microparticle transport to the brain, analyzing delivery vehicle type and peptide design, the two key components that must act synergistically for optimal therapeutic impact.
Collapse
Affiliation(s)
| | | | - Meritxell Teixidó
- Address correspondence to these authors at the Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain; Tel/Fax: +34 93 40 37125 0; E-mails: ;
| | - Ernest Giralt
- Address correspondence to these authors at the Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain; Tel/Fax: +34 93 40 37125 0; E-mails: ;
| |
Collapse
|
21
|
Sánchez-Navarro M, Teixidó M, Giralt E. Jumping Hurdles: Peptides Able To Overcome Biological Barriers. Acc Chem Res 2017; 50:1847-1854. [PMID: 28715199 DOI: 10.1021/acs.accounts.7b00204] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell membrane, the gastrointestinal tract, and the blood-brain barrier (BBB) are good examples of biological barriers that define and protect cells and organs. They impose different levels of restriction, but they also share common features. For instance, they all display a high lipophilic character. For this reason, hydrophilic compounds, like peptides, proteins, or nucleic acids have long been considered as unable to bypass them. However, the discovery of cell-penetrating peptides (CPPs) opened a vast field of research. Nowadays, CPPs, homing peptides, and blood-brain barrier peptide shuttles (BBB-shuttles) are good examples of peptides able to target and to cross various biological barriers. CPPs are a group of peptides able to interact with the plasma membrane and enter the cell. They display some common characteristics like positively charged residues, mainly arginines, and amphipathicity. In this field, our group has been focused on the development of proline rich CPPs and in the analysis of the importance of secondary amphipathicity in the internalization process. Proline has a privileged structure being the only amino acid with a secondary amine and a cyclic side chain. These features constrain its structure and hamper the formation of H-bonds. Taking advantage of this privileged structure, three different families of proline-rich peptides have been developed, namely, a proline-rich dendrimer, the sweet arrow peptide (SAP), and a group of foldamers based on γ-peptides. The structure and the mechanism of internalization of all of them has been evaluated and analyzed. BBB-shuttles are peptides able to cross the BBB and to carry with them compounds that cannot reach the brain parenchyma unaided. These peptides take advantage of the natural transport mechanisms present at the BBB, which are divided in active and passive transport mechanisms. On the one hand, we have developed BBB-shuttles that cross the BBB by a passive transport mechanism, like diketoperazines (DKPs), (N-MePhe)n, or (PhPro)n. On the other hand, we have investigated BBB-shuttles that utilize active transport mechanisms such as SGV, THRre, or MiniAp-4. For the development of both groups, we have explored several approaches, such as the use of peptide libraries, both chemical and phage display, or hit-to-lead optimization processes. In this Account, we describe, in chronologic order, our contribution to the development of peptides able to overcome various biological barriers and our efforts to understand the mechanisms that they display. In addition, the potential use of both CPPs and BBB-shuttles to improve the transport of promising therapeutic compounds is described.
Collapse
Affiliation(s)
- Macarena Sánchez-Navarro
- Institute
for Research in Biomedicine, Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Meritxell Teixidó
- Institute
for Research in Biomedicine, Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute
for Research in Biomedicine, Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Blood-brain barrier peptide shuttles. Curr Opin Chem Biol 2017; 38:134-140. [PMID: 28558293 DOI: 10.1016/j.cbpa.2017.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
Abstract
Brain delivery is hampered by the presence of the blood-brain barrier (BBB), a natural defence of the brain that protects it and allows the entrance of nutrients by several mechanisms. Taking advantage of these mechanisms is an opportunity to treat brain related diseases. Among the different alternatives, BBB peptide shuttles are gaining attention to increase brain delivery of therapeutics. The most recent advances in the field are analysed here.
