1
|
Ertl F, Kopanchuk S, Dijon NC, Veikšina S, Tahk MJ, Laasfeld T, Schettler F, Gattor AO, Hübner H, Archipowa N, Köckenberger J, Heinrich MR, Gmeiner P, Kutta RJ, Holliday ND, Rinken A, Keller M. Dually Labeled Neurotensin NTS 1R Ligands for Probing Radiochemical and Fluorescence-Based Binding Assays. J Med Chem 2024; 67:16664-16691. [PMID: 39261089 PMCID: PMC11440508 DOI: 10.1021/acs.jmedchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The determination of ligand-receptor binding affinities plays a key role in the development process of pharmaceuticals. While the classical radiochemical binding assay uses radioligands, fluorescence-based binding assays require fluorescent probes. Usually, radio- and fluorescence-labeled ligands are dissimilar in terms of structure and bioactivity, and can be used in either radiochemical or fluorescence-based assays. Aiming for a close comparison of both assay types, we synthesized tritiated fluorescent neurotensin receptor ligands ([3H]13, [3H]18) and their nontritiated analogues (13, 18). The labeled probes were studied in radiochemical and fluorescence-based (high-content imaging, flow cytometry, fluorescence anisotropy) binding assays. Equilibrium saturation binding yielded well-comparable ligand-receptor affinities, indicating that all these setups can be used for the screening of new drugs. In contrast, discrepancies were found in the kinetic behavior of the probes, which can be attributed to technical differences of the methods and require further studies with respect to the elucidation of the underlying mechanisms.
Collapse
Affiliation(s)
- Fabian
J. Ertl
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Nicola C. Dijon
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Franziska Schettler
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraβe
31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Roger J. Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Nicholas D. Holliday
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Galal KA, Obeng S, Pallares VLC, Senetra A, Seabra MABL, Awad A, McCurdy CR. Guanidine-to-piperidine switch affords high affinity small molecule NPFF ligands with preference for NPFF1-R and NPFF2-R subtypes. Eur J Med Chem 2024; 269:116330. [PMID: 38522114 DOI: 10.1016/j.ejmech.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The Neuropeptide FF (NPFF) receptor system is known to modulate opioid actions and has been shown to mediate opioid-induced hyperalgesia and tolerance. The lack of subtype selective small molecule compounds has hampered further exploration of the pharmacology of this receptor system. The vast majority of available NPFF ligands possess a highly basic guanidine group, including our lead small molecule, MES304. Despite providing strong receptor binding, the guanidine group presents a potential pharmacokinetic liability for in vivo pharmacological tool development. Through structure-activity relationship exploration, we were able to modify our lead molecule MES304 to arrive at guanidine-free NPFF ligands. The novel piperidine analogues 8b and 16a are among the few non-guanidine based NPFF ligands known in literature. Both compounds displayed nanomolar NPFF-R binding affinity approaching that of the parent molecule. Moreover, while MES304 was non-subtype selective, these two analogues presented new starting points for subtype selective scaffolds, whereby 8b displayed a 15-fold preference for NPFF1-R, and 16a demonstrated an 8-fold preference for NPFF2-R. Both analogues showed no agonist activity on either receptor subtype in the in vitro functional activity assay, while 8b displayed antagonistic properties at NPFF1-R. The calculated physicochemical properties of 8b and 16a were also shown to be more favorable for in vivo tool design. These results indicate the possibility of developing potent, subtype selective NPFF ligands devoid of a guanidine functionality.
Collapse
Affiliation(s)
- Kareem A Galal
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA.
| | - Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Victoria L C Pallares
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Alexandria Senetra
- Department of Pharmaceutics, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Maria A B L Seabra
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Ahmed Awad
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutics, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA; UF Translational Drug Development Core, The University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Mönnich D, Nagl M, Forster L, Rosier N, Igel P, Pockes S. Discovery of a Tritiated Radioligand with High Affinity and Selectivity for the Histamine H 3 Receptor. ACS Med Chem Lett 2023; 14:1589-1595. [PMID: 37974943 PMCID: PMC10641923 DOI: 10.1021/acsmedchemlett.3c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Radioligands used previously for histamine H3 receptor (H3R) are accompanied by a number of disadvantages. In this study, we report the synthesis of the new H3R radioligand [3H]UR-MN259 ([3H]11) with high (radio)chemical purity and stability. The radioligand exhibits sub-nanomolar affinity for the target receptor (pKi (H3R) = 9.56) and displays an outstanding selectivity profile within the histamine receptor family (>100,000-fold selective). [3H]UR-MN259 is ideally suitable for the characterization of H3R ligands in competition binding and shows one-site binding to the H3R in saturation binding experiments. The radiotracer shows fast association to the receptor (τassoc = 6.11 min), as well as full dissociation from the receptor (τdissoc = 14.48 min) in kinetic binding studies. The distinguished profile of [3H]UR-MN259 makes it a highly promising pharmacological tool to further investigate the role of the H3R in the CNS.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martin Nagl
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Niklas Rosier
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Patrick Igel
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
4
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Boer GE, Hickey SM, Elliott AG, Pfeffer FM. Synthesis of 2-[2-( tert-butoxycarbonyl)-3-(acyl)guanidino]ethylamine salts for convergent introduction of acyl guanidines. NEW J CHEM 2022. [DOI: 10.1039/d2nj01510b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of acylguanidines with pre-installed ethylamino linkers are described that can be incorporated into larger structures through amide coupling.
Collapse
Affiliation(s)
- Gareth E. Boer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Alysha G. Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
6
|
Kaiser A, Wanka L, Ziffert I, Beck-Sickinger AG. Biased agonists at the human Y 1 receptor lead to prolonged membrane residency and extended receptor G protein interaction. Cell Mol Life Sci 2020; 77:4675-4691. [PMID: 31919571 PMCID: PMC11104783 DOI: 10.1007/s00018-019-03432-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Functionally selective ligands to address specific cellular responses downstream of G protein-coupled receptors (GPCR) open up new possibilities for therapeutics. We designed and characterized novel subtype- and pathway-selective ligands. Substitution of position Q34 of neuropeptide Y to glycine (G34-NPY) results in unprecedented selectivity over all other YR subtypes. Moreover, this ligand displays a significant bias towards activation of the Gi/o pathway over recruitment of arrestin-3. Notably, no bias is observed for an established Y1R versus Y2R selective ligand carrying a proline at position 34 (F7,P34-NPY). Next, we investigated the spatio-temporal signaling at the Y1R and demonstrated that G protein-biased ligands promote a prolonged localization at the cell membrane, which leads to enhanced G protein signaling, while endosomal receptors do not contribute to cAMP signaling. Thus, spatial components are critical for the signaling of the Y1R that can be modulated by tailored ligands and represent a novel mode for biased pathways.
