1
|
Khamitova А, Berillo D, Lozynskyi A, Konechnyi Y, Mural D, Georgiyants V, Lesyk R. Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents. Mini Rev Med Chem 2024; 24:531-545. [PMID: 37448365 DOI: 10.2174/1389557523666230713115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND This review summarizes data on heterocyclic systems with thiadiazole and thiazole fragments in molecules as promising antimicrobial agents. INTRODUCTION Thiadiazole and thiazole backbones are the most favored and well-known heterocycles, a common and essential feature of various drugs. These scaffolds occupy a central position and are the main structural components of numerous drugs with a wide spectrum of action. These include antimicrobial, antituberculous, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. METHOD The research is based on bibliosemantic and analytical methods using bibliographic and abstract databases, as well as databases of chemical compounds. RESULT This review reports on thiadiazole and thiazole derivatives, which have important pharmacological properties. We are reviewing the structural modifications of various thiadiazole and thiazole derivatives, more specifically, the antimicrobial activity reported over the last years, as we have taken this as our main research area. 80 compounds were illustrated, and various derivatives containing hydrazone bridged thiazole and pyrrole rings, 2-pyridine and 4-pyridine substituted thiazole derivatives, compounds containing di-, tri- and tetrathiazole moieties, spiro-substituted 4- thiazolidinone-imidazoline-pyridines were analyzed. Derivatives of 5-heteroarylidene-2,4- thiazolidinediones, fluoroquinolone-thiadiazole hybrids, and others. CONCLUSION 1,3,4-thiadiazoles and thiazoles are valuable resource for researchers engaged in rational drug design and development in this area.
Collapse
Affiliation(s)
- Аkzhonas Khamitova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
| | - Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
- Department of Chemistry and Biochemical Engineering, Institute of Chemical and Biological Technologies (IHBT), Satbayev University 22 Satbaev, Almaty, 050013, Kazakhstan
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Dmytro Mural
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
- Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow, 2 Sucharskiego, Rzeszow, 35-225, Poland
| |
Collapse
|
2
|
Synthesis, Biological Evaluation and Molecular Docking Studies of 5-indolylmethylen-4-oxo-2-thioxothiazolidine Derivatives. Molecules 2022; 27:molecules27031068. [PMID: 35164333 PMCID: PMC8839324 DOI: 10.3390/molecules27031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. Results: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P.aeruginosa and E.coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6–17-fold) and ketoconazole (13–52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. Conclusion: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.
Collapse
|
3
|
Pan Z, An W, Wu L, Fan L, Yang G, Xu C. A New Synthesis Strategy for Rhodanine and Its Derivatives. Synlett 2021. [DOI: 10.1055/a-1485-5925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractRhodanine and its derivatives have been known as privileged structures in pharmacological research because of their wide spectrum of biological activities, but the synthesis method of rhodanine skeleton is limited. In this paper, not only rhodanine skeleton, but also N-aryl rhodanines can be directly prepared via the reaction of thioureas and thioglycolic acid in one step catalyzed by protic acid, which provides a new approach of the synthesis of rhodanine and its derivatives. The developed strategy is straightforward, efficient, atom economical, and convenient in good yields.
