1
|
Kumar K, Singh KRB, Rathour RS, Singh J, Bhattacharya S, Pandey SS. Fabrication of Nanobioengineered Interfaces Utilizing Quaternary Nanocomposite for Highly Efficient and Selective Electrochemical Biosensing of Urea. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21052-21066. [PMID: 39222152 PMCID: PMC11465734 DOI: 10.1021/acs.langmuir.4c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Nanobioengineered interfaces have gained attention owing to their small size and high surface area-to-volume ratio for utilization as a platform for highly selective and sensitive biosensing applications owing to the integration of biological molecules with engineered nanomaterials/nanocomposites. In this work, a novel Ag-complex, [(PPh3)2Ag(SCOf)]-based quaternary Ag-S-Zn-O nanocomposites (NCs), was synthesized through an environmentally-friendly process. The results revealed the formation of the NCs with an average crystallite size and particle size of 36.08 and 40.22 nm, respectively. In addition, this is the first study to utilize such NCs synthesized via a single-source precursor method, offering enhanced sensor performance due to their unique structural properties. Further, these NCs were used to fabricate a urease (Ur)/Ag-S-Zn-O NCs/ITO nanobioengineered electrode for precise and sensitive electrochemical biosensing of urea. The interfacial kinetic studies revealed quasi-reversible processes with high electron transfer rates and linear current responses, indicating efficient reaction dynamics. A high diffusion coefficient and low surface concentration suggested a fast diffusion-controlled process, affirming the electrode's potential for rapid and sensitive urea detection. The biosensor demonstrated notable sensing properties such as high sensitivity (12.56 μA mM-1 cm-2) and a low detection limit (0.54 mM). The fabricated bioelectrode was highly selective and reproducible and demonstrated stability for up to 60 days. These results validate the potential of this nanobioengineered interface for next-generation biosensing applications, paving the way for advanced point-of-care diagnostics and real-time health monitoring.
Collapse
Affiliation(s)
- Krishna Kumar
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Kshitij RB Singh
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Ritu S. Rathour
- Department
of Chemistry, School of Applied Sciences, Amity University, Lucknow 226028, India
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Subrato Bhattacharya
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Shyam S. Pandey
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
2
|
Swaminathan S, Haribabu J, Karvembu R. From Concept to Cure: The Road Ahead for Ruthenium-Based Anticancer Drugs. ChemMedChem 2024:e202400435. [PMID: 39374112 DOI: 10.1002/cmdc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Indexed: 10/09/2024]
Abstract
The evolution of chemotherapy, especially the dawn of metal-based drugs, represents a transformative era in cancer treatment. From the serendipitous discovery of mustard gas's cytotoxic effects to the sophisticated development of targeted therapies, chemotherapy has significantly refined. Central to this progression is the incorporation of metal-based compounds, such as platinum (Pt), ruthenium (Ru), and gold (Au), which offer unique mechanisms of action, distinguishing them from organic therapeutics. Among these, Ru complexes, exemplified by BOLD-100 and TLD1433, have shown exceptional promise due to their selective activity, lower propensity for resistance, and the ability to target spescific cellular pathways. This paper explores the journey of such Ru candidates, focusing on the mechanisms, efficacy, and clinical potential of these Ru-based drugs, which stand at the forefront of current research, aiming to provide more targeted, less toxic, and highly effective cancer treatments.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Center for Computational Modelling, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
- Inorganic and Physical Chemistry Laboratory, CSIR-CLRI, Chennai, Tamil Nadu, 600020, India
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, Copiapo, 1532502, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
3
|
Lázaro A, Bosque R, Marín S, Pérez-León R, Badia J, Baldomà L, Rodríguez L, Crespo M, Cascante M. Exploring the effect of the axial ligands on the anticancer activity of [C,N,N'] Pt(IV) cyclometallated compounds. Dalton Trans 2024; 53:13030-13043. [PMID: 39028273 DOI: 10.1039/d4dt01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of three novel [C,N,N'] Pt(IV) cyclometallated compounds containing hydroxo, dichloroacetato or trifluoroacetato axial ligands is reported. Compound [PtCl(OH)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (3) was prepared by the oxidative addition of hydrogen peroxide to [C,N,N'] Pt(II) cyclometallated compound [PtCl{(CH3)2N(CH2)2NCH(4-FC6H3)}] (1) and further the reaction of compound 3 with dichloroacetate or trifluoroacetate anhydrides led to the formation of the corresponding compounds [PtCl(CHCl2COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (4) and [PtCl(CF3COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (5). The properties of the new compounds along with those of the compound [PtCl3{(CH3)2N(CH2)2NCH(4-FC6H3)}] (2), including stability in aqueous media, reduction potential using cyclic voltammetry, cytotoxic activity against the HCT116 CRC cell line, DNA interaction, topoisomerase I and cathepsin inhibition, and computational studies involving reduction of the Pt(IV) compounds and molecular docking studies, are presented. Interestingly, the antiproliferative activity of these compounds against the HCT116 CRC cell line, which is in all cases higher than that of cisplatin, follows the same trend as the reduction potentials so that the most easily reduced compound 2 is the most potent. In contrast, according to the electrophoretic mobility and molecular docking studies, the efficacy of these compounds in binding to DNA is not related to their cytotoxicity. The most active compound 2 does not modify the DNA electrophoretic mobility while the less potent compound 3 is the most efficient in binding to DNA. Although compounds 2 and 3 have only a slight effect on cell cycle distribution and apoptosis induction, generation of ROS to a higher extent for the most easily reduced compound 2 was observed.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ramón Bosque
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
| | - Silvia Marín
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raúl Pérez-León
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
| | - Josefa Badia
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Margarita Crespo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Marta Cascante
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
5
|
Salmain M, Gaschard M, Baroud M, Lepeltier E, Jaouen G, Passirani C, Vessières A. Thioredoxin Reductase and Organometallic Complexes: A Pivotal System to Tackle Multidrug Resistant Tumors? Cancers (Basel) 2023; 15:4448. [PMID: 37760418 PMCID: PMC10526406 DOI: 10.3390/cancers15184448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancers classified as multidrug-resistant (MDR) are a family of diseases with poor prognosis despite access to increasingly sophisticated treatments. Several mechanisms explain these resistances involving both tumor cells and their microenvironment. It is now recognized that a multi-targeting approach offers a promising strategy to treat these MDR tumors. Inhibition of thioredoxin reductase (TrxR), a key enzyme in maintaining redox balance in cells, is a well-identified target for this approach. Auranofin was the first inorganic gold complex to be described as a powerful inhibitor of TrxR. In this review, we will first recall the main results obtained with this metallodrug. Then, we will focus on organometallic complexes reported as TrxR inhibitors. These include gold(I), gold(III) complexes and metallocifens, i.e., organometallic complexes of Fe and Os derived from tamoxifen. In these families of complexes, similarities and differences in the molecular mechanisms of TrxR inhibition will be highlighted. Finally, the possible relationship between TrxR inhibition and cytotoxicity will be discussed and put into perspective with their mode of action.