Collapse
Affiliation(s)
- Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Isabelle Ziffert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Determination of neuropeptide Y Y1 receptor antagonist BIBP 3226 and evaluation of receptor expression based on liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 2020; 412:6625-6632. [PMID: 32728863 DOI: 10.1007/s00216-020-02825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) is a peptide widely distributed throughout the body that is involved in various physiological processes, including the regulation of feeding behavior and energy homeostasis. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl]pentanamide (BIBP 3226) is a selective NPY Y1 receptor antagonist with recognized application in bone regeneration studies, requiring quantification at picogram levels. Hence, BIBP 3226 determination is proposed here by a validated HPLC-MS/MS method, based on a reversed-phase Kinetex® core-shell C8 column (2.6 μm, 150 × 2.1 mm) at 30 °C, elution in isocratic mode using a mixture of acetonitrile and water (30:70, v/v), containing 0.1% (v/v) formic acid, at 0.25 mL min-1, detection in positive ionization mode, and data acquisition in selected reaction monitoring mode. Calibration curves were linear for concentrations ranging from 0.25 to 30 ng mL-1 with LOD and LOQ values as low as 0.1 and 0.3 pg in cell extracts and 16 and 48 pg in supernatant culture media, respectively. BIBP 3226 was successfully determined in cell extracts and supernatants obtained from internalization assays. Using similar exposure conditions, the amount of BIBP 3226 found in breast cancer cells (MCF7) was 72 to 657 times higher than that found in bone marrow cells (Wt C57BL/6 mice), providing an indirect indicator of NPY Y1 receptor expression.
Collapse
|
8
|
Buschmann J, Seiler T, Bernhardt G, Keller M, Wifling D. Argininamide-type neuropeptide Y Y 1 receptor antagonists: the nature of N ω-carbamoyl substituents determines Y 1R binding mode and affinity. RSC Med Chem 2020; 11:274-282. [PMID: 33479634 PMCID: PMC7536821 DOI: 10.1039/c9md00538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2023] Open
Abstract
The recently resolved crystal structure of the neuropeptide Y Y1 receptor (Y1R), co-crystallized with the high-affinity (pK i: 10.11), argininamide-type Y1R antagonist UR-MK299 (2), revealed that the N ω-carbamoyl substituent (van der Waals volume: 139 Å3) is deeply buried in the receptor, occupying a hydrophobic pocket. We synthesized and characterized a series of argininamides, structurally related to 2. Y1R affinity decreased with increasing size of the carbamoyl residue (minimal pK i: 5.67). Exceeding a critical size of the substituent (van der Waals volume: 212 Å3), the ligands bound in an inverted mode with the carbamoyl side chain located at the surface of the receptor, as suggested by induced-fit docking and MD simulations.
Collapse
Affiliation(s)
- Jonas Buschmann
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Theresa Seiler
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Günther Bernhardt
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Max Keller
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - David Wifling
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| |
Collapse
|
9
|
18F-labelled triazolyl-linked argininamides targeting the neuropeptide Y Y 1R for PET imaging of mammary carcinoma. Sci Rep 2019; 9:12990. [PMID: 31506520 PMCID: PMC6736837 DOI: 10.1038/s41598-019-49399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y Y1 receptors (Y1R) have been found to be overexpressed in a number of different tumours, such as breast, ovarian or renal cell cancer. In mammary carcinoma the high Y1R density together with its high incidence of 85% in primary human breast cancers and 100% in breast cancer derived lymph node metastases attracted special attention. Therefore, the aim of this study was the development of radioligands for Y1R imaging by positron emission tomography (PET) with a special emphasis on imaging agents with reduced lipophilicity to provide a PET ligand with improved biodistribution in comparison with previously published tracers targeting the Y1R. Three new radioligands based on BIBP3226, bearing an 18F-fluoroethoxy linker (12), an 18F-PEG-linker (13) or an 18F-fluoroglycosyl moiety (11) were radiosynthesised in high radioactivity yields. The new radioligands displayed Y1R affinities of 2.8 nM (12), 29 nM (13) and 208 nM (11) and were characterised in vitro regarding binding to human breast cancer MCF-7-Y1 cells and slices of tumour xenografts. In vivo, small animal PET studies were conducted in nude mice bearing MCF-7-Y1 tumours. The binding to tumours, solid tumour slices and tumour cells correlated well with the Y1R affinities. Although 12 and 13 showed displaceable and specific binding to Y1R in vitro and in vivo, the radioligands still need to be optimised to achieve higher tumour-to-background ratios for Y1R imaging by PET. Yet the present study is another step towards an optimized PET radioligand for imaging of Y1R in vivo.
Collapse
|
10
|
Russell CC, Stevens A, Young KA, Baker JR, McCluskey SN, Khazandi M, Pi H, Ogunniyi A, Page SW, Trott DJ, McCluskey A. Discovery of 4,6-bis(2-(( E)-benzylidene)hydrazinyl)pyrimidin-2-Amine with Antibiotic Activity. ChemistryOpen 2019; 8:896-907. [PMID: 31312589 PMCID: PMC6610448 DOI: 10.1002/open.201800241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
Robenidine (E)-N'-((E)-1-(4-chlorophenyl)ethylidene)-2-(1-(4-chlorophenyl)ethylidene)hydrazine-1-carboximidhydrazide displays methicillin-resistant Staphyoccoccus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) MICs of 2 μg mL-1. Herein we describe the structure-activity relationship development of a novel series of guanidine to 2-aminopyrimidine isosteres that ameliorate the low levels of mammalian cytotoxicity in the lead compound while retaining good antibiotic activity. Removal of the 2-NH2 pyrimidine moiety renders these analogues inactive. Introduction of a central 2-NH2 triazine moiety saw a 10-fold activity reduction. Phenyl to cyclohexyl isosteres were inactive. The 4-BrPh and 4-CH3Ph with MIC values of 2 and 4 μg mL-1, against MRSA and VRE respectively, are promising candidates for future development.
