1
|
Bhattacharjee P, Rutland N, Iyer MR. Targeting Sterol O-Acyltransferase/Acyl-CoA:Cholesterol Acyltransferase (ACAT): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J Med Chem 2022; 65:16062-16098. [PMID: 36473091 DOI: 10.1021/acs.jmedchem.2c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nicholas Rutland
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
2
|
Thakur A, Singh A, Kaur N, Ojha R, Nepali K. Steering the antitumor drug discovery campaign towards structurally diverse indolines. Bioorg Chem 2020; 94:103436. [DOI: 10.1016/j.bioorg.2019.103436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
3
|
Kumar M, Raziullah, Khan AA, Ahmad A, Dutta HS, Kant R, Koley D. Cu(II)-Mediated Cross-Dehydrogenative Coupling of Indolines with Sulfonamides, Carboxamides, and Amines. J Org Chem 2019; 84:13624-13635. [PMID: 31566988 DOI: 10.1021/acs.joc.9b01893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A facile and efficient Cu-mediated protocol for the cross-dehydrogenative coupling of indoline with sulfonamides, carboxamides, and anilines is reported. The reaction takes place through Cu-mediated C7-H activation via a 6-membered metallacycle to afford the amide and amine derivatives in good yields with a wide range of functional group tolerance. The importance of the protocol has been demonstrated by synthesizing the antiproliferative agent, ER-67836.
Collapse
Affiliation(s)
- Mohit Kumar
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | | | - Afsar Ali Khan
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | | | | | | | - Dipankar Koley
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| |
Collapse
|
4
|
Rhodium(III)-catalyzed direct C-7 sulfonamidation and amination of indolines with arylsulfonamides and trifluoroacetamide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Albano G, Morelli M, Lissia M, Aronica LA. Synthesis of Functionalised Indoline and Isoquinoline Derivatives through a Silylcarbocyclisation/Desilylation Sequence. ChemistrySelect 2019. [DOI: 10.1002/slct.201900524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| | - Martina Morelli
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| | - Margherita Lissia
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| | - Laura A. Aronica
- Dipartimento di Chimica e Chimica Industriale; University of Pisa, Via G. Moruzzi 13; 56124 Pisa Italy Fax: (+)390502219260
| |
Collapse
|
6
|
Shah TA, De PB, Pradhan S, Punniyamurthy T. Transition-metal-catalyzed site-selective C7-functionalization of indoles: advancement and future prospects. Chem Commun (Camb) 2019; 55:572-587. [DOI: 10.1039/c8cc04116d] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The advancement and future prospects of transition-metal-catalyzed auxiliary assisted regioselective C7-functionalization of indoles/indolines are covered in this article.
Collapse
Affiliation(s)
- Tariq A. Shah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Pinaki Bhusan De
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Sourav Pradhan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | |
Collapse
|
7
|
Baqi Y, Pillaiyar T, Abdelrahman A, Kaufmann O, Alshaibani S, Rafehi M, Ghasimi S, Akkari R, Ritter K, Simon K, Spinrath A, Kostenis E, Zhao Q, Köse M, Namasivayam V, Müller CE. 3-(2-Carboxyethyl)indole-2-carboxylic Acid Derivatives: Structural Requirements and Properties of Potent Agonists of the Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2018; 61:8136-8154. [PMID: 30048589 DOI: 10.1021/acs.jmedchem.7b01768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The orphan receptor GPR17 may be a novel drug target for inflammatory diseases. 3-(2-Carboxyethyl)-4,6-dichloro-1 H-indole-2-carboxylic acid (MDL29,951, 1) was previously identified as a moderately potent GPR17 agonist. In the present study, we investigated the structure-activity relationships (SARs) of 1. Substitution of the indole 1-, 5-, or 7-position was detrimental. Only small substituents were tolerated in the 4-position while the 6-position accommodated large lipophilic residues. Among the most potent compounds were 3-(2-carboxyethyl)-1 H-indole-2-carboxylic acid derivatives containing the following substituents: 6-phenoxy (26, PSB-1737, EC50 270 nM), 4-fluoro-6-bromo (33, PSB-18422, EC50 27.9 nM), 4-fluoro-6-iodo (35, PSB-18484, EC50 32.1 nM), and 4-chloro-6-hexyloxy (43, PSB-1767, EC50 67.0 nM). (3-(2-Carboxyethyl)-6-hexyloxy-1 H-indole-2-carboxylic acid (39, PSB-17183, EC50 115 nM) behaved as a partial agonist. Selected potent compounds tested at human P2Y receptor subtypes showed high selectivity for GPR17. Docking into a homology model of the human GPR17 and molecular dynamic simulation studies rationalized the observed SARs.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, 123 Muscat , Oman
| | - Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Olesja Kaufmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Samer Alshaibani
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Saman Ghasimi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Rhalid Akkari
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Kirsten Ritter
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Katharina Simon
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Andreas Spinrath
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Pudong , Shanghai 201203 , China
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
8
|
Ahmad A, Dutta HS, Khan B, Kant R, Koley D. Cu(I)-Catalyzed Site Selective Acyloxylation of Indoline Using O2
as the Sole Oxidant. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ashfaq Ahmad
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Himangsu Sekhar Dutta
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Bhuttu Khan
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Ruchir Kant
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| |
Collapse
|
9
|
Hande AE, Prabhu KR. Ru(II)-Catalyzed C–H Amidation of Indoline at the C7-Position Using Dioxazolone as an Amidating Agent: Synthesis of 7-Amino Indoline Scaffold. J Org Chem 2017; 82:13405-13413. [DOI: 10.1021/acs.joc.7b02500] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Akshay Ekanath Hande
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
10
|
Gandeepan P, Koeller J, Ackermann L. Expedient C–H Chalcogenation of Indolines and Indoles by Positional-Selective Copper Catalysis. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03236] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische
und Biomolekulare Chemie, Georg-August-Universitat, Tammannstraße 2, 37077 Göttingen, Germany
| | - Julian Koeller
- Institut für Organische
und Biomolekulare Chemie, Georg-August-Universitat, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie, Georg-August-Universitat, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Li H, Jie J, Wu S, Yang X, Xu H. Rh(iii)-Catalyzed direct C-7 amination of indolines with anthranils. Org Chem Front 2017. [DOI: 10.1039/c6qo00709k] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An effective and fascinating method has been developed for direct C-7 amination of indolines under Rh(iii) catalysis with anthranils.