Collapse
|
4
|
Croppi G, Zhou Y, Yang R, Bian Y, Zhao M, Hu Y, Ruan BH, Yu J, Wu F. Discovery of an Inhibitor for Bacterial 3-Mercaptopyruvate Sulfurtransferase that Synergistically Controls Bacterial Survival. Cell Chem Biol 2020; 27:1483-1499.e9. [DOI: 10.1016/j.chembiol.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
|
5
|
Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
6
|
Maddila S, Gorle S, Jonnalagadda SB. Drug screening of rhodanine derivatives for antibacterial activity. Expert Opin Drug Discov 2019; 15:203-229. [PMID: 31777321 DOI: 10.1080/17460441.2020.1696768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Bacteriological infections are a major risk to human health. These include all hospital and public-acquired infections. In drug discovery, rhodanines are privileged heterocyclic frameworks. Their derivatives possess strong anti-bacterial activity and some of them have shown potent activity against multidrug-resistant pathogens, both under in vitro and in vivo conditions. To treat multi-drug resistant pathogens, the development of novel potent drugs, with superior anti-bacterial efficacy, is paramount. One avenue which shows promise is the design and development of novel rhodanines.Areas covered: This review summarizes the status on rhodanine-based derivatives and their anti-bacterial activity, based on published research over the past six years. Furthermore, to facilitate the design of novel derivatives with improved functions, their structure-activity relationships are assessed with reference to their efficacy as anti-bacterial agents and their toxicity.Expert opinion: The pharmacological activity of molecules bearing a rhodanine scaffold needs to be very critically assessed in spite of considerable information available from various biological evaluations. Although, some data on structure-activity relationship frameworks is available, information is not adequate to optimize the efficacy of rhodanine derivatives for different applications.
Collapse
Affiliation(s)
- Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | - Sridevi Gorle
- Department of Microbiology and Food Science & Technology, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | | |
Collapse
|
7
|
Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1132-1148. [DOI: 10.1080/21691401.2019.1573824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Sun ZG, Xu YJ, Xu JF, Liu QX, Yang YS, Zhu HL. Introducing Broadened Antibacterial Activity to Rhodanine Derivatives Targeting Enoyl-Acyl Carrier Protein Reductase. Chem Pharm Bull (Tokyo) 2019; 67:125-129. [PMID: 30713272 DOI: 10.1248/cpb.c18-00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Broadened antibacterial activity was introduced to rhodanine derivatives targeting Mycobacterial tuberculosis enoyl-acyl carrier protein reductase (Mtb InhA) by recruiting feature of xacins to bring DNA Gyrase B inhibitory capability. This is significant for preventing further bacterial injections in the tuberculosis treatment. The most potent compound Cy14 suggested comparable bioactivity (IC50 = 3.18 µM for Mtb InhA; IC50 = 10 nM for DNA Gyrase B) with positive controls. Structure-activity relationship discussion and molecular docking model revealed the significance of rhodanine moiety and derived methoxyl on meta-position, pointing out orientations for future modification.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University.,Central Laboratory, Linyi Central Hospital
| | - Yun-Jie Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| | - Jian-Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| | - Qi-Xing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
| |
Collapse
|
9
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
10
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov 2017; 12:1233-1252. [PMID: 29019278 DOI: 10.1080/17460441.2017.1388370] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Rhodanines, as one of the 4-thiazolidinones subtypes, are recognized as privileged heterocycles in medicinal chemistry. The main achievements include the development of drug-like molecules with numerous biological activities as well as approved drugs. Among rhodanines, 5-ene-rhodanines are of special interest, and are often claimed as pan assay interference compounds due to Michael acceptor functionality. Areas covered: Herein, the synthetic protocols for rhodanines and their transformation are reviewed. Biological activity is briefly discussed as well as biotargets, mode of actions and optimization directions. Furthermore, the utilization of 5-ene-rhodanines in Michael additions are discussed while both pro and contra arguments have been outlined within medicinal chemistry application. Expert opinion: Rhodanines remain privileged heterocycles in drug discovery. They are accessible building blocks for optimization and transformation into related heterocycles, simplified analogues and fused heterocycles with a thiazolidine framework. Michael acceptor functionality, as well as the thesis about low selectivity towards biotargets of rhodanines, must be confirmed experimentally and it cannot be based on just the presence of conjugated α,β-unsaturated carbonyl. Moreover, the positive aspects of Michael acceptors must be considered as well as their multitarget properties. New criteria for target affinity must be found. In conclusion, rhodanines are generally not problematic per se.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| | - Anna Kryshchyshyn