Collapse
Affiliation(s)
- Cecilia C. Russell
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Andrew Stevens
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Kelly A. Young
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Jennifer R. Baker
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Siobhann N. McCluskey
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| | - Manouchehr Khazandi
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | - Hongfei Pi
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | - Abiodun Ogunniyi
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance EcologySchool of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthy5371 SAAustralia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghan NSW2308Australia
| |
Collapse
|
11
|
Pegoli A, Wifling D, Gruber CG, She X, Hübner H, Bernhardt G, Gmeiner P, Keller M. Conjugation of Short Peptides to Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Determines M2R Selectivity. J Med Chem 2019; 62:5358-5369. [PMID: 31074983 DOI: 10.1021/acs.jmedchem.8b01967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Andrea Pegoli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Corinna G. Gruber
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Xueke She
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
12
|
Gergs U, Bernhardt G, Buchwalow IB, Edler H, Fröba J, Keller M, Kirchhefer U, Köhler F, Mißlinger N, Wache H, Neumann J. Initial Characterization of Transgenic Mice Overexpressing Human Histamine H 2 Receptors. J Pharmacol Exp Ther 2019; 369:129-141. [PMID: 30728249 DOI: 10.1124/jpet.118.255711] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022] Open
Abstract
In an integrative approach, we studied the role of histamine H2 receptors in the mouse heart. We noted that histamine, added cumulatively to the organ bath, failed to affect the force of contraction in left atrial preparations and did not change spontaneous heart rate in right atrial preparations from wild-type mice. By contrast, in the same preparations from mice that overexpressed the human H2 receptor in a cardiac-specific way, histamine exerted concentration- and time-dependent positive inotropic and positive chronotropic effects. Messenger RNA of the human H2 receptor was only detected in transgenic mice. Likewise, immunohistology and autoradiography only gave signals in transgenic but not in wild-type cardiac preparations. Similarly, a positive inotropic and positive chronotropic effect was observed with histamine in echocardiography of living transgenic mice and isolated perfused hearts (Langendorff preparation). Phosphorylation of phospholamban was increased in atrial and ventricular preparations from transgenic mice, but not in wild-type animals. The effects of histamine were mimicked by dimaprit and amthamine and antagonized by cimetidine. In summary, we generated a new model to study the physiologic and pathophysiologic cardiac role of the human H2 receptor.
Collapse
Affiliation(s)
- U Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - G Bernhardt
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - I B Buchwalow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - H Edler
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - J Fröba
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - M Keller
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - U Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - F Köhler
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - N Mißlinger
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - H Wache
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| | - J Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (U.G., H.E., J.F., F.K., N.M., H.W., J.N.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (G.B., M.K.); Institute for Hematopathology, Hamburg, Germany (I.B.B.); and Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany (U.K.)
| |
Collapse
|
13
|
An T, Kang B, Kang S, Pac J, Youk J, Lin D, Lee Y. Guanidine cyclic diimides and their polymers. Chem Commun (Camb) 2019; 55:10222-10225. [DOI: 10.1039/c9cc04522h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the formation and degradation of a unique guanidine cyclic diimide (GCDI) structure under mild conditions. Furthermore, the GCDI-based polymers can be readily synthesized from guanidine and dianhydride monomers.
Collapse
Affiliation(s)
- Taeyang An
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Byeongwoo Kang
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Sunyoung Kang
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jinyoung Pac
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jihea Youk
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dian Lin
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Yan Lee
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
14
|
Liu S, Wang R, Zhu B, Guan W, Liang F. Photo- and dioxygen-enabled radical C(sp3)–N(sp2) cross-coupling between guanidines and perfluoroalkyl iodides. Org Biomol Chem 2019; 17:8695-8700. [DOI: 10.1039/c9ob01520e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The utilization of visible light and dioxygen (air) as green and sustainable mediators in photocatalyzed synthetic chemistry is demonstrated.
Collapse
Affiliation(s)
- Shulin Liu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Rui Wang
- Institute of Petrochemical Technology
- Jilin Institute of Chemical Technology
- Jilin 132022
- China
| | - Bo Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Wei Guan
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Fushun Liang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|
15
|
Yang Z, Han S, Keller M, Kaiser A, Bender BJ, Bosse M, Burkert K, Kögler LM, Wifling D, Bernhardt G, Plank N, Littmann T, Schmidt P, Yi C, Li B, Ye S, Zhang R, Xu B, Larhammar D, Stevens RC, Huster D, Meiler J, Zhao Q, Beck-Sickinger AG, Buschauer A, Wu B. Structural basis of ligand binding modes at the neuropeptide Y Y 1 receptor. Nature 2018; 556:520-524. [PMID: 29670288 PMCID: PMC5920736 DOI: 10.1038/s41586-018-0046-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.
Collapse
Affiliation(s)
- Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Shuo Han
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Brian J. Bender
- Department of Pharmacology, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
| | - Mathias Bosse
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Kerstin Burkert
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Lisa M. Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - David Wifling
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Guenther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Nicole Plank
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Timo Littmann
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Schmidt
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Cuiying Yi
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Xu
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Jens Meiler
- Department of Pharmacology, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
- Departments of Chemistry and Bioinformatics, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
She X, Pegoli A, Mayr J, Hübner H, Bernhardt G, Gmeiner P, Keller M. Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M 2R Affinity and Selectivity. ACS OMEGA 2017; 2:6741-6754. [PMID: 30023530 PMCID: PMC6044897 DOI: 10.1021/acsomega.7b01085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 05/13/2023]
Abstract
In search for selective ligands for the muscarinic acetylcholine receptor (MR) subtype M2, the dimeric ligand approach, that is combining two pharmacophores in one and the same molecule, was pursued. Different types (agonists, antagonists, orthosteric, and allosteric) of monomeric MR ligands were combined by various linkers with a dibenzodiazepinone-type MR antagonist, affording five types of heterodimeric compounds ("DIBA-xanomeline," "DIBA-TBPB," "DIBA-77-LH-28-1," "DIBA-propantheline," and "DIBA-4-DAMP"), which showed high M2R affinities (pKi > 8.3). The heterodimeric ligand UR-SK75 (46) exhibited the highest M2R affinity and selectivity [pKi (M1R-M5R): 8.84, 10.14, 7.88, 8.59, and 7.47]. Two tritium-labeled dimeric derivatives ("DIBA-xanomeline"-type: [3H]UR-SK71 ([3H]44) and "DIBA-TBPB"-type: [3H]UR-SK59 ([3H]64)) were prepared to investigate their binding modes at hM2R. Saturation-binding experiments showed that these compounds address the orthosteric binding site of the M2R. The investigation of the effect of various allosteric MR modulators [gallamine (13), W84 (14), and LY2119620 (15)] on the equilibrium (13-15) or saturation (14) binding of [3H]64 suggested a competitive mechanism between [3H]64 and the investigated allosteric ligands, and consequently a dualsteric binding mode of 64 at the M2R.