Collapse
Affiliation(s)
- Haoyi Li
- Institute of Catalysis for Energy and Environment
- College of Chemistry & Chemical Engineering
- Shenyang Normal University
- Shenyang
- P. R. China
| | - Jiyang Jie
- Institute of Catalysis for Energy and Environment
- College of Chemistry & Chemical Engineering
- Shenyang Normal University
- Shenyang
- P. R. China
| | - Songxiao Wu
- Institute of Catalysis for Energy and Environment
- College of Chemistry & Chemical Engineering
- Shenyang Normal University
- Shenyang
- P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment
- College of Chemistry & Chemical Engineering
- Shenyang Normal University
- Shenyang
- P. R. China
| | - Hao Xu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| |
Collapse
|
12
|
Jeon M, Mishra NK, De U, Sharma S, Oh Y, Choi M, Jo H, Sachan R, Kim HS, Kim IS. Rh(III)-Catalyzed C–H Functionalization of Indolines with Readily Accessible Amidating Reagent: Synthesis and Anticancer Evaluation. J Org Chem 2016; 81:9878-9885. [PMID: 27680096 DOI: 10.1021/acs.joc.6b02020] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mijin Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Umasankar De
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Satyasheel Sharma
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongguk Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Miji Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeim Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Richa Sachan
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Sekiya M, Yamamuro D, Ohshiro T, Honda A, Takahashi M, Kumagai M, Sakai K, Nagashima S, Tomoda H, Igarashi M, Okazaki H, Yagyu H, Osuga JI, Ishibashi S. Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages. J Lipid Res 2014; 55:2082-92. [PMID: 24891333 DOI: 10.1194/jlr.m050864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taichi Ohshiro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masayoshi Kumagai
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Masaki Igarashi
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Okazaki
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Jun-ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
14
|
Tabata H. Chemistry of Amide-based Axial Chirality: Elucidation of the Active Conformation Recognized by Enzymes and Receptors. YAKUGAKU ZASSHI 2013; 133:857-66. [DOI: 10.1248/yakushi.13-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ogino M, Nakada Y, Negoro N, Itokawa S, Nishimura S, Sanada T, Satomi T, Kita S, Kubo K, Marui S. Discovery of a novel acyl-CoA: cholesterol acyltransferase inhibitor: the synthesis, biological evaluation, and reduced adrenal toxicity of (4-phenylcoumarin)acetanilide derivatives with a carboxylic acid moiety. Chem Pharm Bull (Tokyo) 2012; 59:1369-75. [PMID: 22041073 DOI: 10.1248/cpb.59.1369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a part of our research for novel potent and orally available acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors that can be used as anti-atherosclerotic agents, we recently reported the discovery of the (4-phenylcoumarine)acetanilide derivative 1. However, compound 1 showed adrenal toxicity in animal models. In order to search for safer ACAT inhibitors that do not have adrenal toxicity, we examined the inhibitory activity of ACAT in human macrophage and adrenal cells. The introduction of a carboxylic acid moiety on the pendant phenyl ring and the adjustment of the lipophilicity led to the discovery of (2E)-3-[7-chloro-3-[2-[[4-fluoro-2-(trifluoromethyl)phenyl]amino]-2-oxoethyl]-6-methyl-2-oxo-2H-chromen-4-yl]phenyl]acrylic acid (21e), which showed potent ACAT inhibitory activity in macrophages and a selectivity of around 30-fold over adrenal cells. In addition, compound 21e showed high adrenal safety in guinea pigs.