Collapse
|
23
|
García-Pindado J, Royo S, Teixidó M, Giralt E. Bike peptides: a ride through the membrane. J Pept Sci 2017; 23:294-302. [DOI: 10.1002/psc.2993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology (BIST); 08028 Barcelona Spain
| | - Soledad Royo
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology (BIST); 08028 Barcelona Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology (BIST); 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology (BIST); 08028 Barcelona Spain
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
| |
Collapse
|
24
|
Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:1-28. [DOI: 10.1016/bs.irn.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Permeability of novel 4′-N-substituted (aminomethyl) benzoate-7-substituted nicotinic acid ester derivatives of scutellarein in Caco-2 cells and in an in vitro model of the blood-brain barrier. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Virgone-Carlotta A, Dufour E, Bacot S, Ahmadi M, Cornou M, Moni L, Garcia J, Chierici S, Garin D, Marti-Batlle D, Perret P, Ghersi-Egea J, Moulin Sallanon M, Fagret D, Ghezzi C. New diketopiperazines as vectors for peptide protection and brain delivery: Synthesis and biological evaluation. J Labelled Comp Radiopharm 2016; 59:517-530. [DOI: 10.1002/jlcr.3442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 07/10/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - E. Dufour
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - S. Bacot
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - M. Ahmadi
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - M. Cornou
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - L. Moni
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - J. Garcia
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - S. Chierici
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - D. Garin
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - D. Marti-Batlle
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - P. Perret
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - J.F. Ghersi-Egea
- INSERM, U1028; CNRS, UMR5292; Lyon France
- BIP Platform, Lyon Neuroscience Research Center; Université Lyon 1; Lyon France
| | - M. Moulin Sallanon
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - D. Fagret
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - C. Ghezzi
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| |
Collapse
|
27
|
Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification. J Pept Sci 2016; 22:577-91. [DOI: 10.1002/psc.2900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 11/07/2022]
|
28
|
Oller-Salvia B, Teixidó M, Giralt E. From venoms to BBB shuttles: Synthesis and blood-brain barrier transport assessment of apamin and a nontoxic analog. Biopolymers 2016; 100:675-86. [PMID: 24281722 DOI: 10.1002/bip.22257] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 12/17/2022]
Abstract
Venoms are currently the focus of many drug discovery programs because they contain highly bioactive and selective components. Among them, apamin, a peptide found in bee venom, has received considerable attention because of its affinity for certain potassium channels and also because of its interesting structure and high stability to extreme pH and temperatures. Although apamin has long been claimed to cross the blood-brain barrier (BBB), only a few studies have been performed producing controversial results. In this article, it is shown that not only apamin is indeed able to penetrate the BBB in a cell-based model but also that an analog reported to be nontoxic passes through this barrier. Furthermore, the permeability values obtained, together with some evidence of an active transport mechanism and an amazing stability to serum proteases, make these peptides promising candidates for BBB shuttles.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Science Park, Baldiri Reixac 10, Barcelona, 08028, Spain
| | | | | |
Collapse
|
29
|
Arranz-Gibert P, Guixer B, Malakoutikhah M, Muttenthaler M, Guzmán F, Teixidó M, Giralt E. Lipid bilayer crossing--the gate of symmetry. Water-soluble phenylproline-based blood-brain barrier shuttles. J Am Chem Soc 2015; 137:7357-64. [PMID: 25992679 DOI: 10.1021/jacs.5b02050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug delivery to the brain can be achieved by various means, including blood-brain barrier (BBB) disruption, neurosurgical-based approaches, and molecular design. Recently, passive diffusion BBB shuttles have been developed to transport low-molecular-weight drug candidates to the brain which would not be able to cross unaided. The low water solubility of these BBB shuttles has, however, prevented them from becoming a mainstream tool to deliver cargos across membranes. Here, we describe the design, synthesis, physicochemical characterization, and BBB-transport properties of phenylproline tetrapeptides, (PhPro)4, an improved class of BBB shuttles that operates via passive diffusion. These PhPro-based BBB shuttles showed 3 orders of magnitude improvement in water solubility compared to the gold-standard (N-MePhe)4, while retaining very high transport values. Transport