Collapse
Affiliation(s)
- Xueke She
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrea Pegoli
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Judith Mayr
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- E-mail: . Phone: (+49)941-9433329.
Fax: (+49)941-9434820 (M.K.)
| |
Collapse
|
17
|
Carbone M, Ciavatta ML, Mathieu V, Ingels A, Kiss R, Pascale P, Mollo E, Ungur N, Guo YW, Gavagnin M. Marine Terpenoid Diacylguanidines: Structure, Synthesis, and Biological Evaluation of Naturally Occurring Actinofide and Synthetic Analogues. JOURNAL OF NATURAL PRODUCTS 2017; 80:1339-1346. [PMID: 28406636 DOI: 10.1021/acs.jnatprod.6b00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new diacylguanidine, actinofide (1), has been isolated from the marine mollusk Actinocyclus papillatus. The structure, exhibiting a guanidine moiety acylated by two terpenoid acid units, has been established by spectroscopic methods and secured by synthesis. Following this, a series of structural analogues have been synthesized using the same procedure. All of the compounds have been evaluated in vitro for the growth inhibitory activity against a variety of cancer cell lines.
Collapse
Affiliation(s)
- Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - M Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Aude Ingels
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Paola Pascale
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Nicon Ungur
- Institute of Chemistry, Moldova Academy of Sciences , Academiei str. 3, MD-2028 Chisinau, Republic of Moldova
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, P.R. China
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| |
Collapse
|
18
|
Keller M, Maschauer S, Brennauer A, Tripal P, Koglin N, Dittrich R, Bernhardt G, Kuwert T, Wester HJ, Buschauer A, Prante O. Prototypic 18F-Labeled Argininamide-Type Neuropeptide Y Y 1R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Med Chem Lett 2017; 8:304-309. [PMID: 28337321 DOI: 10.1021/acsmedchemlett.6b00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
The neuropeptide Y (NPY) Y1 receptor (Y1R) selective radioligand (R)-Nα-(2,2-diphenylacetyl)-Nω-[4-(2-[18F]fluoropropanoylamino)butyl]aminocarbonyl-N-(4-hydroxybenzyl)argininamide ([18F]23), derived from the high-affinity Y1R antagonist BIBP3226, was developed for imaging studies of Y1R-positive tumors. Starting from the argininamide core bearing amine-functionalized spacer moieties, a series of fluoropropanoylated and fluorobenzoylated derivatives was synthesized and studied for Y1R affinity. The fluoropropanoylated derivative 23 displayed high affinity (Ki = 1.3 nM) and selectivity toward Y1R. Radiosynthesis was accomplished via 18F-fluoropropanoylation, yielding [18F]23 with excellent stability in mice; however, the biodistribution study revealed pronounced hepatobiliary clearance with high accumulation in the gall bladder (>100 %ID/g). Despite the unfavorable biodistribution, [18F]23 was successfully used for imaging of Y1R positive MCF-7 tumors in nude mice. Therefore, we suggest [18F]23 as a lead for the design of PET ligands with optimized physicochemical properties resulting in more favorable biodistribution and higher Y1R-dependent enrichment in mammary carcinoma.
Collapse
Affiliation(s)
- Max Keller
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Albert Brennauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Philipp Tripal
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Norman Koglin
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Ralf Dittrich
- Department
of Obstetrics and Gynecology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 21/23, D-91054 Erlangen, Germany
| | - Günther Bernhardt
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Torsten Kuwert
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Hans-Jürgen Wester
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Armin Buschauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
19
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
20
|
Keller M, Weiss S, Hutzler C, Kuhn KK, Mollereau C, Dukorn S, Schindler L, Bernhardt G, König B, Buschauer A. N(ω)-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y1 Receptor Antagonists and a Radiolabeled Selective High-Affinity Molecular Tool ([(3)H]UR-MK299) with Extended Residence Time. J Med Chem 2015; 58:8834-49. [PMID: 26466164 DOI: 10.1021/acs.jmedchem.5b00925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Analogues of the argininamide-type NPY Y1 receptor (Y1R) antagonist BIBP3226, bearing carbamoyl moieties at the guanidine group, revealed subnanomolar Ki values and caused depression of the maximal response to NPY (calcium assay) by up to 90% in a concentration- and time-dependent manner, suggesting insurmountable antagonism. To gain insight into the mechanism of binding of the synthesized compounds, a tritiated antagonist, (R)-N(α)-diphenylacetyl-N(ω)-[2-([2,3-(3)H]propionylamino)ethyl]aminocarbonyl-(4-hydroxybenzyl)arginin-amide ([(3)H]UR-MK299, [(3)H]38), was prepared. [(3)H]38 revealed a dissociation constant in the picomolar range (Kd 0.044 nM, SK-N-MC cells) and very high Y1R selectivity. Apart from superior affinity, a considerably lower target off-rate (t1/2 95 min) was characteristic of [(3)H]38 compared to that of the higher homologue containing a tetramethylene instead of an ethylene spacer (t1/2 3 min, Kd 2.0 nM). Y1R binding of [(3)H]38 was fully reversible and fully displaceable by nonpeptide antagonists and the agonist pNPY. Therefore, the insurmountable antagonism observed in the functional assay has to be attributed to the extended target-residence time, a phenomenon of relevance in drug research beyond the NPY receptor field.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Mollereau
- CNRS/IPBS (Institut de Pharmacologie et Biologie Structurale) , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | | | | | | | | | | |
Collapse
|
21
|
Keller M, Tränkle C, She X, Pegoli A, Bernhardt G, Buschauer A, Read RW. M2 Subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: Effect of chemical homo-dimerization on orthosteric (and allosteric?) binding. Bioorg Med Chem 2015; 23:3970-90. [PMID: 25650309 DOI: 10.1016/j.bmc.2015.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
