1
|
Parthasarathy D, Pothula KR, Ratnapriya S, Cervera Benet H, Parsons R, Huang X, Sammour S, Janowska K, Harris M, Sodroski J, Acharya P, Herschhorn A. Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted/founder sensitivity to broadly neutralizing antibodies. Nat Commun 2024; 15:7334. [PMID: 39187497 PMCID: PMC11347675 DOI: 10.1038/s41467-024-51656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
HIV-1 envelope glycoproteins (Envs) of most primary HIV-1 strains exist in closed conformation and infrequently sample open states, limiting access to internal epitopes. Thus, immunogen design aims to mimic the closed Env conformation as preferred target for eliciting broadly neutralizing antibodies (bnAbs). Here we identify incompletely closed Env conformations of 6 out of 13 transmitted/founder (T/F) strains that are sensitive to antibodies that recognize internal epitopes typically exposed on open Envs. A 3.6 Å cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) reveals protomer motion that increased sampling of states with incompletely closed trimer apex. We reconstruct de novo the post-transmission evolutionary pathway of a second T/F. Evolved viruses exhibit increased Env resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show that the ultra-broad N6 bnAb efficiently recognizes different Env conformations and exhibits improved antiviral breadth against VRC01-resistant Envs isolated during the first-in-humans antibody-mediated-prevention trial.
Collapse
Affiliation(s)
- Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Héctor Cervera Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ruth Parsons
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Salam Sammour
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Biochemistry, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. mBio 2024; 15:e0268623. [PMID: 38470051 PMCID: PMC11005340 DOI: 10.1128/mbio.02686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Mazurov D, Herschhorn A. Ultrasensitive quantification of HIV-1 cell-to-cell transmission in primary human CD4 + T cells measures viral sensitivity to broadly neutralizing antibodies. mBio 2024; 15:e0242823. [PMID: 38063394 PMCID: PMC10790777 DOI: 10.1128/mbio.02428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 can efficiently transmit from one cell to another but accurate quantification of this mode of transmission is still challenging. Here, we developed an ultrasensitive assay to measure HIV-1 transmission between cells and to evaluate HIV-1 escape from broadly neutralizing antibodies in primary human T cells. This assay will contribute to understanding the fundamental mechanisms of HIV-1 cell-to-cell transmission, allow evaluation of pre-existing or acquired HIV-1 resistance in clinical trials, and can be adapted to study the biology of other retroviruses.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Parthasarathy D, Pothula KR, Dam KMA, Ratnapriya S, Benet HC, Parsons R, Huang X, Sammour S, Janowska K, Harris M, Sacco S, Sodroski J, Bridges MD, Hubbell WL, Acharya P, Herschhorn A. Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted / founder sensitivity to broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557082. [PMID: 37745449 PMCID: PMC10515946 DOI: 10.1101/2023.09.13.557082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
HIV-1 envelope glycoproteins (Envs) mediate viral entry and are the sole target of neutralizing antibodies. Envs of most primary HIV-1 strains exist in a closed conformation and occasionally sample more open states. Thus, current knowledge guides immunogen design to mimic the closed Env conformation as the preferred target for eliciting broadly neutralizing antibodies (bnAbs) to block HIV-1 entry. Here we show that Env-preferred conformations of 6 out of 13 (46%) transmitted/founder (T/F) strains tested are incompletely closed. As a result, entry of these T/Fs into target cells is sensitive to antibodies that recognize internal epitopes exposed on open Env conformations. A cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) at 3.6 Å resolution exhibits an asymmetric configuration of Env protomers with increased sampling of states with incompletely closed trimer apex. Double electron-electron resonance spectroscopy provided further evidence for enriched occupancy of more open Env conformations. Consistent with conformational flexibility, 1059 Envs were associated with resistance to most bnAbs that exhibit reduced potency against functional Env intermediates. To follow the fate of incompletely closed Env in patients, we reconstructed de novo the post-transmission evolutionary pathway of a second T/F Env (CH040), which is sensitive to the V3-targeting antibody 19b and highly resistant to most bnAbs. Evolved viruses exhibited increased resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show a correlation between efficient neutralization of multiple Env conformations and increased antiviral breadth of CD4-binding site (CD4bs) bnAbs. In particular, N6 bnAb, which uniquely recognizes different Env conformations, efficiently neutralizes 50% of the HIV-1 strains that were resistant to VRC01 and transmitted during the first-in-humans antibody-mediated prevention trial (HVTN 704). VRC01-resistant Envs are incompletely closed based on their sensitivity to cold and on partial sensitivity to antibodies targeting internal, typically occluded, epitopes. Most VRC01-resistant Envs retain the VRC01 epitope according to VRC01 binding to their gp120 subunit at concentrations that have no significant effect on virus entry, and they exhibit cross resistance to other CD4bs bnAbs that poorly recognize functional Env intermediates. Our findings refine current knowledge of Env conformational states and provide guidance for developing new strategies for bnAb immunotherapy and Env-based immunogen design.