Collapse
Affiliation(s)
- Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Marie Gaschard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Milad Baroud
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Anne Vessières
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| |
Collapse
|
6
|
Swaminathan S, Karvembu R. Dichloro Ru(II)- p-cymene-1,3,5-triaza-7-phosphaadamantane (RAPTA-C): A Case Study. ACS Pharmacol Transl Sci 2023; 6:982-996. [PMID: 37470017 PMCID: PMC10353064 DOI: 10.1021/acsptsci.3c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 07/21/2023]
Abstract
The use of organometallic compounds to treat various phenotypes of cancer has attracted increased interest in recent decades. Organometallic compounds, which are transitional between conventional inorganic and organic materials, have outstanding and one-of-a-kind features that offer fresh insight into the development of inorganic medicinal chemistry. The therapeutic potential of ruthenium(II)-arene RAPTA-type compounds is being thoroughly investigated, specifically owing to the excellent antimetastatic property of the initial candidate RAPTA-C. This review gives a thorough analysis of this complex and its evolution as a potential anticancer drug candidate. The numerous mechanistic investigations of RAPTA-C are discussed, and they are connected to the macroscopic biological characteristics that have been found. The "multitargeted" complex described here target enzymes, peptides, and intracellular proteins in addition to DNA that allow it to specifically target cancer cells. Understanding these may allow researchers to find specific targets and tune a new-generation organometallic complex accordingly.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
- Center
for Computational Modeling, Chennai Institute
of Technology (CIT), Chennai 600069, India
| | - Ramasamy Karvembu
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
7
|
Bashir M, Mantoo IA, Arjmand F, Tabassum S, Yousuf I. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord Chem Rev 2023; 487:215169. [DOI: 10.1016/j.ccr.2023.215169] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
8
|
Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD, Arnér ESJ. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol 2023; 62:102703. [PMID: 37087975 PMCID: PMC10149367 DOI: 10.1016/j.redox.2023.102703] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
Ferroptosis is defined as cell death triggered by iron-dependent lipid peroxidation that is preventable by antioxidant compounds such as ferrostatin-1. Endogenous suppressors of ferroptosis include FSP-1 and the selenoprotein GPX4, the latter of which directly enzymatically reduces lipid hydroperoxides. Small molecules that trigger ferroptosis include RSL3, ML162, and ML210; these compounds are often used in studies of ferroptosis and are generally considered as GPX4 inhibitors. Here, we found that RSL3 and ML162 completely lack capacity of inhibiting the enzymatic activity of recombinant selenoprotein GPX4. Surprisingly, these compounds were instead found to be efficient inhibitors of another selenoprotein, TXNRD1. Other known inhibitors of TXNRD1, including auranofin, TRi-1 and TRi-2, are also efficient inducers of cell death but that cell death could not be suppressed with ferrostatin-1. Our results collectively suggest that prior studies using RSL3 and ML162 may need to be reevaluated in the context of ferroptosis with regards to additional enzyme targets and mechanisms of action that may be involved.
Collapse
Affiliation(s)
- Dorian M Cheff
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden; Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States
| | - Chuying Huang
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Karoline C Scholzen
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michael H Ronzetti
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Matthew D Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
9
|
Novel Organoruthenium(II) Complex C1 Selectively Inhibits Butyrylcholinesterase without Side Effects on Neuromuscular Transmission. Int J Mol Sci 2023; 24:ijms24032681. [PMID: 36769002 PMCID: PMC9916964 DOI: 10.3390/ijms24032681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Enzyme butyrylcholinesterase (BChE) shows increased activity in some brain regions after progression of Alzheimer's disease and is therefore one of the therapeutic targets for symptomatic treatment of this neurodegenerative disorder. The organoruthenium(II) complex [(η6-p-cymene)Ru(II)(1-hydroxy-3-methoxypyridine-2(1H)-thionato)pta]PF6 (C1) was designed based on the results of our previous structure-activity studies. Inhibitory activity toward cholinesterase enzymes shows that this complex selectively, competitively, and reversibly inhibits horse serum BChE (hsBChE) with an IC50 value of 2.88 µM. When tested at supra-pharmacological concentrations (30, 60, 90, and 120 µM), C1 had no significant effect on the maximal amplitude of nerve-evoked and directly elicited single-twitch and tetanic contractions. At the highest tested concentration (120 µM), C1 had no effect on resting membrane potential, but significantly decreased the amplitude of miniature end-plate potentials (MEPP) without reducing their frequency. The same concentration of C1 had no effect on the amplitude of end-plate potentials (EPP), however it shortened the half-decay time of MEPPs and EPPs. The decrease in the amplitude of MEPPs and shortening of the half-decay time of MEPPs and EPPs suggest a possible weak inhibitory effect on muscle-type nicotinic acetylcholine receptors (nAChR). These combined results show that, when applied at supra-pharmacological concentrations up to 120 µM, C1 does not importantly affect the physiology of neuromuscular transmission and skeletal muscle contraction.
Collapse
|
10
|
Mansouri F, Ortiz D, Dyson PJ. Competitive binding studies of the nucleosomal histone targeting drug, [Ru(η 6-p-cymene)Cl 2(pta)] (RAPTA-C), with oligonucleotide-peptide mixtures. J Inorg Biochem 2023; 238:112043. [PMID: 36370502 DOI: 10.1016/j.jinorgbio.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Protein crystallography and biochemical assays reveal that the organometallic drug, [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C), preferentially binds to nucleosomal histone proteins in chromatin. To better understand the binding mechanism we report here a mass spectrometric-based competitive binding study between a model peptide from the acidic patch region of the H2A histone protein (the region where RAPTA-C is known to bind) and an oligonucleotide. In contrast to the protein crystallography and biochemical assays, RAPTA-C preferentially binds to the oligonucleotide, confirming that steric factors, rather than electronic effects, primarily dictate binding of RAPTA-C to histone proteins within the nucleosome.