22
|
Keller M, Schindler L, Bernhardt G, Buschauer A. Toward Labeled Argininamide-Type NPY Y1Receptor Antagonists: Identification of a Favorable Propionylation Site in BIBO3304. Arch Pharm (Weinheim) 2015; 348:390-8. [DOI: 10.1002/ardp.201400427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Lisa Schindler
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Günther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| |
Collapse
|
23
|
Hofmann S, Maschauer S, Kuwert T, Beck-Sickinger AG, Prante O. Synthesis and in vitro and in vivo evaluation of an (18)F-labeled neuropeptide Y analogue for imaging of breast cancer by PET. Mol Pharm 2015; 12:1121-30. [PMID: 25748228 DOI: 10.1021/mp500601z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging of Y1R expression in breast cancer is still a challenging task. Herein, we report a suitable (18)F-labeled high-molecular-weight glycopeptide for imaging of peripheral neuropeptide Y (NPY) Y1 receptor (Y1R)-positive tumors by preclinical small-animal positron emission tomography (PET). The Y1R-preferring NPY [F(7),P(34)]NPY analogue was functionalized with an alkyne-bearing propargylglycine (Pra) in position 4. The corresponding fluoroglycosylated (FGlc) peptide analogue [Pra(4)(FGlc),F(7),P(34)]NPY and its (18)F-labeled analogue were synthesized by click chemistry-based fluoroglycosylation. The radiosynthesis was performed by (18)F-fluoroglycosylation starting from the 2-triflate of the β-mannosylazide and the alkyne peptide [Pra(4),F(7),P(34)]NPY. The radiosynthesis of the(18)F-labeled analogue was optimized using a minimum amount of peptide precursor (40 nmol), proceeding with an overall radiochemical yield of 20-25% (nondecay corrected) in a total synthesis time of 75 min with specific activities of 40-70 GBq/μmol. In comparison to NPY and [F(7),P(34)]NPY, in vitro Y1R and Y2R activation studies with the cold [Pra(4)(FGlc),F(7),P(34)]NPY on stably transfected COS-7 cells displayed a high potency for the induction of Y1R-specific inositol accumulation (pEC50 = 8.5 ± 0.1), whereas the potency at Y2R was significantly decreased. Internalization studies on stably transfected HEK293 cells confirmed a strong glycopeptide-mediated Y1R internalization and a substantial Y1R subtype selectivity over Y2R. In vitro autoradiography with Y1R-positive MCF-7 tumor tissue slices indicated high specific binding of the (18)F-labeled glycopeptide, when binding was reduced by 95% ([Pra(4),F(7),P(34)]NPY) and by 86% (BIBP3226 Y1R antagonist) in competition studies. Biodistribution and small-animal PET studies on MCF-7 breast tumor-bearing nude mice revealed radiotracer uptake in the MCF-7 tumor of 1.8%ID/g at 20 min p.i. and 0.7%ID/g at 120 min p.i. (n = 3-4), increasing tumor-to-blood ratios from 1.2 to 2.4, and a tumor retention of 76 ± 4% (n = 4; 45-90 min p.i.). PET imaging studies with MCF-7 tumor-bearing nude mice demonstrated uptake of the (18)F-labeled glycopeptide in the tumor region at 60 min p.i., whereas only negligible tumor uptake was observed in animals injected with a nonbinding (18)F-labeled glycopeptide pendant as a measure of nonspecific binding. In conclusion, PET imaging experiments with the (18)F-labeled NPY glycopeptide revealed Y1R-specific binding uptake in MCF-7 tumors in vivo together with decreased kidney uptake compared to DOTA-derivatives of this peptide. We consider this glycopeptide to be a potent lead peptide for the design of improved (18)F-glycopeptides with shorter amino acid sequences that would further facilitate PET imaging studies of Y1R-positive breast tumors.
Collapse
Affiliation(s)
- Sven Hofmann
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, 04109 Leipzig, Germany
| | - Simone Maschauer
- ‡Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Torsten Kuwert
- ‡Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Annette G Beck-Sickinger
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, 04109 Leipzig, Germany
| | - Olaf Prante
- ‡Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
24
|
Selvaraju M, Sun CM. Unprecedented one-pot chemocontrolled entry to thioxoimidazolidinones and aminoimidazolones: synthesis of kinase inhibitor leucettamine B. ACS COMBINATORIAL SCIENCE 2015; 17:182-9. [PMID: 25569559 DOI: 10.1021/co500152s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel and highly chemoselective protocol for the construction of thioxoimidazolidinone and aminoimidazolone frameworks was explored, and the influence of the reaction conditions on product formation was studied to establish two distinct approaches for their selective formation. In this one-pot reaction, ambient temperature generally resulted in the formation of thioxoimidazolidinones, whereas microwave irradiation provided aminoimidazolones exclusively. An attempt to elucidate the observed chemoselectivity is described, and the products were confirmed by X-ray studies. One-pot synthesis toward Leucettamine B, a marine alkaloid, was achieved on the basis of this protocol.
Collapse
Affiliation(s)
- Manikandan Selvaraju
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100,
Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
25
|
Grundler V, Gademann K. Direct arginine modification in native peptides and application to chemical probe development. ACS Med Chem Lett 2014; 5:1290-5. [PMID: 25516786 DOI: 10.1021/ml5003508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/27/2014] [Indexed: 01/31/2023] Open
Abstract
An efficient method for the direct labeling of the Arg guanidinium group in native peptides is reported. This straightforward procedure allows modifying the arginine moiety in peptides with various reporter groups, such as fluorophores, biotin, etc., under mild conditions in an operationally simple procedure. The scope of this method tolerates various functionalized amino acids such as His, Ser, Trp, Tyr, Glu, etc., while the only limitations uncovered so far are restricted to cysteine and free amine residues. The utility of this late-stage diversification method was demonstrated in direct labeling of leuprolide, a clinically used drug, for distribution monitoring in Daphnia, and in labeling of microcystin, a cyanobacterial toxin.