Collapse
Affiliation(s)
- Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- These authors contributed equally: Durgadevi Parthasarathy and Karunakar Reddy Pothula
| | - Karunakar Reddy Pothula
- Duke Human Vaccine Institute, Durham, NC, USA
- These authors contributed equally: Durgadevi Parthasarathy and Karunakar Reddy Pothula
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Héctor Cervera Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Xiao Huang
- Duke Human Vaccine Institute, Durham, NC, USA
| | | | | | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Samuel Sacco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Michael D. Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, and Department of Biochemistry, Duke University, Durham, NC, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program; The College of Veterinary Medicine Graduate Program; and the Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Ahmed S, Parthasarathy D, Newhall R, Picard T, Aback M, Ratnapriya S, Arndt W, Vega-Rodriguez W, Kirk NM, Liang Y, Herschhorn A. Enhancing anti-viral neutralization response to immunization with HIV-1 envelope glycoprotein immunogens. NPJ Vaccines 2023; 8:181. [PMID: 37996435 PMCID: PMC10667240 DOI: 10.1038/s41541-023-00774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
An effective human immunodeficiency virus type I (HIV-1) vaccine that robustly elicits broadly neutralizing antibodies (bnAbs) against HIV-1 envelope glycoproteins (Envs) to block viral entry is still not available. Thus, identifying triggers for elicitation of different types of anti-HIV-1 Env antibodies by vaccination could provide further guidance for immunogen design and vaccine development. Here, we studied the immune response to HIV-1 Env immunogens in rabbits. We show that sequential immunizations with conformation-specific Env immunogens can elicit low titer but broad neutralization responses against heterologous, neutralization-resistant (tier 2/3) transmitted/founder (T/F) HIV-1 strains. More importantly, an mRNA vaccine candidate that could mediate the presentation of a cytoplasmic tail-deleted (ΔCT) HIV-1AD8 Env immunogen on virus-like particles significantly increased the neutralization response. This strategy shifted the type of elicited antibodies, decreasing the level of binding to soluble Envs while significantly increasing their overall viral neutralization activity. The breadth and potency of neutralizing response against heterologous, T/F HIV-1 strains significantly increased in a subset of rabbits. Efficient neutralization activity was associated with high cellular immune responses specific to HIV-1 Envs. These results help to understand the immune response to different immunization schemes and will allow developing new approaches to selectively manipulate the type of humoral immune response by specific vaccination.
Collapse
Affiliation(s)
- Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachael Newhall
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tashina Picard
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Morgainne Aback
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William Arndt
- School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Widaliz Vega-Rodriguez
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, 55108, USA
| | - Natalie M Kirk
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, 55108, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, 55108, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567910. [PMID: 38045336 PMCID: PMC10690231 DOI: 10.1101/2023.11.20.567910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332 but Asn at this position is not absolutely conserved or required for HIV-1 entry based on prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity even though cell surface expression levels are lower than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and to evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs was in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, the College of Veterinary Medicine Graduate Program, and Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
Synthetic Transition from Thiourea-Based Compounds to Tetrazole Derivatives: Structure and Biological Evaluation of Synthesized New N-(Furan-2-ylmethyl)-1 H-tetrazol-5-amine Derivatives. Molecules 2021; 26:molecules26020323. [PMID: 33435194 PMCID: PMC7827014 DOI: 10.3390/molecules26020323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Twelve novel derivatives of N-(furan-2-ylmethyl)-1H-tetrazol-5-amine were synthesized. For obtained compound 8, its corresponding substrate single crystals were isolated and X-ray diffraction experiments were completed. In the initial stage of research, in silico structure-based pharmacological prediction was conducted. All compounds were screened for their antibacterial and antimycobacterial activities using standard and clinical strains. The cytotoxic activity was evaluated against a panel of human cancer cell lines, in contrast to normal (HaCaT) cell lines, by using the MTT method. All examined derivatives were found to be noncytotoxic against normal cell lines. Within the studied group, compound 6 showed the most promising results in antimicrobial studies. It inhibited four hospital S. epidermidis rods' growth, when applied at the amount of 4 µg/mL. However, the most susceptible to the presence of compound 6 was S. epidermidis T 5501 851/19 clinical strain, for which the MIC value was only 2 µg/mL. Finally, a pharmacophore model was established based on lead compounds from this and our previous work.