Collapse
Affiliation(s)
- Masaki Ogino
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa 251–8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tabata H, Wada N, Takada Y, Nakagomi J, Miike T, Shirahase H, Oshitari T, Takahashi H, Natsugari H. Active Conformation of Seven-Membered-Ring Benzolactams as New ACAT Inhibitors: Latent Chirality at N5 in the 1,5-Benzodiazepin-2-one Nucleus. Chemistry 2011; 18:1572-6. [DOI: 10.1002/chem.201103264] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/07/2022]
|
17
|
Ohta M, Takahashi K, Kasai M, Shoji Y, Kunishiro K, Miike T, Kanda M, Mukai C, Shirahase H. Novel Tetrahydroisoquinoline Derivatives with Inhibitory Activities against Acyl-CoA: Cholesterol Acyltransferase and Lipid Peroxidation. Chem Pharm Bull (Tokyo) 2010; 58:1066-76. [DOI: 10.1248/cpb.58.1066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masaru Ohta
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | | | - Masayasu Kasai
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | | | | | - Tomohiro Miike
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | - Mamoru Kanda
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | - Chisato Mukai
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | | |
Collapse
|
18
|
Takahashi K, Ohta M, Shoji Y, Kasai M, Kunishiro K, Miike T, Kanda M, Shirahase H. Novel Acyl-CoA: Cholesterol Acyltransferase Inhibitor: Indoline-Based Sulfamide Derivatives with Low Lipophilicity and Protein Binding Ratio. Chem Pharm Bull (Tokyo) 2010; 58:1057-65. [DOI: 10.1248/cpb.58.1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Masaru Ohta
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | | | - Masayasu Kasai
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | | | - Tomohiro Miike
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | - Mamoru Kanda
- Research Laboratories, Kyoto Pharmaceutical Industries, Ltd
| | | |
Collapse
|
19
|
Sekiya M, Osuga JI, Nagashima S, Ohshiro T, Igarashi M, Okazaki H, Takahashi M, Tazoe F, Wada T, Ohta K, Takanashi M, Kumagai M, Nishi M, Takase S, Yahagi N, Yagyu H, Ohashi K, Nagai R, Kadowaki T, Furukawa Y, Ishibashi S. Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab 2009; 10:219-28. [PMID: 19723498 DOI: 10.1016/j.cmet.2009.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/18/2009] [Accepted: 08/14/2009] [Indexed: 01/06/2023]
Abstract
Cholesterol ester (CE)-laden macrophage foam cells are the hallmark of atherosclerosis, and the hydrolysis of intracellular CE is one of the key steps in foam cell formation. Although hormone-sensitive lipase (LIPE) and cholesterol ester hydrolase (CEH), which is identical to carboxylsterase 1 (CES1, hCE1), were proposed to mediate the neutral CE hydrolase (nCEH) activity in macrophages, recent evidences have suggested the involvement of other enzymes. We have recently reported the identification of a candidate, neutral cholesterol ester hydrolase 1(Nceh1). Here we demonstrate that genetic ablation of Nceh1 promotes foam cell formation and the development of atherosclerosis in mice. We further demonstrate that Nceh1 and Lipe mediate a comparable degree of nCEH activity in macrophages and together account for most of the activity. Mice lacking both Nceh1 and Lipe aggravated atherosclerosis in an additive manner. Thus, Nceh1 is a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shoji Y, Takahashi K, Ohta M, Kasai M, Kunishiro K, Kanda M, Yogai S, Takeuchi Y, Shirahase H. Novel indoline-based acyl-CoA: cholesterol acyltransferase inhibitor: Effects of introducing a methanesulfonamide group on physicochemical properties and biological activities. Bioorg Med Chem 2009; 17:6020-31. [PMID: 19608421 DOI: 10.1016/j.bmc.2009.06.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/21/2009] [Accepted: 06/23/2009] [Indexed: 11/26/2022]
Abstract
A novel series of indoline-based acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors with a methanesulfonamide group at the 5-position were synthesized and their lipophilicity and biological activities were evaluated. Hepatic ACAT inhibitory and anti-foam cell formation activity increased dependent on lipophilicity of derivatives with various alkyl chains at the 1-position. The logD(7.0)-biological activity curve of the derivatives with a methanesulfonamide group shifted leftward compared to that of Pactimibe derivatives with a carboxymethyl group, and derivatives with no substituent, suggesting that a methanesulfonamide group plays an important role in the interaction with ACAT protein. Among derivatives, N-(1-ethyl-5-methanesulfonylamino-4,6-dimethylindolin-7-yl)-2,2-dimethylpropanamide (1b) had about twofold lower logD(7.0) than Pactimibe, while it showed twofold higher hepatic ACAT inhibition than and the same anti-foam cell formation as Pactimibe, respectively. The C(max) of 1b (10mg/kg, po) was higher than that of Pactimibe in rats. The plasma protein binding ratio of 1b was lower than that of Pactimibe: 64.8% and 97.9%, respectively. Compound 1b showed greater inhibitory effects on hepatic cholesterol secretion in mice than Pactimibe. In conclusion, the introduction of a methanesulfonamide group is effective to design less lipophilic, more efficacious and more bioavailable indoline-based ACAT inhibitors than previous indoline-based inhibitors.
Collapse
Affiliation(s)
- Yoshimichi Shoji
- Research Laboratories, Kyoto Pharmaceutical Industries, Nishinokyo Tsukinowa-cho, Nakagyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|