capacity was confirmed when two therapeutically relevant cargos, nipecotic acid and l-3,4-dihydroxyphenylalanine (i.e., l-DOPA), were attached to the shuttle. Additionally, we used the unique chiral and conformationally restricted character of the (PhPro)4 shuttle to probe its chiral interactions with the lipid bilayer of the BBB. We studied the transport properties of 16 (PhPro)4 stereoisomers using the parallel artificial membrane permeability assay and looked at differences in secondary structure. Most stereoisomers displayed excellent transport values, yet this study also revealed pairs of enantiomers with high enantiomeric discrimination and different secondary structure, where one enantiomer maintained its high transport values while the other had significantly lower values, thereby confirming that stereochemistry plays a significant role in passive diffusion. This could open the door to the design of chiral and membrane-specific shuttles with potential applications in cell labeling and oncology.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Bernat Guixer
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Morteza Malakoutikhah
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain.,‡Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Markus Muttenthaler
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Fanny Guzmán
- §Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Meritxell Teixidó
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Ernest Giralt
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain.,∥Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| |
Collapse
|
30
|
De Caro V, Sutera FM, Gentile C, Tutone M, Livrea MA, Almerico AM, Cannizzaro C, Giannola LI. Studies on a new potential dopaminergic agent: in vitro BBB permeability, in vivo behavioural effects and molecular docking evaluation. J Drug Target 2015; 23:910-25. [PMID: 26000952 DOI: 10.3109/1061186x.2015.1035275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-PHEN) has been previously synthesized to obtain a potential prodrug capable of release dopamine (DA) into CNS. However, DA-PHEN could act per se as a dopaminergic drug. In this study, the permeability transport (Pe), obtained by parallel artificial permeability assay (PAMPA), indicated a low passive transcellular transport (Pe = 0.32 ± 0.01 × 10(-6 )cm/s). Using the Caco-2 cell system, the Papp AP-BL in absorptive direction (3.36 ± 0.02 × 10(-5 )cm/s) was significantly higher than the Papp BL-AP in secretive direction (1.75 ± 0.07 × 10(-5 )cm/s), suggesting a polarized transport. The efflux ratio (Papp AP-BL/Papp BL-AP = 0.52 ± 0.02) indicated a low affinity of DA-PHEN to efflux carriers. The forced swim test highlighted a reduction of immobility time in both pre-test and test sessions (p < 0.0001), with an exacerbation in the number of headshakes and divings in the pretest (p < 0.0001). Morris water maze strengthened the hypothesis that DA-PHEN induces adaptive responses to environmental challenges which are involved on cognitive functions (DA-PHEN versus CTR: escape latency; p < 0.001; distance swum p < 0.001, time spent on target quadrant p < 0.001), without any change in locomotor activity for the administered dose. The molecular docking revealed the interaction of DA-PHEN with the identified D1 site mapping human brain receptor.
Collapse
Affiliation(s)
- Viviana De Caro
- a Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Palermo , Italy
| | - Flavia Maria Sutera
- b Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC) , Università degli Studi di Palermo , Palermo , Italy , and
| | - Carla Gentile
- a Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Palermo , Italy
| | - Marco Tutone
- a Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Palermo , Italy
| | - Maria Antonia Livrea
- a Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Palermo , Italy
| | - Anna Maria Almerico
- a Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Palermo , Italy
| | - Carla Cannizzaro
- c Dipartimento di Scienze per la Promozione della Salute e Materno Infantile "G. D'Alessandro" , Università degli Studi di Palermo , Palermo , Italy
| | - Libero Italo Giannola
- a Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Palermo , Italy
| |
Collapse
|
31
|
Giralt E. Josef Rudinger Memorial Lecture: Use of peptides to modulate protein-protein interactions. J Pept Sci 2015; 21:447-53. [PMID: 25847600 DOI: 10.1002/psc.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/06/2022]
Abstract
Peptides are destined to play a major role as therapeutic agents. My laboratory is contributing to speeding up this process. On the one hand, we devote efforts to studying the molecular details and dynamics of the events that occur during molecular recognition at protein surfaces. We succeeded to design and synthesize peptides able to modulate these recognition events either permanently or in response to light. On the other hand, we are discovering and designing peptides able to cross biological barriers. Our aim is to use these peptides as shuttles for targeting therapeutic agents to organs, tissues, or cells, with a special emphasis on drug delivery to the brain.