Collapse
|
8
|
Herschhorn A, Gu C, Moraca F, Ma X, Farrell M, Smith AB, Pancera M, Kwong PD, Schön A, Freire E, Abrams C, Blanchard SC, Mothes W, Sodroski JG. The β20-β21 of gp120 is a regulatory switch for HIV-1 Env conformational transitions. Nat Commun 2017; 8:1049. [PMID: 29051495 PMCID: PMC5648922 DOI: 10.1038/s41467-017-01119-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
The entry of HIV-1 into target cells is mediated by the viral envelope glycoproteins (Env). Binding to the CD4 receptor triggers a cascade of conformational changes in distant domains that move Env from a functionally “closed” State 1 to more “open” conformations, but the molecular mechanisms underlying allosteric regulation of these transitions are still elusive. Here, we develop chemical probes that block CD4-induced conformational changes in Env and use them to identify a potential control switch for Env structural rearrangements. We identify the gp120 β20–β21 element as a major regulator of Env transitions. Several amino acid changes in the β20–β21 base lead to open Env conformations, recapitulating the structural changes induced by CD4 binding. These HIV-1 mutants require less CD4 to infect cells and are relatively resistant to State 1-preferring broadly neutralizing antibodies. These data provide insights into the molecular mechanism and vulnerability of HIV-1 entry. Binding of viral envelope glycoproteins (Env) to the host cell CD4 receptor mediates HIV-1 entry. Here, the authors develop compounds that inhibit the CD4-induced conformational changes in Env and show that the gp120 β20-β21 element is a key regulator for Env transitions.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Christopher Gu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA
| | - Francesca Moraca
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06536, USA
| | - Mark Farrell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06536, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, 02115, USA. .,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
9
|
Santos LH, Ferreira RS, Caffarena ER. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Mem Inst Oswaldo Cruz 2016; 110:847-64. [PMID: 26560977 PMCID: PMC4660614 DOI: 10.1590/0074-02760150239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency
virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts
against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors
(NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the
highly active antiretroviral therapy in combination with other anti-HIV drugs.
However, the rapid emergence of drug-resistant viral strains has limited the
successful rate of the anti-HIV agents. Computational methods are a significant part
of the drug design process and indispensable to study drug resistance. In this
review, recent advances in computer-aided drug design for the rational design of new
compounds against HIV-1 RT using methods such as molecular docking, molecular
dynamics, free energy calculations, quantitative structure-activity relationships,
pharmacophore modelling and absorption, distribution, metabolism, excretion and
toxicity prediction are discussed. Successful applications of these methodologies are
also highlighted.
Collapse
Affiliation(s)
| | - Rafaela Salgado Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
10
|
Viira B, Selyutina A, García-Sosa AT, Karonen M, Sinkkonen J, Merits A, Maran U. Design, discovery, modelling, synthesis, and biological evaluation of novel and small, low toxicity s-triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 2016; 24:2519-2529. [PMID: 27108399 DOI: 10.1016/j.bmc.2016.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022]
Abstract
A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1μM and 0.16±0.05μM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency.