Collapse
Affiliation(s)
- Farangis Mansouri
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland; Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
11
|
Jayawardhana AMDS, Zheng YR. Interactions between mitochondria-damaging platinum(IV) prodrugs and cytochrome c. Dalton Trans 2022; 51:2012-2018. [PMID: 35029256 PMCID: PMC8838881 DOI: 10.1039/d1dt03875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, we present the first study about the interactions of mitochondria-damaging Pt(IV) prodrugs with cytochrome c. We synthesized a cisplatin-based Pt(IV) prodrug bearing a lipophilic hydrocarbon tail and anionic dansyl head group. The amphiphilic structure facilitates its accumulation in the mitochondria of cancer cells, which was validated using graphite furnace atomic absorption spectroscopy (GFAAS) and fluorescence imaging. Accordingly, this Pt(IV) prodrug is able to trigger mitochondrial damage and apoptosis. Overall, the Pt(IV) prodrug exhibits superior therapeutic effects against a panel of human cancer cells compared to cisplatin. It also overcomes drug resistance in ovarian cancer. Notably, HPLC analysis indicates that cytochrome c accelerates reduction (or activation) of the Pt(IV) prodrug in the presence of the electron donor nicotinamide adenine dinucleotide (NADH). More interestingly, additional studies indicate that cytochrome c was platinated by the reduced product of Pt(IV) prodrugs, and that empowers the proapoptotic peroxidase activity.
Collapse
Affiliation(s)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, Ohio 44242, USA
| |
Collapse
|
12
|
Sonkar C, Sarkar S, Mukhopadhyay S. Ruthenium(ii)-arene complexes as anti-metastatic agents, and related techniques. RSC Med Chem 2022; 13:22-38. [PMID: 35224494 PMCID: PMC8792825 DOI: 10.1039/d1md00220a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 09/18/2023] Open
Abstract
With the discovery of cisplatin, a vast area of applications of metallodrugs in cancer treatment was opened but due to the side effects caused by the cisplatin complexes, researchers began to look for alternatives with similar anticancer properties but fewer side effects. Ruthenium was found to be a promising candidate, considering its significant anticancer properties and low side effects. Several ruthenium complexes, viz. NAMI-A, KP1019, KP1339, and TLD1433, have entered clinical trials. Some other arene ruthenium complexes such as RM175 and RAPTA-C have also entered clinical trials but very few of them have shown anti-metastatic properties. Herein, we provide information and probable mechanistic pathways for ruthenium(ii)-arene complexes that have been studied, so far, for their anti-metastatic activities. Also, we discuss the techniques and their significance for determining the anti-metastatic effects of the complexes.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| |
Collapse
|
13
|
Sanz Garcia J, Gaschard M, Navizet I, Sahihi M, Top S, Wang Y, Pigeon P, Vessières A, Salmain M, Jaouen G. Inhibition of cathepsin B by ferrocenyl indenes highlights a new pharmacological facet of ferrocifens. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Sanz Garcia
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Marie Gaschard
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Isabelle Navizet
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Mehdi Sahihi
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Siden Top
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Yong Wang
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Pascal Pigeon
- PSL Research University: Universite PSL chimie Paristech FRANCE
| | - Anne Vessières
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Michèle Salmain
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moleculaire 4 place Jussieucase courrier 229 75005 Paris FRANCE
| | - Gerard Jaouen
- PSL Research University: Universite PSL chimie paristech FRANCE
| |
Collapse
|
14
|
Azmanova M, Pitto-Barry A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem 2022; 23:e202100641. [PMID: 35015324 DOI: 10.1002/cbic.202100641] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Excessive cellular oxidative stress is widely perceived as a key factor in pathophysiological conditions and cancer development. Healthy cells use several mechanisms to maintain intracellular levels of reactive oxygen species (ROS) and overall redox homeostasis to avoid damage to DNA, proteins, and lipids. Cancer cells, in contrast, exhibit elevated ROS levels and upregulated protective antioxidant pathways. Counterintuitively, such elevated oxidative stress and enhanced antioxidant defence mechanisms in cancer cells provide a therapeutic opportunity for the development of drugs with different anticancer mechanisms of action (MoA). In this review, oxidative stress and the role of ROS in cells are described. The tumour-suppressive and tumour-promotive functions of ROS are discussed to compare these two different therapeutic strategies (increasing or decreasing ROS to fight cancer). Clinically approved drugs with demonstrated oxidative stress anticancer MoAs are highlighted before describing examples of metal-based anticancer drug candidates causing oxidative stress in cancer cells via novel MoAs.
Collapse
Affiliation(s)
- Maria Azmanova
- University of Bradford, School of Chemistry and Biosciences, Richmond Road, BD7 1DP, Bradford, UNITED KINGDOM
| | - Anaïs Pitto-Barry
- Université Paris-Saclay: Universite Paris-Saclay, Institut Galien Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, FRANCE
| |
Collapse
|
15
|
Muley A, Karumban KS, Gupta P, Kumbhakar S, Giri B, Raut R, Misra A, Maji S. Synthesis, structure, spectral, redox properties and anti-cancer activity of Ruthenium(II) Arene complexes with substituted Triazole Ligands. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Kanchanadevi S, Fronczek FR, Immanuel David C, Nandhakumar R, Mahalingam V. Investigation of DNA/BSA binding and cytotoxic properties of new Co(II), Ni(II) and Cu(II) hydrazone complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Trobec T, Sepčić K, Žužek MC, Kladnik J, Podjed N, Cardoso Páscoa C, Turel I, Frangež R. Fine Tuning of Cholinesterase and Glutathione-S-Transferase Activities by Organoruthenium(II) Complexes. Biomedicines 2021; 9:biomedicines9091243. [PMID: 34572429 PMCID: PMC8467340 DOI: 10.3390/biomedicines9091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022] Open
Abstract
Cholinesterases (ChEs) show increased activities in patients with Alzheimer’s disease, and remain one of the main therapeutic targets for treatment of this neurodegenerative disorder. A library of organoruthenium(II) complexes was prepared to investigate the influence of their structural elements on inhibition of ChEs, and on another pharmacologically important group of enzymes, glutathione S-transferases (GSTs). Two groups of organoruthenium(II) compounds were considered: (i) organoruthenium(II) complexes with p-cymene as an arene ligand, and (ii) organoruthenium(II) carbonyl complexes as CO-releasing molecules. Eight organoruthenium complexes were screened for inhibitory activities against ChEs and GSTs of human and animal origins. Some compounds inhibited all of these enzymes at low micromolar concentrations, while others selectively inhibited either ChEs or GSTs. This study demonstrates the importance of the different structural elements of organoruthenium complexes for their inhibitory activities against ChEs and GSTs, and also proposes some interesting compounds for further preclinical testing as ChE or GST inhibitory drugs.