Collapse
Affiliation(s)
- Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Marti Franqués 1, 08028, Barcelona, Spain
| |
Collapse
|
32
|
Patruno A, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, Baldassarre L, Sozio P, Turkez H, Franceschelli S, Ferrone A, Di Giacomo V, Speranza L, Felaco M, Cacciatore I. Synthesis of a Novel Cyclic Prodrug of S-Allyl-glutathione Able To Attenuate LPS-Induced ROS Production through the Inhibition of MAPK Pathways in U937 Cells. Mol Pharm 2014; 12:66-74. [DOI: 10.1021/mp500431r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hasan Turkez
- Department
of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | | | | | | | | | | |
Collapse
|
33
|
Sozio P, Fiorito J, Di Giacomo V, Di Stefano A, Marinelli L, Cacciatore I, Cataldi A, Pacella S, Turkez H, Parenti C, Rescifina A, Marrazzo A. Haloperidol metabolite II prodrug: asymmetric synthesis and biological evaluation on rat C6 glioma cells. Eur J Med Chem 2014; 90:1-9. [PMID: 25461306 DOI: 10.1016/j.ejmech.2014.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/27/2023]
Abstract
In a previous work we reported the antiproliferative effects of (±)-MRJF4, a novel haloperidol metabolite II (HP-mII) (a sigma-1 antagonist and sigma-2 agonist) prodrug, obtained through conjugation to 4-phenylbutyric acid (PhBA) [a histone deacetylase inhibitor (HDACi)] via an ester bond. As a continuation of this work, here we report the asymmetric synthesis of compounds (R)-(+)-MRJF4 and (S)-(-)-MRJF4 and the evaluation of their biological activity on rat C6 glioma cells, derived from glioblastoma multiforme (GBM), which is the most common and deadliest central nervous system (CNS) invasive malignancy. Favourable physicochemical properties, high permeability in the parallel artificial membrane permeability assay (PAMPA), good enzymatic and chemical stability, in vivo anticancer activity, associated with the capacity to reduce cell viability and to increase cell death by apoptosis, render compound (R)-(+)-MRJF4 a promising candidate for the development of a useful therapeutic for gliomas therapy.
Collapse
Affiliation(s)
- Piera Sozio
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Jole Fiorito
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St., New York, NY 10032, USA
| | - Viviana Di Giacomo
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonio Di Stefano
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Lisa Marinelli
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Ivana Cacciatore
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Amelia Cataldi
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stephanie Pacella
- Dipartimento di Farmacia, Università degli Studi di Chieti Gabriele D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25240 Erzurum, Turkey
| | - Carmela Parenti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
34
|
Wängler C, Chowdhury S, Höfner G, Djurova P, Purisima EO, Bartenstein P, Wängler B, Fricker G, Wanner KT, Schirrmacher R. Shuttle-cargo fusion molecules of transport peptides and the hD2/3 receptor antagonist fallypride: a feasible approach to preserve ligand-receptor binding? J Med Chem 2014; 57:4368-81. [PMID: 24779610 DOI: 10.1021/jm5004123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To determine if the conjugation of a small receptor ligand to a peptidic carrier to potentially facilitate transport across the blood-brain barrier (BBB) by "molecular Trojan horse" transcytosis is feasible, we synthesized several transport peptide-fallypride fusion molecules as model systems and determined their binding affinities to the hD2 receptor. Although they were affected by conjugation, the binding affinities were found to be still in the nanomolar range (between 1.5 and 64.2 nM). In addition, homology modeling of the receptor and docking studies for the most potent compounds were performed, elucidating the binding modes of the fusion molecules and the structure elements contributing to the observed high receptor binding. Furthermore, no interaction between the hybrid compounds and P-gp, the main excretory transporter of the BBB, was found. From these results, it can be inferred that the approach to deliver small neuroreceptor ligands across the BBB by transport peptide carriers is feasible.