Collapse
Affiliation(s)
- Birgit Viira
- Institute of Chemistry, University of Tartu, Tartu 50411, Estonia
| | | | | | - Maarit Karonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Jari Sinkkonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
11
|
Herschhorn A, Gu C, Espy N, Richard J, Finzi A, Sodroski JG. A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry. Nat Chem Biol 2014; 10:845-52. [PMID: 25174000 PMCID: PMC4231716 DOI: 10.1038/nchembio.1623] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022]
Abstract
Binding to the primary receptor, CD4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer (gp1203/gp413) of human immunodeficiency virus (HIV-1) that are important for virus entry into host cells. These changes include an “opening” of the trimer, creation of a binding site for the CCR5 coreceptor, and formation/exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates. 18A does not interfere with CD4 or CCR5 binding, but inhibits the CD4-induced disruption of quaternary structures at the trimer apex and the formation/exposure of the gp41 HR1 coiled coil. Analysis of HIV-1 variants exhibiting increased or reduced sensitivity to 18A suggests that the inhibitor can distinguish distinct conformational states of gp120 in the unliganded Env trimer. The broad-range activity and observed hypersensitivity of resistant mutants to antibody neutralization support further investigation of 18A.
Collapse
Affiliation(s)
- Alon Herschhorn
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Gu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nicole Espy
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Richard
- 1] Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montreal, Quebec, Canada. [2] Department of Microbiology, Infectiology and Immunology ,Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- 1] Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montreal, Quebec, Canada. [2] Department of Microbiology, Infectiology and Immunology ,Université de Montréal, Montreal, Quebec, Canada. [3] Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Joseph G Sodroski
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Murugesan V, Makwana N, Suryawanshi R, Saxena R, Tripathi R, Paranjape R, Kulkarni S, Katti SB. Rational design and synthesis of novel thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 2014; 22:3159-70. [PMID: 24794742 DOI: 10.1016/j.bmc.2014.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/17/2022]
Abstract
A series of novel thiazolidin-4-one analogues, characterized by different substitution patterns at positions C-2 and N-3 of the thiazolidin-4-one scaffold for anti-HIV-1 activity has been investigated. Most of the compounds showed anti-HIV-1 activity at micromolar concentrations when tested in TZM-bl cells in vitro. Among the thirty-three compounds tested, compound 16 was the most potent inhibitor of HIV-1 replication against HIV-1IIIB, HIV-1ADA5, HIV-1UG070 and HIV-1VB59 (EC50=0.02, 0.08, 0.08 and 0.08 μM, respectively) with selectivity index (SI=6940, 1735, 1692 and 1692) against tested viral strains, respectively. The results of the present study suggested that the substitution of the nitro group at 6' position of the C-2 phenyl ring and 4,6-dimethylpyridin-2-yl at the N-3 position of thiazolidin-4-one had a major impact on the anti-HIV-1 activity and was found to lower cytotoxicity. The substitution of the heteroaryl ring with bromo group and bicyclic heteroaryl ring at N-3 thiazolidin-4-one was found to lower anti-HIV-1 activity and increase cytotoxicity. The undertaken docking studies thus facilitated the identification of crucial interactions between the HIV-1 RT enzyme and thiazolidin-4-one inhibitors, which can be used to design new potential inhibitors.
Collapse
Affiliation(s)
- Vanangamudi Murugesan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Sector-10, Lucknow 226031, Uttar Pradesh, India
| | - Nandini Makwana
- Department of Molecular Virology, National AIDS Research Institute (NARI), Pune 411026, Maharashtra, India
| | - Rahul Suryawanshi
- Department of Molecular Virology, National AIDS Research Institute (NARI), Pune 411026, Maharashtra, India
| | - Reshu Saxena
- Toxicology Division, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Sector-10, Lucknow 226031, Uttar Pradesh, India
| | - Rajkamal Tripathi
- Toxicology Division, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Sector-10, Lucknow 226031, Uttar Pradesh, India
| | - Ramesh Paranjape
- Department of Molecular Virology, National AIDS Research Institute (NARI), Pune 411026, Maharashtra, India
| | - Smita Kulkarni
- Department of Molecular Virology, National AIDS Research Institute (NARI), Pune 411026, Maharashtra, India
| | - Seturam B Katti
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Sector-10, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
13
|
Shimoni M, Herschhorn A, Britan-Rosich Y, Kotler M, Benhar I, Hizi A. The isolation of novel phage display-derived human recombinant antibodies against CCR5, the major co-receptor of HIV. Viral Immunol 2014; 26:277-90. [PMID: 23941674 DOI: 10.1089/vim.2012.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest.