Collapse
Affiliation(s)
- Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Monika Cecilija Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Jerneja Kladnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Nina Podjed
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Catarina Cardoso Páscoa
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| |
Collapse
|
19
|
Dömötör O, Pivarcsik T, Mészáros JP, Szatmári I, Fülöp F, Enyedy ÉA. Critical factors affecting the albumin binding of half-sandwich Ru(ii) and Rh(iii) complexes of 8-hydroxyquinolines and oligopyridines. Dalton Trans 2021; 50:11918-11930. [PMID: 34374386 DOI: 10.1039/d1dt01700d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is significant interest today in the interaction of half-sandwich anticancer organometallic complexes with proteins. It is considered as a crucial factor in the transport and mode of action of these compounds; thus it can affect their overall pharmacological and toxicological profiles. Albumin binding of high stability Ru(ii)(η6-p-cymene) and Rh(iii)(η5-C5Me5) complexes formed with 8-hydroxyquinoline, its 5-chloro-7-((proline-1-yl)methyl) substituted derivative, 2,2'-bipyridine and 1,10-phenanthroline is discussed herein. The interaction with human serum albumin in terms of kinetic aspects, binding strength and possible binding sites was studied in detail by means of various methods such as 1H NMR spectroscopy, UV-visible spectrophotometry, steady-state and time-resolved fluorometry, ultrafiltration and capillary zone electrophoresis. Ru(ii)(η6-p-cymene)(2,2'-bipyridine) and Ru(ii)(η6-p-cymene)(1,10-phenanthroline) complexes do not bind to the protein measurably, most probably due to kinetic reasons. However, other complexes bind significantly to albumin with fairly different kinetics to albumin. The binding affinity towards hydrophobic binding pockets shows correlation with lipophilicity along with the actual charge of the respective complexes. The studied complexes preserve their original structure upon interaction with albumin. Formation constants computed for the binding of these metal complexes to histidine-containing model oligopeptides demonstrated significant ternary complex formation, pointing out the importance of histidine coordination in the binding of these types of complexes.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
20
|
Low DNA and high BSA binding affinity of cationic ruthenium(II) organometallic featuring pyridine and 2’-hydroxychalcone ligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Synthesis, structure and anticancer properties of new biotin- and morpholine-functionalized ruthenium and osmium half-sandwich complexes. J Biol Inorg Chem 2021; 26:535-549. [PMID: 34173882 DOI: 10.1007/s00775-021-01873-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Ruthenium (Ru) and osmium (Os) complexes are of sustained interest in cancer research and may be alternative to platinum-based therapy. We detail here three new series of ruthenium and osmium complexes, supported by physico-chemical characterizations, including time-dependent density functional theory, a combined experimental and computational study on the aquation reactions and the nature of the metal-arene bond. Cytotoxic profiles were then evaluated on several cancer cell lines although with limited success. Further investigations were, however, performed on the most active series using a genetic approach based on RNA interference and highlighted a potential multi-target mechanism of action through topoisomerase II, mitotic spindle, HDAC and DNMT inhibition.
Collapse
|
22
|
Pereira SAP, Bobbink FD, Dyson PJ, Saraiva MLMFS. Automatic evaluation of cyclooxygenase 2 inhibition induced by metal-based anticancer compounds. J Inorg Biochem 2021; 218:111399. [PMID: 33706122 DOI: 10.1016/j.jinorgbio.2021.111399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
An automatic methodology based on micro sequential injection analysis coupled to a lab-on-valve system (termed μSIA-LOV) was developed and used to determine the ability of metal-based anticancer compounds to inhibit cyclooxygenase 2 (COX-2) activity. COX-2 may be involved in pathogenesis of cancer and it is overexpressed in several types of solid tumors. Since platinum-based compounds are extensively used in the treatment of cancer, and ruthenium compounds are considered as promising candidates for next generation of non-targeted anticancer drugs, it is interesting to establish whether COX-2 inhibition is relevant to their mode of action. The μSIA-LOV system was optimized and the IC50 values of each compound were calculated. All the results present RSD values less than 2.5%. IC50 values of 9.7 ± 0.6 μM to 207 ± 3 μM were obtained, with the most active inhibitor for COX-2 being rofecoxib with the metal compounds exhibiting IC50 values in the range 13.7 ± 1.6 to 207 ± 3. The results obtained in this work provide significant information about the mechanism of the studied compounds, mostly ruthenium-based compounds, and the role of COX-2 in their mode of action. Moreover, this work confirmed the potential of the μSIA-LOV system as a simple, versatile, robust, and rapid analytical tool for automating the determination of IC50 values of metal-based compounds.