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| | - Roman Lesyk
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| |
Collapse
|
11
|
Subhedar DD, Shaikh MH, Shingate BB, Nawale L, Sarkar D, Khedkar VM, Kalam Khan FA, Sangshetti JN. Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation. Eur J Med Chem 2017; 125:385-399. [DOI: 10.1016/j.ejmech.2016.09.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/27/2023]
|
12
|
Slepikas L, Chiriano G, Perozzo R, Tardy S, Kranjc A, Patthey-Vuadens O, Ouertatani-Sakouhi H, Kicka S, Harrison CF, Scrignari T, Perron K, Hilbi H, Soldati T, Cosson P, Tarasevicius E, Scapozza L. In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. J Med Chem 2016; 59:10917-10928. [DOI: 10.1021/acs.jmedchem.5b01620] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liudas Slepikas
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Faculty
of Pharmacy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania
| | - Gianpaolo Chiriano
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Remo Perozzo
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Sébastien Tardy
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Agata Kranjc
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Ophélie Patthey-Vuadens
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department
of Cell Physiology and Metabolism, CMU, Rue Michel-Servet 1 CH-1211 Geneva, Switzerland
| | - Sébastien Kicka
- Department
of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Christopher F. Harrison
- Max
von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Tiziana Scrignari
- Microbiology
Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Karl Perron
- Microbiology
Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Hubert Hilbi
- Max
von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
- Institute
of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | - Thierry Soldati
- Department
of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Pierre Cosson
- Department
of Cell Physiology and Metabolism, CMU, Rue Michel-Servet 1 CH-1211 Geneva, Switzerland
| | - Eduardas Tarasevicius
- Faculty
of Pharmacy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania
| | - Leonardo Scapozza
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
13
|
Subhedar DD, Shaikh MH, Nawale L, Yeware A, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB. Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation. Bioorg Med Chem Lett 2016; 26:2278-83. [PMID: 27013391 DOI: 10.1016/j.bmcl.2016.03.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022]
Abstract
In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and Mycobacterium bovis BCG, a small focused library of rhodanine incorporated tetrazoloquinoline has been efficiently synthesized by using [HDBU][HSO4] acidic ionic liquid. The compound 3c found to be promising inhibitor of MTB H37Ra and M. bovis BCG characterized by lower MIC values 4.5 and 2.0 μg/mL, respectively. The active compounds were further tested for cytotoxicity against HeLa, THP-1, A549 and PANC-1 cell lines using MTT assay and showed no significant cytotoxic activity at the maximum concentration evaluated. Again, the synthesized compounds were found to have potential antifungal activity. Furthermore, to rationalize the observed biological activity data, the molecular docking study also been carried out against a potential target Zmp1 enzyme of MTB H37Ra, which revealed a significant correlation between the binding score and biological activity for these compounds. The results of in vitro and in silico study suggest that these compounds possess ideal structural requirement for the further development of novel therapeutic agents.
Collapse
Affiliation(s)
- Dnyaneshwar D Subhedar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, India
| | - Laxman Nawale
- Combichem Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Amar Yeware
- Combichem Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Dhiman Sarkar
- Combichem Bioresource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Firoz A Kalam Khan
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Rafiq Zakaria Campus, Aurangabad 431 001, India
| | - Jaiprakash N Sangshetti
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Rafiq Zakaria Campus, Aurangabad 431 001, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, India.
| |
Collapse
|
14
|
Subhedar DD, Shaikh MH, Nawale L, Yeware A, Sarkar D, Shingate BB. [Et3NH][HSO4] catalyzed efficient synthesis of 5-arylidene-rhodanine conjugates and their antitubercular activity. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2484-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Zinglé C, Tritsch D, Grosdemange-Billiard C, Rohmer M. Catechol–rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg Med Chem 2014; 22:3713-9. [DOI: 10.1016/j.bmc.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/27/2022]
|
16
|
Kawatani M, Osada H. Affinity-based target identification for bioactive small molecules. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00276d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of new approaches of affinity-based target identification for bioactive small molecules are being developed, facilitating drug development and understanding complicated biological processes.