Collapse
Affiliation(s)
- Moria Shimoni
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Med Chem 2012; 4:603-13. [PMID: 22458680 DOI: 10.4155/fmc.12.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structure-based virtual screening makes explicit or implicit use of 3D target structure information to detect novel active compounds. Results of nearly 300 currently available original applications have been analyzed to characterize the state-of-the-art in this field. Compound selection from docking calculations is much influenced by subjective criteria. Although submicromolar compounds are identified, the majority of docking hits are only weakly potent. However, only a small percentage of docking hits can be reproduced by ligand-based methods. When docking calculations identify potent hits, they often originate from specialized compound sources (e.g., pharmaceutical compound decks or target-focused libraries) and also display a notable bias towards kinase targets. Structure-based virtual screening is the dominant approach to computational hit identification. Docking calculations frequently identify active compounds. Limited accuracy of compound scoring and ranking currently presents a major caveat of the approach that is often compensated for by chemical intuition and knowledge.
Collapse
|
15
|
Herschhorn A, Finzi A, Jones DM, Courter JR, Sugawara A, Smith AB, Sodroski JG. An inducible cell-cell fusion system with integrated ability to measure the efficiency and specificity of HIV-1 entry inhibitors. PLoS One 2011; 6:e26731. [PMID: 22069466 PMCID: PMC3206054 DOI: 10.1371/journal.pone.0026731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/03/2011] [Indexed: 11/19/2022] Open
Abstract
HIV-1 envelope glycoproteins (Envs) mediate virus entry by fusing the viral and target cell membranes, a multi-step process that represents an attractive target for inhibition. Entry inhibitors with broad-range activity against diverse isolates of HIV-1 may be extremely useful as lead compounds for the development of therapies or prophylactic microbicides. To facilitate the identification of such inhibitors, we have constructed a cell-cell fusion system capable of simultaneously monitoring inhibition efficiency and specificity. In this system, effector cells stably express a tetracycline-controlled transactivator (tTA) that enables tightly inducible expression of both HIV-1 Env and the Renilla luciferase (R-Luc) reporter protein. Target cells express the HIV-1 receptors, CD4 and CCR5, and carry the firefly luciferase (F-Luc) reporter gene under the control of a tTA-responsive promoter. Thus, Env-mediated fusion of these two cell types allows the tTA to diffuse to the target cell and activate the expression of the F-Luc protein. The efficiency with which an inhibitor blocks cell-cell fusion is measured by a decrease in the F-Luc activity, while the specificity of the inhibitor is evaluated by its effect on the R-Luc activity. The system exhibited a high dynamic range and high Z'-factor values. The assay was validated with a reference panel of inhibitors that target different steps in HIV-1 entry, yielding inhibitory concentrations comparable to published virus inhibition data. Our system is suitable for large-scale screening of chemical libraries and can also be used for detailed characterization of inhibitory and cytotoxic properties of known entry inhibitors.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andres Finzi
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph G. Sodroski
- Department of Immunology Cancer and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools.