Collapse
Affiliation(s)
- Sarah A P Pereira
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Felix D Bobbink
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - M Lúcia M F S Saraiva
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Abstract
Recent advances in structural studies unveiling the basis of the metal compounds/protein recognition process are discussed.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’Angelo
- Napoli
- Italy
| |
Collapse
|
24
|
Jatmika C, Wakabayashi K, Tamaki R, Akiyama N, Nakamura I, Hirota S, Yamaguchi H, Matsuo T. Ligand Exchange Strategy for Delivery of Ruthenium Complex Unit to Biomolecules Based on Ruthenium–Olefin Specific Interactions. CHEM LETT 2020. [DOI: 10.1246/cl.200590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Catur Jatmika
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazumo Wakabayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryosei Tamaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Naoki Akiyama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ibuki Nakamura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
25
|
Daubit IM, Sullivan MP, John M, Goldstone DC, Hartinger CG, Metzler-Nolte N. A Combined Spectroscopic and Protein Crystallography Study Reveals Protein Interactions of Rh I(NHC) Complexes at the Molecular Level. Inorg Chem 2020; 59:17191-17199. [PMID: 33180473 DOI: 10.1021/acs.inorgchem.0c02438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While most Rh-N-heterocyclic carbene (NHC) complexes currently investigated in anticancer research contain a Rh(III) metal center, an increasing amount of research is focusing on the cytotoxic activity and mode of action of square-planar [RhCl(COD)(NHC)] (where COD = 1,5-cyclooctadiene) which contains a Rh(I) center. The enzyme thioredoxin reductase (TrxR) and the protein albumin have been proposed as potential targets, but the molecular processes taking place upon protein interaction remain elusive. Herein, we report the preparation of peptide-conjugated and its nonconjugated parent [RhCl(COD)(NHC)] complexes, an in-depth investigation of both their stability in solution, and a crystallographic study of protein interaction. The organorhodium compounds showed a rapid loss of the COD ligand and slow loss of the NHC ligand in aqueous solution. These ligand exchange reactions were reflected in studies on the interaction with hen egg white lysozyme (HEWL) as a model protein in single-crystal X-ray crystallographic investigations. Upon treatment of HEWL with an amino acid functionalized [RhCl(COD)(NHC)] complex, two distinct rhodium adducts were found initially after 7 d of incubation at His15 and after 4 weeks also at Lys33. In both cases, the COD and chlorido ligands had been substituted with aqua and/or hydroxido ligands. While the histidine (His) adduct also indicated a loss of the NHC ligand, the lysine (Lys) adduct retained the NHC core derived from the amino acid l-histidine. In either case, an octahedral coordination environment of the metal center indicates oxidation to Rh(III). This investigation gives the first insight on the interaction of Rh(I)(NHC) complexes and proteins at the molecular level.
Collapse
Affiliation(s)
- Isabelle M Daubit
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Milena John
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
26
|
Loreto D, Ferraro G, Merlino A. Protein-metallodrugs interactions: Effects on the overall protein structure and characterization of Au, Ru and Pt binding sites. Int J Biol Macromol 2020; 163:970-976. [DOI: 10.1016/j.ijbiomac.2020.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
|
27
|
Odachowski M, Marschner C, Blom B. A review on 1,1-bis(diphenylphosphino)methane bridged homo- and heterobimetallic complexes for anticancer applications: Synthesis, structure, and cytotoxicity. Eur J Med Chem 2020; 204:112613. [PMID: 32784095 DOI: 10.1016/j.ejmech.2020.112613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Herein, we review developments in synthesis, structure, and biological (anti-cancer) activities of 1,1-bis(diphenylphosphino)methane (dppm) bridged homo- and heterobimetallic systems of the type LmM(μ2-dppm)M'Ln (M and M' are transition metals which may be different or the same and Ln,m are co-ligands) since the first such reported bimetallic system in 1987 until the present time (2020). As the simplest diphosphine, dppm enables facile formation of bimetallic complexes, where, given the short spacer between the PPh2 groups, close spatial proximity of the metal centres is ensured. We concentrate on complexes bearing no M-M interaction and contrast biological activities of these complexes with mononuclear counterparts and positive control agents such as cisplatin, in an attempt to elucidate patterns in the biological activities of these complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
28
|
Scattolin T, Bortolamiol E, Rizzolio F, Demitri N, Visentin F. Allyl palladium complexes bearing carbohydrate‐based
N
‐heterocyclic carbenes: Anticancer agents for selective and potent
in vitro
cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 (S‐3) Ghent 9000 Belgium
| | - Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
- Pathology unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS via F. Gallini 2 Aviano 33081 Italy
| | - Nicola Demitri
- Hard X‐ray Diffraction Beamlines Elettra Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park, Basovizza Trieste 34149 Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| |
Collapse
|
29
|
Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020; 9:E1412. [PMID: 32517101 PMCID: PMC7349411 DOI: 10.3390/cells9061412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| |
Collapse
|
30
|
Nabiyeva T, Marschner C, Blom B. Synthesis, structure and anti-cancer activity of osmium complexes bearing π-bound arene substituents and phosphane Co-Ligands: A review. Eur J Med Chem 2020; 201:112483. [PMID: 32592914 DOI: 10.1016/j.ejmech.2020.112483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
While many examples of osmium complexes, as anti-cancer agents, have been reported and some reviews have been devoted to this topic, a particularly interesting and synthetically accessible sub-class of these compounds namely those bearing a π- bound arene and phosphane co-ligand have escaped review. These complexes have made a surprisingly late entry in the literature (2005) in terms of anti-cancer investigations. This is somewhat surprising considering the plethora of analogous complexes that have been reported for the lighter analogue, ruthenium. Herein we review all complexes, neutral and ionic, bearing the "(ƞ6-arene)Os(PR3)" moiety focusing on their synthesis, reactivity, structural features (by X-ray diffraction analysis) as well as anti-cancer biological activity. An attempt is made throughout the article to contrast these to each other and to analogous Ru systems, and a full summary of all existing in vitro biological data is presented.