Collapse
|
17
|
Futamura Y, Muroi M, Osada H. Target identification of small molecules based on chemical biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:897-914. [PMID: 23354001 DOI: 10.1039/c2mb25468a] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, a phenotypic approach-screens that assess the effects of compounds on cells, tissues, or whole organisms-has been reconsidered and reintroduced as a complementary strategy of a target-based approach for drug discovery. Although the finding of novel bioactive compounds from large chemical libraries has become routine, the identification of their molecular targets is still a time-consuming and difficult process, making this step rate-limiting in drug development. In the last decade, we and other researchers have amassed a large amount of phenotypic data through progress in omics research and advances in instrumentation. Accordingly, the profiling methodologies using these datasets expertly have emerged to identify and validate specific molecular targets of drug candidates, attaining some progress in current drug discovery (e.g., eribulin). In the case of a compound that shows an unprecedented phenotype likely by inhibiting a first-in-class target, however, such phenotypic profiling is invalid. Under the circumstances, a photo-crosslinking affinity approach should be beneficial. In this review, we describe and summarize recent progress in both affinity-based (direct) and phenotypic profiling (indirect) approaches for chemical biology target identification.
Collapse
Affiliation(s)
- Yushi Futamura
- Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
18
|
Hoffmann BR, El-Mansy MF, Sem DS, Greene AS. Chemical proteomics-based analysis of off-target binding profiles for rosiglitazone and pioglitazone: clues for assessing potential for cardiotoxicity. J Med Chem 2012; 55:8260-71. [PMID: 22970990 PMCID: PMC4113394 DOI: 10.1021/jm301204r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Drugs exert desired and undesired effects based on their binding interactions with protein target(s) and off-target(s), providing evidence for drug efficacy and toxicity. Pioglitazone and rosiglitazone possess a common functional core, glitazone, which is considered a privileged scaffold upon which to build a drug selective for a given target--in this case, PPARγ. Herein, we report a retrospective analysis of two variants of the glitazone scaffold, pioglitazone and rosiglitazone, in an effort to identify off-target binding events in the rat heart to explain recently reported cardiovascular risk associated with these drugs. Our results suggest that glitazone has affinity for dehydrogenases, consistent with known binding preferences for related rhodanine cores. Both drugs bound ion channels and modulators, with implications in congestive heart failure, arrhythmia, and peripheral edema. Additional proteins involved in glucose homeostasis, synaptic transduction, and mitochondrial energy production were detected and potentially contribute to drug efficacy and cardiotoxicity.
Collapse
Affiliation(s)
- Brian R. Hoffmann
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mohamed F. El-Mansy
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201
| | - Daniel S. Sem
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201
| | - Andrew S. Greene
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
19
|
Bantscheff M, Drewes G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med Chem 2012; 20:1973-8. [DOI: 10.1016/j.bmc.2011.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022]
|
20
|
Chauhan K, Sharma M, Singh P, Kumar V, Shukla PK, Siddiqi MI, Chauhan PMS. Discovery of a new class of dithiocarbamates and rhodanine scaffolds as potent antifungal agents: synthesis, biology and molecular docking. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20109g] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ge X, Sem DS. Affinity-based profiling of dehydrogenase subproteomes. Methods Mol Biol 2012; 803:157-165. [PMID: 22065224 PMCID: PMC4092038 DOI: 10.1007/978-1-61779-364-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The high cost of drug discovery and development requires more efficient approaches to the identification and inhibition of tractable protein targets. One strategy is to pursue families of proteins that already possess affinity for a drug lead scaffold, where that scaffold plays the dual role of serving (a) when tethered to a resin, as a ligand to purify a subproteome of interest, and (b) as a lead molecule that has the potential for optimization for a given member of the subproteome. Here, we describe an example of the purification of a subproteome using a scaffold tailored to the dehydrogenase family of enzymes. Combined with modern LC-MS/MS methods and subsequent searching of proteome databases, such affinity chromatography strategies can be used to purify and identify any proteins with affinity for the scaffold molecule. The method is exemplified using the CRAA (catechol rhodanine acetic acid) privileged scaffold, which is tailored to dehydrogenases. CRAA affinity column chromatography, combined with LC-MS/MS, is described as a method for profiling dehydrogenase subproteomes.