Collapse
Affiliation(s)
- Carmen Wängler
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montreal H3A 2B4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Malakoutikhah M, Guixer B, Arranz-Gibert P, Teixidó M, Giralt E. ‘À la Carte’ Peptide Shuttles: Tools to Increase Their Passage across the Blood-Brain Barrier. ChemMedChem 2014; 9:1594-601. [DOI: 10.1002/cmdc.201300575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 11/11/2022]
|
36
|
Teixidó M, Zurita E, Mendieta L, Oller-Salvia B, Prades R, Tarragó T, Giralt E. Dual system for the central nervous system targeting and blood-brain barrier transport of a selective prolyl oligopeptidase inhibitor. Biopolymers 2013; 100:662-74. [DOI: 10.1002/bip.22275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Esther Zurita
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Laura Mendieta
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Roger Prades
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Teresa Tarragó
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Science Park, Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
| |
Collapse
|
37
|
Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging? Future Med Chem 2013; 5:1621-34. [PMID: 24047268 DOI: 10.4155/fmc.13.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood–brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood–brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?
Collapse
|
38
|
Passeleu-Le Bourdonnec C, Carrupt PA, Scherrmann JM, Martel S. Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharm Res 2013; 30:2729-56. [PMID: 23801086 DOI: 10.1007/s11095-013-1119-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
The drug discovery process for drugs that target the central nervous system suffers from a very high rate of failure due to the presence of the blood-brain barrier, which limits the entry of xenobiotics into the brain. To minimise drug failure at different stages of the drug development process, new methodologies have been developed to understand the absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of drug candidates at early stages of drug development. Additionally, understanding the permeation of drug candidates is also important, particularly for drugs that target the central nervous system. During the first stages of the drug discovery process, in vitro methods that allow for the determination of permeability using high-throughput screening methods are advantageous. For example, performing the parallel artificial membrane permeability assay followed by cell-based models with interesting hits is a useful technique for identifying potential drugs. In silico models also provide interesting information but must be confirmed by in vitro models. Finally, in vivo models, such as in situ brain perfusion, should be studied to reduce a large number of drug candidates to a few lead compounds. This article reviews the different methodologies used in the drug discovery and drug development processes to determine the permeation of drug candidates through the blood-brain barrier.
Collapse
Affiliation(s)
- Céline Passeleu-Le Bourdonnec
- School of Pharmaceutical Sciences, University of Geneva University of Lausanne, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | | | | | | |
Collapse
|
39
|
Sozio P, Cerasa LS, Laserra S, Cacciatore I, Cornacchia C, Di Filippo ES, Fulle S, Fontana A, Di Crescenzo A, Grilli M, Marchi M, Di Stefano A. Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer's disease. Eur J Pharm Sci 2013; 49:187-98. [PMID: 23454012 DOI: 10.1016/j.ejps.2013.02.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
The approved treatments for Alzheimer's disease (AD) exploit mainly a symptomatic approach based on the use of cholinesterase inhibitors or N-methyl-D-aspartate (NMDA) receptor antagonists. Natural antioxidant compounds, able to pass through the blood-brain barrier (BBB), have been extensively studied as useful neuroprotective agents. A novel approach towards excitotoxicity protection and oxidative stress associated with excess β amyloid (Aβ) preservation in AD is represented by selective glutamatergic antagonists that possess as well antioxidant capabilities. In the present work, GSH (1) or (R)-α-lipoic acid (LA) (2) have been covalently linked with the NMDA receptor antagonists memantine (MEM). The new conjugates, proposed as potential antialzheimer drugs, should act both as glutamate receptor antagonists and radical scavenging agents. The physico-chemical properties and "in vitro" membrane permeability, the enzymatic and chemical stability, the demonstrated "in vitro" antioxidant activity associated to the capacity to inhibit Aβ(1-42) aggregation makes at least compound 2 a promising candidate for treatment of AD patients.