Collapse
Affiliation(s)
- Tomiris Nabiyeva
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
31
|
Clapper E, Wang S, Raninga PV, Di Trapani G, Tonissen KF. Cross-talk between Bcr-abl and the Thioredoxin System in Chronic Myeloid Leukaemia: Implications for CML Treatment. Antioxidants (Basel) 2020; 9:E207. [PMID: 32138149 PMCID: PMC7139888 DOI: 10.3390/antiox9030207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is currently treated with inhibitors of the CML specific oncoprotein, bcr-abl. While this strategy is initially successful, drug resistance can become a problem. Therefore, new targets need to be identified to ensure the disease can be appropriately managed. The thioredoxin (Trx) system, comprised of Trx, thioredoxin reductase (TrxR), and NADPH, is an antioxidant system previously identified as a target for therapies aimed at overcoming drug resistance in other cancers. We assessed the effectiveness of TrxR inhibitors on drug resistant CML cells and examined links between TrxR and the bcr-abl cell-signalling pathway. Two TrxR inhibitors, auranofin and [Au(d2pype)2]Cl, increased intracellular ROS levels and elicited apoptosis in both sensitive and imatinib resistant CML cells. Inhibition of TrxR activity by these pharmacological inhibitors, or by specific siRNA, also resulted in decreased bcr-abl mRNA and protein levels, and lower bcr-abl downstream signalling activity, potentially enhancing the effectiveness of TrxR inhibitors as CML therapies. In addition, imatinib resistant CML cell lines showed upregulated expression of the Trx system. Furthermore, analysis of datasets showed that CML patients who did not respond to imatinib had higher Trx mRNA levels than patients who responded to treatment. Our study demonstrates a link between the Trx system and the bcr-abl protein and highlights the therapeutic potential of targeting the Trx system to improve CML patients' outcomes.
Collapse
Affiliation(s)
- Erin Clapper
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Sicong Wang
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Prahlad V. Raninga
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia;
| | - Giovanna Di Trapani
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
| | - Kathryn F. Tonissen
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
32
|
|
33
|
Truong D, Sullivan MP, Tong KKH, Steel TR, Prause A, Lovett JH, Andersen JW, Jamieson SMF, Harris HH, Ott I, Weekley CM, Hummitzsch K, Söhnel T, Hanif M, Metzler-Nolte N, Goldstone DC, Hartinger CG. Potent Inhibition of Thioredoxin Reductase by the Rh Derivatives of Anticancer M(arene/Cp*)(NHC)Cl 2 Complexes. Inorg Chem 2020; 59:3281-3289. [PMID: 32073260 DOI: 10.1021/acs.inorgchem.9b03640] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metal complexes provide a versatile platform to develop novel anticancer pharmacophores, and they form stable compounds with N-heterocyclic carbene (NHC) ligands, some of which have been shown to inhibit the cancer-related selenoenzyme thioredoxin reductase (TrxR). To expand a library of isostructural NHC complexes, we report here the preparation of RhIII- and IrIII(Cp*)(NHC)Cl2 (Cp* = η5-pentamethylcyclopentadienyl) compounds and comparison of their properties to the RuII- and OsII(cym) analogues (cym = η6-p-cymene). Like the RuII- and OsII(cym) complexes, the RhIII- and IrIII(Cp*) derivatives exhibit cytotoxic activity with half maximal inhibitory concentration (IC50) values in the low micromolar range against a set of four human cancer cell lines. In studies on the uptake and localization of the compounds in cancer cells by X-ray fluorescence microscopy, the Ru and Os derivatives were shown to accumulate in the cytoplasmic region of treated cells. In an attempt to tie the localization of the compounds to the inhibition of the tentative target TrxR, it was surprisingly found that only the Rh complexes showed significant inhibitory activity at IC50 values of ∼1 μM, independent of the substituents on the NHC ligand. This indicates that, although TrxR may be a potential target for anticancer metal complexes, it is unlikely the main target or the sole target for the Ru, Os, and Ir compounds described here, and other targets should be considered. In contrast, Rh(Cp*)(NHC)Cl2 complexes may be a scaffold for the development of TrxR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Andre Prause
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig D-38106, Germany
| | | | | | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | | | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig D-38106, Germany
| | - Claire M Weekley
- Bio21 Institute and Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne 3052, VIC, Australia
| | | | | | | | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, Bochum 44801, Germany
| | | | | |
Collapse
|
34
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
35
|
de Moura TR, Zanetti RD, Silva DES, de Farias RL, Mauro AE, Pereira JCM, de Souza AA, da Silva Siqueira F, de Souza Júdice WA, Lima MA, Rocha FV, Deflon VM, Vieira de Godoy Netto A. Palladium( ii) complexes bearing 1-iminothiolate-3,5-dimethylpyrazoles: synthesis, cytotoxicity, DNA binding and enzymatic inhibition studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj02825h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work describes the enzymatic inhibitory activity of four novel Pd(ii) complexes towards topoisomerase IIα and cathepsins B and L.In silicostudies agree well with the enhancedin vitrocathepsin B inhibition induced by compound4(58% at 10 μM).
Collapse
Affiliation(s)
- Thales Reggiani de Moura
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Diego Zanetti
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Debora Eduarda Soares Silva
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Lira de Farias
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Antonio Eduardo Mauro
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - José Clayston Melo Pereira
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Aline Aparecida de Souza
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | - Fábio da Silva Siqueira
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | | | - Mauro Almeida Lima
- UFSCar – Univ. Federal de São Carlos
- Departamento de Química
- São Carlos
- Brazil
| | | | | | | |
Collapse
|
36
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Maugeri A, Navarra M. Anticancer study of heterobimetallic platinum(II)-ruthenium(II) and platinum(II)-rhodium(III) complexes with bridging dithiooxamide ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Estrada-Ortiz N, Lopez-Gonzales E, Woods B, Stürup S, de Graaf IAM, Groothuis GMM, Casini A. Ex vivo toxicological evaluation of experimental anticancer gold(i) complexes with lansoprazole-type ligands. Toxicol Res (Camb) 2019; 8:885-895. [PMID: 32190293 PMCID: PMC7067241 DOI: 10.1039/c9tx00149b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Gold-based compounds are of great interest in the field of medicinal chemistry as novel therapeutic (anticancer) agents due to their peculiar reactivity and mechanisms of action with respect to organic drugs. Despite their promising pharmacological properties, the possible toxic effects of gold compounds need to be carefully evaluated in order to optimize their design and applicability. This study reports on the potential toxicity of three experimental gold-based anticancer compounds featuring lansoprazole ligands (1-3) studied in an ex vivo model, using rat precision cut kidney and liver slices (PCKS and PCLS, respectively). The results showed a different toxicity profile for the tested compounds, with the neutral complex 2 being the least toxic, even less toxic than cisplatin, followed by the cationic complex 1. The dinuclear cationic gold complex 3 was the most toxic in both liver and kidney slices. This result correlated with the metal uptake of the different compounds assessed by ICP-MS, where complex 3 showed the highest accumulation of gold in liver and kidney slices. Interestingly compound 1 showed the highest selectivity towards cancer cells compared to the healthy tissues. Histomorphology evaluation showed a similar pattern for all three Au(i) complexes, where the distal tubular cells suffered the most extensive damage, in contrast to the damage in the proximal tubules induced by cisplatin. The binding of representative gold compounds with the model ubiquitin was also studied by ESI-MS, showing that after 24 h incubation only 'naked' Au ions were bound to the protein following ligands' loss. The mRNA expression of stress response genes appeared to be similar for both evaluated organs, suggesting oxidative stress as the possible mechanism of toxicity. The obtained results open new perspectives towards the design and testing of bifunctional gold complexes with chemotherapeutic applications.