Collapse
Affiliation(s)
- Verena Grundler
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, 4056 Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, 4056 Basel, Switzerland
| |
Collapse
|
26
|
Baumeister P, Erdmann D, Biselli S, Kagermeier N, Elz S, Bernhardt G, Buschauer A. [(3) H]UR-DE257: development of a tritium-labeled squaramide-type selective histamine H2 receptor antagonist. ChemMedChem 2014; 10:83-93. [PMID: 25320025 DOI: 10.1002/cmdc.201402344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 11/08/2022]
Abstract
A series of new piperidinomethylphenoxypropylamine-type histamine H2 receptor (H2 R) antagonists with different substituted "urea equivalents" was synthesized and characterized in functional in vitro assays. Based on these data as selection criteria, radiosynthesis of N-[6-(3,4-dioxo-2-{3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino}cyclobut-1-enylamino)hexyl]-(2,3-(3) H2 )propionic amide ([(3) H]UR-DE257) was performed. The radioligand (specific activity: 63 Ci mmol(-1) ) had high affinity for human, rat, and guinea pig H2 R (hH2 R, Sf9 cells: Kd , saturation binding: 31 nM, kinetic studies: 20 nM). UR-DE257 revealed high H2 R selectivity on membranes of Sf9 cells, expressing the respective hHx R subtype (Ki values: hH1 R: >10000 nM, hH2 R: 28 nM, hH3 R: 3800 nM, hH4 R: >10000 nM). In spite of insurmountable antagonism, probably due to rebinding of [(3) H]UR-DE257 to the H2 R (extended residence time), the title compound proved to be a valuable pharmacological tool for the determination of H2 R affinities in competition binding assays.
Collapse
Affiliation(s)
- Paul Baumeister
- Institut für Pharmazie, Pharmazeutische/Medizinische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg (Germany)
| | | | | | | | | | | | | |
Collapse
|
27
|
Novel acylureidoindolin-2-one derivatives as dual Aurora B/FLT3 inhibitors for the treatment of acute myeloid leukemia. Eur J Med Chem 2014; 85:268-88. [PMID: 25089810 DOI: 10.1016/j.ejmech.2014.07.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
A series of 6-acylureido derivatives containing a 3-(pyrrol-2-ylmethylidene)indolin-2-one scaffold were synthesized as potential dual Aurora B/FLT3 inhibitors by replacing the 6-arylureido moiety in 6-arylureidoindolin-2-one-based multi-kinase inhibitors. (Z)-N-(2-(pyrrolidin-1-yl)ethyl)-5-((6-(3-(2-fluoro-4-methoxybenzoyl)ureido)-2-oxoindolin-3-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (54) was identified as a dual Aurora B/FLT3 inhibitor (IC50 = 0.4 nM and 0.5 nM, respectively). Compound 54 also exhibited potent cytotoxicity with single-digit nanomolar IC50 values against the FLT3 mutant-associated human acute myeloid leukemia (AML) cell lines MV4-11 (FLT3-ITD) and MOLM-13 (FLT3-ITD). Compound 54 also specifically induced extrinsic apoptosis by inhibiting the phosphorylation of the Aurora B and FLT3 pathways in MOLM-13 cells. Compound 54 had a moderate pharmacokinetic profile. The mesylate salt of 54 efficiently inhibited tumor growth and reduced the mortality of BALB/c nude mice (subcutaneous xenograft model) that had been implanted with AML MOLM-13 cells. Compound 54 is more potent than sunitinib not only against FLT3-WT AML cells but also active against sunitinib-resistant FLT3-ITD AML cells. This study demonstrates the significance of dual Aurora B/FLT3 inhibitors for the development of potential agents to treat AML.
Collapse
|
28
|
Maki T, Tsuritani T, Yasukata T. A mild method for the synthesis of carbamate-protected guanidines using the Burgess reagent. Org Lett 2014; 16:1868-71. [PMID: 24628041 DOI: 10.1021/ol5002208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple method for the synthesis of carbamate-protected guanidines from primary amines is described. A variety of thioureas derived from primary amines and isothiocyanates react with the Burgess reagent to give the corresponding guanidines via either a stepwise or one-pot procedure. By tuning the carbamoyl units of isothiocyanates and the Burgess reagent, differentially N,N'-diprotected guanidines can be obtained. Selective deprotection of the products affords N-monoprotected guanidines.
Collapse
Affiliation(s)
- Toshikatsu Maki
- Chemical Development Center, CMC Development Laboratories, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | | | | |
Collapse
|
29
|
Rauf MK, Imtiaz-ud-Din, Badshah A. Novel approaches to screening guanidine derivatives. Expert Opin Drug Discov 2013; 9:39-53. [PMID: 24261559 DOI: 10.1517/17460441.2013.857308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Compounds containing guanidine moiety, originating both from natural and synthetic sources, have found potential applications in both synthetic and medicinal chemistry. Indeed, guanidine functionality can be found in many natural and pharmaceutical products as well as in cosmetic ingredients produced by synthetic methods. AREAS COVERED This review covers the latest developments in the research undertaken for the therapeutic application of newly synthesized guanidine derivatives including: small peptides and peptidomimetics. This article encompasses the selected literature published in the last three decades with a focus on the novel approaches for screening of lead drug candidates with their pharmacological action. EXPERT OPINION Guanidines, as they are both organically based and also hydrophilic in nature, have undergone a mammoth amount of screening and testing to discover promising lead structures with a CN3 core, appropriate for potential future drug development. The compounds have the potential to be neurodegenerative therapeutic options, as well as: anti-inflammatory, anti-protozoal, anti-HIV, chemotherapeutic, anti-diabetic agents and so on. It is true that guanidine-based compounds of natural sources also, like synthetic and virtually designed drugs, have been of significant interest and have the potential to be useful therapeutic options in the future. As for now, however, there is not sufficient data to support their use in a number of the suggested areas, and further studies are required.