Collapse
Affiliation(s)
- Xia Ge
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI, USA
| | | |
Collapse
|
22
|
Abstract
Real-world drug discovery and development remains a notoriously unproductive and increasingly uneconomical process even in the Omics era. The dominating paradigm in the industry continues to be target-based drug design, with an increased perception of the role of signaling pathways in homeostasis and in disease. Since proteins represent the major type of drug targets, proteomics-based approaches, which study proteins under relatively physiological conditions, have great potential if they can be reduced to practice such that they successfully complement the arsenal of drug discovery techniques. This chapter discusses examples of drug discovery processes where chemical proteomics-based assays using native endogenous proteins should have substantial impact.
Collapse
|
23
|
Singh R, Spyrakis F, Cozzini P, Paiardini A, Pascarella S, Mozzarelli A. Chemogenomics of pyridoxal 5'-phosphate dependent enzymes. J Enzyme Inhib Med Chem 2011; 28:183-94. [PMID: 22181815 DOI: 10.3109/14756366.2011.643305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) dependent enzymes comprise a large family that plays key roles in amino acid metabolism and are acquiring an increasing interest as drug targets. For the identification of compounds inhibiting PLP-dependent enzymes, a chemogenomics-based approach has been adopted in this work. Chemogenomics exploits the information coded in sequences and three-dimensional structures to define pharmacophore models. The analysis was carried out on a dataset of 65 high-resolution PLP-dependent enzyme structures, including representative members of four-fold types. Evolutionarily conserved residues relevant to coenzyme or substrate binding were identified on the basis of sequence-structure comparisons. A dataset was obtained containing the information on conserved residues at substrate and coenzyme binding site for each representative PLP-dependent enzyme. By linking coenzyme and substrate pharmacophores, bifunctional pharmacophores were generated that will constitute the basis for future development of small inhibitors targeting specific PLP-dependent enzymes.
Collapse
Affiliation(s)
- Ratna Singh
- Department of Biochemistry and Molecular Biology and Laboratory of Molecular Modelling, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
24
|
A chemical proteomic probe for detecting dehydrogenases: catechol rhodanine. Methods Mol Biol 2011. [PMID: 22065218 DOI: 10.1007/978-1-61779-364-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Inherent complexity of the proteome often demands that it be studied as manageable subsets, termed subproteomes. A subproteome can be defined in a number of ways, although a pragmatic approach is to define it based on common features in an active site that lead to binding of a common small molecule ligand (e.g., a cofactor or a cross-reactive drug lead). The subproteome, so defined, can be purified using that common ligand tethered to a resin, with affinity chromatography. Affinity purification of a subproteome is described in the next chapter. That subproteome can then be analyzed using a common ligand probe, such as a fluorescent common ligand that can be used to stain members of the subproteome in a native gel. Here, we describe such a fluorescent probe, based on a catechol rhodanine acetic acid (CRAA) ligand that binds to dehydrogenases. The CRAA ligand is fluorescent and binds to dehydrogenases at pH > 7, and hence can be used effectively to stain dehydrogenases in native gels to identify what subset of proteins in a mixture are dehydrogenases. Furthermore, if one is designing inhibitors to target one or more of these dehydrogenases, the CRAA staining can be performed in a competitive assay format, with or without inhibitor, to assess the selectivity of the inhibitor for the targeted dehydrogenase. Finally, the CRAA probe is a privileged scaffold for dehydrogenases, and hence can easily be modified to increase affinity for a given dehydrogenase.