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Elena Lopez-Gonzales
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Ben Woods
- School of Chemistry , Cardiff University , Main Building , Park Place , CF10 3AT Cardiff , UK
| | - Stefan Stürup
- Dept. of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Inge A M de Graaf
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Geny M M Groothuis
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
| | - Angela Casini
- Dept. Pharmacokinetics , Toxicology and Targeting , Groningen Research Institute of Pharmacy , University of Groningen , A. Deusinglaan 1 , 9713AV Groningen , The Netherlands . ;
- School of Chemistry , Cardiff University , Main Building , Park Place , CF10 3AT Cardiff , UK
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85748 Garching b. München , Germany
| |
Collapse
|
38
|
Chemistry and reactivity of ruthenium(II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Kladnik J, Kljun J, Burmeister H, Ott I, Romero-Canelón I, Turel I. Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity. Chemistry 2019; 25:14169-14182. [PMID: 31461189 DOI: 10.1002/chem.201903109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Indexed: 12/25/2022]
Abstract
An organoruthenium(II) complex with pyrithione (2-mercaptopyridine N-oxide) 1 a has previously been identified by our group as a compound with promising anticancer potential without cytotoxicity towards non-cancerous cells. To expand the rather limited research on compounds of this type, an array of novel chlorido and 1,3,5-triaza-7-phosphaadamantane (pta) organoruthenium(II) complexes with methyl-substituted pyrithiones has been prepared. After thorough investigation of the aqueous stability of these complexes, their modes of action have been elucidated at the cellular level. Minor structural alterations in the ruthenium-pyrithionato compounds resulted in fine-tuning of their cytotoxicities. The best performing compounds, 1 b and 2 b, with a chlorido or pta ligand bound to ruthenium, respectively, and a methyl group at the 3-position of the pyrithione scaffold, have been further investigated. Both compounds trigger early apoptosis, induce the generation of reactive oxygen species and G1 arrest in A549 cancer cells, and show no strong interaction with DNA. However, only 1 b also inhibits thioredoxin reductase. Wound healing assays and mitochondrial function evaluation have revealed differences between these two compounds at the cellular level.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
40
|
Renfrew AK, Karges J, Scopelliti R, Bobbink FD, Nowak‐Sliwinska P, Gasser G, Dyson PJ. Towards Light‐Activated Ruthenium–Arene (RAPTA‐Type) Prodrug Candidates. Chembiochem 2019; 20:2876-2882. [DOI: 10.1002/cbic.201900236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Anna K. Renfrew
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Johannes Karges
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology 75005 Paris France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Felix D. Bobbink
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Institute of Pharmaceutical Sciences of Western Switzerland andTranslational Research Center in Oncohaematology 1211 Geneva 4 Switzerland
| | - Gilles Gasser
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology 75005 Paris France
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
41
|
Scattolin T, Moro G, Rizzolio F, Santo C, Moretto LM, Visentin. F. Improved Synthesis, Anticancer Activity and Electrochemical Characterization of Unusual Zwitterionic Palladium Compounds with a Ten‐Term Coordinative Ring. ChemistrySelect 2019. [DOI: 10.1002/slct.201902316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Giulia Moro
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
- Pathology UnitIRCCS CRO Aviano-National Cancer Institute 33081 Aviano Italy
| | - Claudio Santo
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Ligia Maria Moretto
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Fabiano Visentin.
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| |
Collapse
|
42
|
Sheng Y, Hou Z, Cui S, Cao K, Yuan S, Sun M, Kljun J, Huang G, Turel I, Liu Y. Covalent versus Noncovalent Binding of Ruthenium η 6 -p-Cymene Complexes to Zinc-Finger Protein NCp7. Chemistry 2019; 25:12789-12794. [PMID: 31385356 DOI: 10.1002/chem.201902434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/03/2019] [Indexed: 01/24/2023]
Abstract
Ruthenium-arene complexes are a unique class of organometallic compounds that have been shown to have prominent therapeutic potencies. Here, we have investigated the interactions of Ru-cymene complexes with a zinc-finger protein NCp7, aiming to understand the effects of various ligands on the reaction. Five different binding modes were observed on selected Ru-complexes. Ru-cymene complex can bind to proteins through either noncovalent binding alone or through a combination of covalent and noncovalent binding modes. Moreover, the noncovalent interaction can promote the coordination of RuII to NCp7, resulting synergistic effects of the different ligands. The binding of Ru(Cym) complexes leads to dysfunction of NCp7 through zinc-ejection and structural perturbation. These results indicate that the reactivity of Ru-complexes can be modulated by ligands through different approaches, which could be closely correlated to their different therapeutic effects.
Collapse
Affiliation(s)
- Yaping Sheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Zhuanghao Hou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Shiyong Cui
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Kaiming Cao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Mei Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Guangming Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
43
|
Mitrović A, Kljun J, Sosič I, Uršič M, Meden A, Gobec S, Kos J, Turel I. Organoruthenated Nitroxoline Derivatives Impair Tumor Cell Invasion through Inhibition of Cathepsin B Activity. Inorg Chem 2019; 58:12334-12347. [PMID: 31464130 PMCID: PMC6751773 DOI: 10.1021/acs.inorgchem.9b01882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Lysosomal
cysteine peptidase cathepsin B (catB) is an important tumor-promoting
factor involved in tumor progression and metastasis representing a
relevant target for the development of new antitumor agents. In the
present study, we synthesized 11 ruthenium compounds bearing either
the clinical agent nitroxoline that was previously identified as potent
selective reversible inhibitor of catB activity or its derivatives.