Collapse
Affiliation(s)
- Piera Sozio
- Dipartimento di Farmacia, Università G. D'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Botta G, Delfino M, Guazzaroni M, Crestini C, Onofri S, Saladino R. Selective Synthesis of DOPA and DOPA Peptides by Native and Immobilized Tyrosinase in Organic Solvent. Chempluschem 2013. [DOI: 10.1002/cplu.201200300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Sheikh S, Safia, Haque E, Mir SS. Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions. JOURNAL OF NEURODEGENERATIVE DISEASES 2012; 2013:563481. [PMID: 26316993 PMCID: PMC4437348 DOI: 10.1155/2013/563481] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/17/2012] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases are multifactorial debilitating disorders of the nervous system that affect approximately 30 millionindividuals worldwide. Neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis diseases are the consequence of misfolding and dysfunctional trafficking of proteins. Beside that, mitochondrial dysfunction, oxidative stress, and/or environmental factors strongly associated with age have also been implicated in causing neurodegeneration. After years of intensive research, considerable evidence has accumulated that demonstrates an important role of these factors in the etiology of common neurodegenerative diseases. Despite the extensive efforts that have attempted to define the molecular mechanisms underlying neurodegeneration, many aspects of these pathologies remain elusive. However, in order to explore the therapeutic interventions directed towards treatment of neurodegenerative diseases, neuroscientists are now fully exploiting the data obtained from studies of these basic mechanisms that have gone awry. The novelty of these mechanisms represents a challenge to the identification of viable drug targets and biomarkers for early diagnosis of the diseases. In this paper, we are reviewing various aspects associated with the disease and the recent trends that may have an application for the treatment of the neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Snober S. Mir
- Department of Biotechnology, Integral University, Kursi Road, Lucknow, Ultar Pradesh 226026, India
| |
Collapse
|
42
|
Cacciatore I, Baldassarre L, Fornasari E, Cornacchia C, Di Stefano A, Sozio P, Cerasa LS, Fontana A, Fulle S, Di Filippo ES, La Rovere RML, Pinnen F. (R)-α-lipoyl-glycyl-L-prolyl-L-glutamyl dimethyl ester codrug as a multifunctional agent with potential neuroprotective activities. ChemMedChem 2012; 7:2021-9. [PMID: 22976949 DOI: 10.1002/cmdc.201200320] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Indexed: 01/20/2023]
Abstract
The (R)-α-lipoyl-glycyl-L-prolyl-L-glutamyl dimethyl ester codrug (LA-GPE, 1) was synthesized as a new multifunctional drug candidate with antioxidant and neuroprotective properties for the treatment of neurodegenerative diseases. Physicochemical properties, chemical and enzymatic stabilities were evaluated, along with the capacity of LA-GPE to penetrate the blood-brain barrier (BBB) according to an in vitro parallel artificial membrane permeability assay for the BBB. We also investigated the potential effectiveness of LA-GPE against the cytotoxicity induced by 6-hydroxydopamine (6-OHDA) and H2O2 on the human neuroblastoma cell line SH-SY5Y by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Our results show that codrug 1 is stable at both pH 1.3 and 7.4, exhibits good lipophilicity (log P=1.51) and a pH-dependent permeability profile. Furthermore, LA-GPE was demonstrated to be significantly neuroprotective and to act as an antioxidant against H2O2- and 6-OHDA-induced neurotoxicity in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio", Via dei Vestini 31, 66100 Chieti (Italy).
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:240146. [PMID: 22701755 PMCID: PMC3372378 DOI: 10.1155/2012/240146] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease(AD), are a group of pathologies characterized by a progressive and specific loss of certain brain cell populations. Oxidative stress, mitochondrial dysfunction, and apoptosis play interrelated roles in these disorders. It is well documented that free radical oxidative damage, particularly on neuronal lipids, proteins, DNA, and RNA, is extensive in PD and AD brains. Moreover, alterations of glutathione (GSH) metabolism in brain have been implicated in oxidative stress and neurodegenerative diseases. As a consequence, the reduced GSH levels observed in these pathologies have stimulated a number of researchers to find new potential approaches for maintaining or restoring GSH levels. Unfortunately, GSH delivery to the central nervous system (CNS) is limited due to a poor stability and low bioavailability. Medicinal-chemistry- and technology-based approaches are commonly used to improve physicochemical, biopharmaceutical, and drug delivery properties of therapeutic agents. This paper will focus primarily on these approaches used in order to replenish intracellular GSH levels, which are reduced in neurodegenerative diseases. Here, we discuss the beneficial properties of these approaches and their potential implications for the future treatment of patients suffering from neurodegenerative diseases, and more specifically from PD and AD.