Collapse
|
30
|
Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorg Med Chem 2013; 21:6303-22. [DOI: 10.1016/j.bmc.2013.08.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022]
|
31
|
Pluym N, Baumeister P, Keller M, Bernhardt G, Buschauer A. [3H]UR-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y2 Receptor. ChemMedChem 2013; 8:587-93. [DOI: 10.1002/cmdc.201200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Indexed: 11/12/2022]
|
32
|
Memminger M, Keller M, Lopuch M, Pop N, Bernhardt G, von Angerer E, Buschauer A. The neuropeptide y y(1) receptor: a diagnostic marker? Expression in mcf-7 breast cancer cells is down-regulated by antiestrogens in vitro and in xenografts. PLoS One 2012; 7:e51032. [PMID: 23236424 PMCID: PMC3517602 DOI: 10.1371/journal.pone.0051032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/29/2012] [Indexed: 01/24/2023] Open
Abstract
The neuropeptide Y (NPY) Y(1) receptor (Y(1)R) has been suggested as a tumor marker for in vivo imaging and as a therapeutic target. In view of the assumed link between estrogen receptor (ER) and Y(1)R in mammary carcinoma and with respect to the development of new diagnostic tools, we investigated the Y(1)R protein expression in human MCF-7 cell variants differing in ER content and sensitivity against antiestrogens. ER and Y(1)R expression were quantified by radioligand binding using [(3)H]-17β-estradiol and the Y(1)R selective antagonist [(3)H]-UR-MK114, respectively. The latter was used for cellular binding studies and for autoradiography of MCF-7 xenografts. The fluorescent ligands Cy5-pNPY (universal Y(1)R, Y(2)R and Y(5)R agonist) and UR-MK22 (selective Y(1)R antagonist), as well as the selective antagonists BIBP3226 (Y(1)R), BIIE0246 (Y(2)R) and CGP71683 (Y(5)R) were used to identify the NPY receptor subtype(s) by confocal microscopy. Y(1)R functionality was determined by mobilization of intracellular Ca(2+). Sensitivity of MCF-7 cells against antiestrogen 4-hydroxytamoxifen correlated directly with the ER content. The exclusive expression of Y(1)Rs was confirmed by confocal microscopy. The Y(1)R protein was up-regulated (100%) by 17β-estradiol (EC(50) 20 pM) and the predominant role of ERα was demonstrated by using the ERα-selective agonist "propylpyrazole triol". 17β-Estradiol-induced over-expression of functional Y(1)R protein was reverted by the antiestrogen fulvestrant (IC(50) 5 nM) in vitro. Furthermore, tamoxifen treatment of nude mice resulted in an almost total loss of Y(1)Rs in MCF-7 xenografts. In conclusion, the value of the Y(1)R as a target for therapy and imaging in breast cancer patients may be compromised due to Y(1)R down-regulation induced by hormonal (antiestrogen) treatment.
Collapse
Affiliation(s)
- Martin Memminger
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Max Keller
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Miroslaw Lopuch
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Nathalie Pop
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Günther Bernhardt
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Erwin von Angerer
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Armin Buschauer
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Solinas A, Faure H, Roudaut H, Traiffort E, Schoenfelder A, Mann A, Manetti F, Taddei M, Ruat M. Acylthiourea, Acylurea, and Acylguanidine Derivatives with Potent Hedgehog Inhibiting Activity. J Med Chem 2012; 55:1559-71. [DOI: 10.1021/jm2013369] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Solinas
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Hélène Faure
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Hermine Roudaut
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Elisabeth Traiffort
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Angèle Schoenfelder
- Laboratoire d’Innovation Thérapeutique,
UMR-7200, CNRS—Université de Strasbourg, 74 Route du Rhin, F-67401 Illkirch, France
| | - André Mann
- Laboratoire d’Innovation Thérapeutique,
UMR-7200, CNRS—Université de Strasbourg, 74 Route du Rhin, F-67401 Illkirch, France
| | - Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Maurizio Taddei
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro
2, I-53100 Siena, Italy
| | - Martial Ruat
- CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Signal
Transduction and Developmental Neuropharmacology Team, 1 Avenue de
la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
34
|
Keller M, Bernhardt G, Buschauer A. [3H]UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide Y Y1 Receptors. ChemMedChem 2011; 6:1566-71. [DOI: 10.1002/cmdc.201100197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Indexed: 11/11/2022]
|
35
|
Pluym N, Brennauer A, Keller M, Ziemek R, Pop N, Bernhardt G, Buschauer A. Application of the Guanidine-Acylguanidine Bioisosteric Approach to Argininamide-Type NPY Y2 Receptor Antagonists. ChemMedChem 2011; 6:1727-38. [DOI: 10.1002/cmdc.201100241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Indexed: 11/06/2022]
|
36
|
Weiss S, Bernhardt G, Buschauer A, König B. Synthesis and characterization of DMAP-modified NPY Y1 receptor antagonists as acyl-transfer catalysts. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Starting from the working hypothesis that specific chemical labelling may be an attractive approach to detect and study G protein-coupled receptors (GPCRs) we synthesized catalytically active antagonists of the neuropeptide Y1 receptor (Y1R). An argininamide-type Y1R antagonist scaffold was combined with a DMAP moiety via spacers of different length and chemical nature. These hybrid compounds have Y1R affinities in the two-digit nanomolar range and are capable of catalysing acyl-transfer reaction to surrogates of bionucleophiles, as demonstrated in the absence of cells by using esters of fluorescent dyes as substrates in buffer. By contrast, selective staining of Y1Rs on living MCF-7 cells was not achieved due to significant non-catalysed (Y1R ligand independent) reaction with biomolecules and the limited density of Y1R on the cell surface. Although this may also depend on insufficient selectivity of the staining reagents, the results of this study suggest that the general applicability of catalytic staining to GPCRs has to be reconsidered, as this approach is hampered by a very low portion of receptor of interest compared to the total amount of membrane proteins.