We demonstrated that organoruthenation is a viable strategy for obtaining
highly effective and specific inhibitors of catB endo- and exopeptidase
activity, as shown using enzyme kinetics and microscale thermophoresis.
Furthermore, we showed that the novel metallodrugs by catB inhibition
significantly impair processes of tumor progression in in vitro cell
based functional assays at low noncytotoxic concentrations. Generally,
by using metallodrugs we observed an improvement in catB inhibition,
a reduction of extracellular matrix degradation and tumor cell invasion
in comparison to free ligands, and a correlation with the reactivity
of the monodentate halide leaving ligand. Eleven ruthenium
compounds bearing either the clinical agent nitroxoline or its potent
cathepsin B (catB) inhibiting derivatives were evaluated as antimetastatic
agents. We demonstrated that organoruthenation is a viable strategy
for obtaining highly effective and specific inhibitors of catB activities,
as shown using enzyme kinetics and microscale thermophoresis. Furthermore,
we showed that the novel metallodrugs significantly impair processes
of tumor progression in in vitro cell based functional assays at low
noncytotoxic concentrations.
Collapse
Affiliation(s)
- Ana Mitrović
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia.,Department of Biotechnology , Jožef Stefan Institute , Jamova c. 39 , SI-1000 Ljubljana , Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia
| | - Matija Uršič
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia
| | - Janko Kos
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia.,Department of Biotechnology , Jožef Stefan Institute , Jamova c. 39 , SI-1000 Ljubljana , Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
44
|
Rausch M, Dyson PJ, Nowak‐Sliwinska P. Recent Considerations in the Application of RAPTA‐C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900042] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
- Translational Research Centre in Oncohaematology Geneva, Switzerland, 1211 Geneva 4 Switzerland
| |
Collapse
|
45
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Giannetto A, Lanza S, Bruno G, Mirkhani V. Synthesis, solution behaviour and potential anticancer activity of new trinuclear organometallic palladium(II) complex of {S}-1-phenylethyl dithiooxamide: Comparison with the trinuclear heterobimetallic platinum(II) analogue. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
47
|
Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J Inorg Biochem 2019; 193:112-123. [DOI: 10.1016/j.jinorgbio.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
48
|
Summers KL. A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes. Mini Rev Med Chem 2019; 19:569-590. [DOI: 10.2174/1389557518666181015152657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/26/2018] [Accepted: 09/30/2018] [Indexed: 01/14/2023]
Abstract
Malaria is a potentially life-threatening disease, affecting approx. 214 million people worldwide. Malaria is caused by a protozoan, Plasmodium falciparum, which is transmitted through the Anopheles mosquito. Malaria treatment is becoming more challenging due to rising resistance against the antimalarial drug, chloroquine. Novel compounds that target aspects of parasite development are being explored in attempts to overcome this wide-spread problem. Anti-malarial drugs target specific aspects of parasite growth and development within the human host. One of the most effective targets is the inhibition of hematin formation, either through inhibition of cysteine proteases or through iron chelation. Metal-thiosemicarbazone (TSC) complexes have been tested for antimalarial efficacy against drug-sensitive and drug-resistant strains of P. falciparum. An array of TSC complexes with numerous transition metals, including ruthenium, palladium, and gold has displayed antiplasmodial activity. Au(I)- and Pd(II)-TSC complexes displayed the greatest potency; 4-amino-7-chloroquine moieties were also found to improve antiplasmodial activity of TSCs. Although promising metal-TSC drug candidates have been tested against laboratory strains of P. falciparum, problems arise when attempting to compare between studies. Future work should strive to completely characterize synthesized metal-TSC structures and assess antiplasmodial potency against several drug-sensitive and drugresistant strains. Future studies need to precisely determine IC50 values for antimalarial drugs, chloroquine and ferroquine, to establish accurate standard values. This will make future comparisons across studies more feasible and potentially help reveal structure-function relationships. Investigations that attempt to link drug structures or properties to antiplasmodial mechanism(s) of action will aid in the design of antimalarial drugs that may combat rising drug resistance.
Collapse
Affiliation(s)
- Kelly L. Summers
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
49
|
Briš A, Jašík J, Turel I, Roithová J. Anti-cancer organoruthenium(ii) complexes and their interactions with cysteine and its analogues. A mass-spectrometric study. Dalton Trans 2019; 48:2626-2634. [PMID: 30702097 PMCID: PMC8609305 DOI: 10.1039/c8dt04350g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ruthenium complexes [Ru(CYM)(p-Cl-dkt)(Cl)] (1), [Ru(CYM)(pta)(p-Cl-dkt)]PF6 (2), and [Ru(CYM)(pta)Cl2] (3, RAPTA-C) (CYM = para-cymene, p-Cl-dkt = 1-(4-chlorophenyl)-4,4,4-trifluorobutane-1,3-dione, pta = 1,3,5-triaza-7-phosphaadamantane) are biologically active and show anti-cancer activities, albeit with different mechanisms. To further understand these mechanisms, we compared their speciation in aqueous solutions with an amino acid (cysteine), with an amino acid derivative (N-acetylcysteine) and with a tripeptide (glutathione) by Mass Spectrometry (MS). Here, we show that all ruthenium complexes have high selectivity for cysteine and cysteine-derived molecules. On one hand, [Ru(CYM)(p-Cl-dkt)(Cl)] undergoes solvolysis in water and forms [Ru2(CYM)2(OH)3]+. Subsequently, all hydroxyl anions are exchanged by deprotonated cysteine. Infrared Photodissociation Spectroscopy (IRPD) showed that cysteine binds to the ruthenium atoms via the deprotonated thiol group and that sulfur bridges the ruthenium centers. On the other hand, the pta-bearing complexes remain monometallic and undergo only slow Cl or p-Cl-dkt exchange by deprotonated cysteine. Therefore, the pta ligand protects the ruthenium complexes from ligand exchange with water and from the formation of biruthenium clusters, possibly explaining why the mechanism of pta-bearing ruthenium complexes is not based on ROS production but on their reactivity as monometallic complexes. ESI-MS study of ruthenium complexes shows their high selectivity toward thiol containing molecules and formation of larger thiolate-bound clusters in absence of a protecting ligand such as pta.![]()
Collapse
Affiliation(s)
- Anamarija Briš
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | | | | | | |
Collapse
|
50
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|