Collapse
|
17
|
Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev 2011; 33 Suppl 1:E1-72. [PMID: 21523792 DOI: 10.1002/med.20241] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) nowadays represent very potent and most promising anti-AIDS agents that specifically target the HIV-1 reverse transcriptase (RT). However, the effectiveness of NNRTI drugs can be hampered by rapid emergence of drug-resistant viruses and severe side effects upon long-term use. Therefore, there is an urgent need to develop novel, highly potent NNRTIs with broad spectrum antiviral activity and improved pharmacokinetic properties, and more efficient strategies that facilitate and shorten the drug discovery process would be extremely beneficial. Fortunately, the structural diversity of NNRTIs provided a wide space for novel lead discovery, and the pharmacophore similarity of NNRTIs gave valuable hints for lead discovery and optimization. More importantly, with the continued efforts in the development of computational tools and increased crystallographic information on RT/NNRTI complexes, structure-based approaches using a combination of traditional medicinal chemistry, structural biology, and computational chemistry are being used increasingly in the design of NNRTIs. First, this review covers two decades of research and development for various NNRTI families based on their chemical scaffolds, and then describes the structural similarity of NNRTIs. We have attempted to assemble a comprehensive overview of the general approaches in NNRTI lead discovery and optimization reported in the literature during the last decade. The successful applications of medicinal chemistry strategies, crystallography, and computational tools for designing novel NNRTIs are highlighted. Future directions for research are also outlined.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Weitman M, Lerman K, Nudelman A, Major DT, Hizi A, Herschhorn A. Structure–activity relationship studies of 1-(4-chloro-2,5-dimethoxyphenyl)-3-(3-propoxypropyl)thiourea, a non-nucleoside reverse transcriptase inhibitor of human immunodeficiency virus type-1. Eur J Med Chem 2011; 46:447-67. [DOI: 10.1016/j.ejmech.2010.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 01/17/2023]
|
19
|
Simple and rapid determination of the enzyme kinetics of HIV-1 reverse transcriptase and anti-HIV-1 agents by a fluorescence based method. J Virol Methods 2011; 171:381-7. [DOI: 10.1016/j.jviromet.2010.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 11/29/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022]
|
20
|
Herschhorn A, Marasco WA, Hizi A. Antibodies and lentiviruses that specifically recognize a T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. THE JOURNAL OF IMMUNOLOGY 2010; 185:7623-32. [PMID: 21076072 DOI: 10.4049/jimmunol.1001561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV selectively downregulates HLA-A and -B from the surfaces of infected cells to avoid detection by the immune system. In contrast, the HLA-C molecules are highly resistant to this downregulation. High expression level of HLA-C on the cell surface, which correlates with a single nucleotide polymorphism, is also associated with lower viral loads and slower progression to AIDS. These findings strongly suggest that HIV-1-derived peptides are efficiently presented by HLA-C and trigger the elimination of infected cells. Accordingly, the ability to detect these HLA-C-peptide complexes may be used for therapeutic targeting of HIV-1-infected cells and for measuring effective presentation of vaccine candidates after immunization with HIV-1-related proteins or genes. However, low level of HLA-C expression on the cell surface has impeded the development of such complex-recognizing reagents. In this study, we describe the development of a high-affinity human Ab that specifically interacts, at low pM concentrations, with a conserved viral T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. The human Ab selectively detects this complex on different cells and does not interact with a control complex that differed only in the presented peptide. Engineering lentiviruses to display this Ab endowed them with the same specificity as the Ab, whereas coexpressing the Ab and Fas ligand enables the lentiviruses to kill specifically Nef-presenting cells. Abs and pseudoviruses with such specificity are likely to be highly valuable as building blocks for specific targeting and killing of HIV-1-infected cells.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
21
|
Odell LR, Howan D, Gordon CP, Robertson MJ, Chau N, Mariana A, Whiting AE, Abagyan R, Daniel JA, Gorgani NN, Robinson PJ, McCluskey A. The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J Med Chem 2010; 53:5267-80. [PMID: 20575553 DOI: 10.1021/jm100442u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of a homology model for the GTP binding domain of human dynamin I based on the corresponding crystal structure of Dictyostelium discoidum dynamin A. Virtual screening identified 2-[(2-biphenyl-2-yl-1,3-dioxo-2,3-dihydro-1H-isoindole-5-carbonyl)amino]-4-chlorobenzoic acid (1) as a approximately 170 microM potent inhibitor. Homology modeling- and focused library-led synthesis resulted in development of a series of active compounds (the "pthaladyns") with 4-chloro-2-(2-(4-(hydroxymethyl)phenyl)-1,3-dioxoisoindoline-5-carboxamido)benzoic acid (29), a 4.58 +/- 0.06 microM dynamin I GTPase inhibitor. Pthaladyn-29 displays borderline selectivity for dynamin I relative to dynamin II ( approximately 5-10 fold). Only pthaladyn-23 (dynamin I IC(50) 17.4 +/- 5.8 microM) was an effective inhibitor of dynamin I mediated synaptic vesicle endocytosis in brain synaptosomes with an IC(50) of 12.9 +/- 5.9 microM. This compound was also competitive with respect to Mg(2+).GTP. Thus the pthaladyns are the first GTP competitive inhibitors of dynamin I and II GTPase and may be effective new tools for the study of neuronal endocytosis.
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|