Collapse
|
44
|
Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem 2012; 4:205-26. [PMID: 22300099 DOI: 10.4155/fmc.11.195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.
Collapse
|
45
|
Parallel synthesis of peptide-like macrocycles containing imidazole-4,5-dicarboxylic acid. Molecules 2012; 17:5346-62. [PMID: 22569415 PMCID: PMC6268944 DOI: 10.3390/molecules17055346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
We prepared a series of peptide-like 14-membered macrocycles containing an imidazole-4,5-dicarboxylic acid scaffold by using known coupling reagents and protecting group strategies. Yields of the purified macrocycles were poor on average, yet seemingly independent of amino acid substitution or stereochemistry. The macrocycles retain some level of conformational variability as observed by both molecular modeling and X-ray crystallography. These macrocycles represent a new class of structures for further development and for future application in high-throughput screening against a variety of biological targets.
Collapse
|
46
|
Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 2012; 33:457-516. [PMID: 22434495 DOI: 10.1002/med.21252] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) is protected by various barriers, which regulate nervous tissue homeostasis and control the selective and specific uptake, efflux, and metabolism of endogenous and exogenous molecules. Among these barriers is the blood-brain barrier (BBB), a physical and physiological barrier that filters very efficiently and selectively the entry of compounds from the blood to the brain and protects nervous tissue from harmful substances and infectious agents present in the bloodstream. The BBB also prevents the entry of potential drugs. As a result, various drug targeting and delivery strategies are currently being developed to enhance the transport of drugs from the blood to the brain. Following a general introduction, we briefly overview in this review article the fundamental physiological properties of the BBB. Then, we describe current strategies to bypass the BBB (i.e., invasive methods, alternative approaches, and temporary opening) and to cross it (i.e., noninvasive approaches). This section is followed by a chapter addressing the chemical and technological solutions developed to cross the BBB. A special emphasis is given to prodrug-targeting approaches and targeted nanotechnology-based systems, two promising strategies for BBB targeting and delivery of drugs to the brain.
Collapse
Affiliation(s)
- Patrick Vlieghe
- VECT-HORUS S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | |
Collapse
|
47
|
Fan W, Wu Y, Li XK, Yao N, Li X, Yu YG, Hai L. Design, synthesis and biological evaluation of brain-specific glucosyl thiamine disulfide prodrugs of naproxen. Eur J Med Chem 2011; 46:3651-61. [DOI: 10.1016/j.ejmech.2011.05.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/01/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
|
48
|
Malakoutikhah M, Teixidó M, Giralt E. Schleuservermittelter Transport von Wirkstoffen ins Gehirn. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Malakoutikhah M, Teixidó M, Giralt E. Shuttle-Mediated Drug Delivery to the Brain. Angew Chem Int Ed Engl 2011; 50:7998-8014. [DOI: 10.1002/anie.201006565] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/17/2011] [Indexed: 12/12/2022]
|
50
|
CNS delivery of L-dopa by a new hybrid glutathione-methionine peptidomimetic prodrug. Amino Acids 2010; 42:261-9. [PMID: 21080012 DOI: 10.1007/s00726-010-0804-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/29/2010] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated primarily with loss of dopamine (DA) neurons in the nigrostriatal system. With the aim of increasing the bioavailability of L: -dopa (LD) after oral administration and of overcoming the pro-oxidant effect associated with LD therapy, we designed a peptidomimetic LD prodrug (1) able to release the active agent by enzyme catalyzed hydrolysis. The physicochemical properties, as well as the chemical and enzymatic stabilities of the new compound, were evaluated in order to check both its stability in aqueous medium and its sensitivity towards enzymatic cleavage, providing the parent LD drug, in rat and human plasma. The radical scavenging activities of prodrug 1 was tested by using both the DPPH-HPLC and the DMSO competition methods. The results indicate that the replacement of cysteine GSH portion by methionine confers resistance to oxidative degradation in gastric fluid. Prodrug 1 demonstrated to induce sustained delivery of DA in rat striatal tissue with respect to equimolar LD dosages. These results are of significance for prospective therapeutic application of prodrug 1 in pathological events associated with free radical damage and decreasing DA concentration in the brain.
Collapse
|