Collapse
|
25
|
Egger S, Chaikuad A, Kavanagh KL, Oppermann U, Nidetzky B. Structure and mechanism of human UDP-glucose 6-dehydrogenase. J Biol Chem 2011; 286:23877-87. [PMID: 21502315 PMCID: PMC3129169 DOI: 10.1074/jbc.m111.234682] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/06/2011] [Indexed: 11/21/2022] Open
Abstract
Elevated production of the matrix glycosaminoglycan hyaluronan is strongly implicated in epithelial tumor progression. Inhibition of synthesis of the hyaluronan precursor UDP-glucuronic acid (UDP-GlcUA) therefore presents an emerging target for cancer therapy. Human UDP-glucose 6-dehydrogenase (hUGDH) catalyzes, in two NAD(+)-dependent steps without release of intermediate aldehyde, the biosynthetic oxidation of UDP-glucose (UDP-Glc) to UDP-GlcUA. Here, we present a structural characterization of the hUGDH reaction coordinate using crystal structures of the apoenzyme and ternary complexes of the enzyme bound with UDP-Glc/NADH and UDP-GlcUA/NAD(+). The quaternary structure of hUGDH is a disc-shaped trimer of homodimers whose subunits consist of two discrete α/β domains with the active site located in the interdomain cleft. Ternary complex formation is accompanied by rigid-body and restrained movement of the N-terminal NAD(+) binding domain, sequestering substrate and coenzyme in their reactive positions through interdomain closure. By alternating between conformations in and out of the active site during domain motion, Tyr(14), Glu(161), and Glu(165) participate in control of coenzyme binding and release during 2-fold oxidation. The proposed mechanism of hUGDH involves formation and breakdown of thiohemiacetal and thioester intermediates whereby Cys(276) functions as the catalytic nucleophile. Stopped-flow kinetic data capture the essential deprotonation of Cys(276) in the course of the first oxidation step, allowing the thiolate side chain to act as a trap of the incipient aldehyde. Because thiohemiacetal intermediate accumulates at steady state under physiological reaction conditions, hUGDH inhibition might best explore ligand binding to the NAD(+) binding domain.
Collapse
Affiliation(s)
- Sigrid Egger
- From the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
| | - Apirat Chaikuad
- the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, United Kingdom, and
| | - Kathryn L. Kavanagh
- the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, United Kingdom, and
| | - Udo Oppermann
- the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, United Kingdom, and
- the Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Bernd Nidetzky
- From the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria
| |
Collapse
|
26
|
Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 2010; 14:347-61. [PMID: 20303320 DOI: 10.1016/j.cbpa.2010.02.018] [Citation(s) in RCA: 1096] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/09/2010] [Accepted: 02/18/2010] [Indexed: 02/07/2023]
Abstract
This review explores the concept of using privileged scaffolds to identify biologically active compounds through building chemical libraries. We hope to accomplish three main objectives: to provide one of the most comprehensive listings of privileged scaffolds; to reveal through four selected examples the present state of the art in privileged scaffold library synthesis (in hopes of inspiring new and even more creative approaches); and also to offer some thoughts on how new privileged scaffolds might be identified and exploited.
Collapse
Affiliation(s)
- Matthew E Welsch
- Columbia University, Department of Chemistry, Havemeyer Hall, MC 3129, 3000 Broadway, New York, NY 10027, USA
| | | | | |
Collapse
|
27
|
Kumar G, Banerjee T, Kapoor N, Surolia N, Surolia A. SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. IUBMB Life 2010; 62:204-13. [DOI: 10.1002/iub.306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
Cofactors are organic molecules, most of them originating from vitamins, that bind to enzymes making them able to catalyze defined reactions. A cofactor-based chemogenomics approach exploits the presence of a cofactor-binding domain to develop compound scaffolds tailored to mimic the cofactor and to replace it within target enzyme classes. As a result, a loss of function is observed. An expansion of the cofactor scaffold to include structural/chemical features derived from the substrate, that usually binds at cofactor adjacent sites, increases the specificity of the enzyme fishing. This approach has been so far applied only to NAD(P)(+)-dependent enzymes. However, it is suitable for all other cofactors, with difficulties, for some of them, originated by very tight binding. In the case of cofactors covalently bound to the enzyme, the competition between the natural cofactor and the cofactor scaffold mimic can only occur during enzyme folding.
Collapse
Affiliation(s)
- Ratna Singh
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | |
Collapse
|