Collapse
|
37
|
Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg Med Chem 2011; 19:2859-78. [DOI: 10.1016/j.bmc.2011.03.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|
38
|
Weiss S, Keller M, Bernhardt G, Buschauer A, König B. NG-Acyl-argininamides as NPY Y1 receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity. Bioorg Med Chem 2010; 18:6292-304. [DOI: 10.1016/j.bmc.2010.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/03/2010] [Accepted: 07/10/2010] [Indexed: 11/30/2022]
|
39
|
Kleinmaier R, Gschwind RM. Chemical shift assignment and conformational analysis of monoalkylated acylguanidines. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:678-684. [PMID: 20641131 DOI: 10.1002/mrc.2648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Monoalkylated acylguanidines are important functional groups in many biologically active compounds and additionally applied in coordination chemistry. Yet a straightforward assignment of the individual NH chemical shifts and the acylguanidine conformations is still missing. Therefore, in this study, NMR spectroscopic approaches for the chemical and especially the conformational assignment of protonated monoalkylated acylguanidines are presented. While NOESY and (3)J(H, H) scalar couplings cannot be applied successfully for the assignment of acylguanidines, (4)J(H, H) scalar couplings in (1)H,(1)H COSY spectra allow for an unambiguous chemical shift and conformational assignment. It is shown that these (4)J(H, H) long-range couplings between individual acylguanidinium NH resonances are observed solely across all-trans (w) pathways. Already one cis orientation in the magnetisation transfer pathway leads to signal intensities below the actual detection limit and significantly lower than cross-peaks from (2)J(NH, NH) couplings or chemical exchange. However, it should be noted that also in the case of conformational exchange being fast on the NMR time scale, averaged cross-peaks from all-trans (4)J(H, H) scalar couplings are detected, which may lead at first glance to an incomplete or even wrong conformational analysis.
Collapse
Affiliation(s)
- Roland Kleinmaier
- Institut für Organische Chemie, Universität Regensburg, D-93053 Regensburg, Germany
| | | |
Collapse
|
40
|
G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proc Natl Acad Sci U S A 2010; 107:10667-72. [PMID: 20498042 DOI: 10.1073/pnas.0912782107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
More selective interactions of nanoparticles with cells would substantially increase their potential for diagnostic and therapeutic applications. Thus, it would not only be highly desirable that nanoparticles can be addressed to any cell with high target specificity and affinity, but that we could unequivocally define whether they rest immobilized on the cell surface as a diagnostic tag, or if they are internalized to serve as a delivery vehicle for drugs. To date no class of targets is known that would allow direction of nanoparticle interactions with cells alternatively into one of these mutually exclusive events. Using MCF-7 breast cancer cells expressing the human Y(1)-receptor, we demonstrate that G protein-coupled receptors provide us with this option. We show that quantum dots carrying a surface-immobilized antagonist remain with nanomolar affinity on the cell surface, and particles carrying an agonist are internalized upon receptor binding. The receptor functions like a logic "and-gate" that grants cell access only to those particles that carry a receptor ligand "and" where the ligand is an agonist. We found that agonist- and antagonist-modified nanoparticles bind to several receptor molecules at a time. This multiligand binding leads to five orders of magnitude increased-receptor affinities, compared with free ligand, in displacement studies. More than 800 G protein-coupled receptors in humans provide us with the paramount advantage that targeting of a plethora of cells is possible, and that switching from cell recognition to cell uptake is simply a matter of nanoparticle surface modification with the appropriate choice of ligand type.
Collapse
|
41
|
Cortes-Salva M, Nguyen BL, Cuevas J, Pennypacker KR, Antilla JC. Copper-Catalyzed Guanidinylation of Aryl Iodides: The Formation of N,N′-Disubstituted Guanidines. Org Lett 2010; 12:1316-9. [DOI: 10.1021/ol1002175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michelle Cortes-Salva
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, and Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Box 8, Tampa, Florida 33612
| | - Be-Lan Nguyen
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, and Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Box 8, Tampa, Florida 33612
| | - Javier Cuevas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, and Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Box 8, Tampa, Florida 33612
| | - Keith R. Pennypacker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, and Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Box 8, Tampa, Florida 33612
| | - Jon C. Antilla
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, and Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Box 8, Tampa, Florida 33612
| |
Collapse
|
42
|
Keller M, Teng S, Bernhardt G, Buschauer A. Bivalent argininamide-type neuropeptide y y(1) antagonists do not support the hypothesis of receptor dimerisation. ChemMedChem 2009; 4:1733-45. [PMID: 19672917 DOI: 10.1002/cmdc.200900213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bivalent ligands are potential tools to investigate the dimerisation of G-protein-coupled receptors. Based on the (R)-argininamide BIBP 3226, a potent and selective neuropeptide Y Y(1) receptor (Y(1)R) antagonist, we prepared a series of bivalent Y(1)R ligands with a wide range of linker lengths (8-36 atoms). Exploiting the high eudismic ratio (>1000) of the parent compound, we synthesised sets of R,R-, R,S- and S,S-configured bivalent ligands to gain insight into the "bridging" of two Y(1)Rs by simultaneous interaction with both binding sites of a putative receptor dimer. Except for the S,S isomers, the bivalent ligands are high-affinity Y(1)R antagonists, as determined by Ca(2+) assays on HEL cells and radioligand competition assays on human Y(1)R-expressing SK-N-MC and MCF-7 cells. Whereas the R,R enantiomers are most potent, no marked differences were observed relative to the corresponding meso forms. The difference between R,R and R,S diastereomers was most pronounced (about sixfold) in the case of the Y(1)R antagonist containing a spacer of 20 atoms in length. Among the R,R enantiomers, linker length and structural diversity had little effect on Y(1)R affinity. Although the bivalent ligands preferentially bind to the Y(1)R, the selectivity toward human Y(2), Y(4), and Y(5) receptors was markedly lower than that of the monovalent argininamides. The results of this study neither support the presence of Y(1)R dimers nor the simultaneous occupation of both binding pockets by the twin compounds. However, as the interaction with Y(1)R dimers cannot be unequivocally ruled out, the preparation of a bivalent radioligand is suggested to determine the ligand-receptor stoichiometry. Aiming at such radiolabelled pharmacological tools, prototype twin compounds were synthesised, containing an N-propionylated amino-functionalised branched linker (K(i)> or =18 nM), a tritiated form of which can be easily prepared.
Collapse
Affiliation(s)
- Max Keller
- Lehrstuhl für Pharmazeutische/Medizinische Chemie II, Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg (Germany)
| | | | | | | |
Collapse
|