1
|
Ha J, Lee S, Park J, Seo J, Kang E, Yoon H, Kim BR, Lee HK, Ryu SE, Cho S. Identification of a novel inhibitor of liver cancer cell invasion and proliferation through regulation of Akt and Twist1. Sci Rep 2021; 11:16765. [PMID: 34408201 PMCID: PMC8373934 DOI: 10.1038/s41598-021-95933-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
When primary cancer faces limited oxygen and nutrient supply, it undergoes an epithelial–mesenchymal transition, which increases cancer cell motility and invasiveness. The migratory and invasive cancer cells often exert aggressive cancer development or even cancer metastasis. In this study, we investigated a novel compound, 3-acetyl-5,8-dichloro-2-((2,4-dichlorophenyl)amino)quinolin-4(1H)-one (ADQ), that showed significant suppression of wound healing and cellular invasion. This compound also inhibited anchorage-independent cell growth, multicellular tumor spheroid survival/invasion, and metalloprotease activities. The anti-proliferative effects of ADQ were mediated by inhibition of the Akt pathway. In addition, ADQ reduced the expression of mesenchymal markers of cancer cells, which was associated with the suppressed expression of Twist1. In conclusion, ADQ successfully suppressed carcinogenic activity by inhibiting the Akt signaling pathway and Twist1, which suggests that ADQ may be an efficient candidate for cancer drug development.
Collapse
Affiliation(s)
- Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jihye Seo
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haelim Yoon
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Kyu Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Yuseong, P.O. Box 107, Daejeon, 34114, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Application of multi-omics technology for the elucidation of anti-pneumococcal activity of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4-one (APDQ) derivative against Streptococcus pneumoniae. Sci Rep 2020; 10:20685. [PMID: 33244098 PMCID: PMC7691496 DOI: 10.1038/s41598-020-77694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae is one of Gram-positive pathogen that causes invasive pneumococcal disease. Nowadays, many S. pneumoniae strains are resistant to commonly used antibiotics such as β-lactams and macrolides. 3-Acyl-2-phenylamino-1,4-dihydroquinolin-4-one (APDQ) derivatives are known as novel chemicals having anti-pneumococcal activity against S. pneumoniae. The underlying mechanism of the anti-pneumococcal activity of this inhibitor remains unknown. Therefore, we tried to find the anti-pneumococcal mechanism of APDQ230122, one of the APDQ derivatives active against S. pneumoniae. We performed transcriptomic analysis (RNA-Seq) and proteomic analysis (LC–MS/MS analysis) to get differentially expressed genes (DEG) and differentially expressed proteins (DEP) of S. pneumoniae 521 treated with sub-inhibitory concentrations of APDQ230122 and elucidated the comprehensive expression changes of genes and proteins using multi-omics analysis. As a result, genes or proteins of peptidoglycan biosynthesis and DNA replication were significantly down-regulated. Electron microscopy analysis revealed that the structure of peptidoglycan was damaged by APDQ230122 in a chemical concentration-dependent manner. Therefore, we suggest peptidoglycan biosynthesis is a major target of APDQ230122. Multi-omics analysis can provide us useful information to elucidate anti-pneumococcal activity of APDQ230122.
Collapse
|
3
|
Yoon JH, Lee JY, Lee J, Shin YS, Jeon S, Kim DE, Min JS, Song JH, Kim S, Kwon S, Jin YH, Jang MS, Kim HR, Park CM. Synthesis and biological evaluation of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives as potential MERS-CoV inhibitors. Bioorg Med Chem Lett 2019; 29:126727. [PMID: 31624041 PMCID: PMC7126094 DOI: 10.1016/j.bmcl.2019.126727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
3-Acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives were synthesized and evaluated to show high anti-MERS-CoV inhibitory activities. Among them, 6,8-difluoro-3-isobutyryl-2-((2,3,4-trifluorophenyl)amino)quinolin-4(1H)-one (6u) exhibits high inhibitory effect (IC50 = 86 nM) and low toxicity (CC50 > 25 μM). Moreover, it shows good metabolic stability, low hERG binding affinity, no cytotoxicity, and good in vivo PK properties.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jun Young Lee
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jihye Lee
- Respiratory Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Young Sup Shin
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Sangeun Jeon
- Respiratory Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Dong Eon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Jung Sun Min
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Sunoh Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Young-Hee Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Min Seong Jang
- Department of Non-Clinical Studies, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, South Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| |
Collapse
|
4
|
Jeon KH, Yu HV, Kwon Y. Hyperactivated m-calpain affects acquisition of doxorubicin resistance in breast cancer cells. Biochim Biophys Acta Gen Subj 2018; 1862:1126-1133. [DOI: 10.1016/j.bbagen.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/26/2017] [Accepted: 02/04/2018] [Indexed: 11/16/2022]
|
5
|
Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway. Oncotarget 2017; 7:30831-44. [PMID: 27121057 PMCID: PMC5058721 DOI: 10.18632/oncotarget.8791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomic analysis of ionomycin-treated and untreated mammary epithelial MCF10A cells elucidated differences in Ku80 cleavage. Ku80, a subunit of the Ku protein complex, is an initiator of the non-homologous, end-joining (NHEJ), double-strand breaks (DSBs) repair pathway. The nuclear Ku80 was cleaved in a calcium concentration-dependent manner by m-calpain but not by m-calpain. The cleavage of nuclear Ku80 at its α/β domain was validated by Western blotting analysis using flag-tagged expression vectors of truncated versions of Ku80 and a flag antibody and was confirmed in m-calpain knock-down cells and in vitro cell-free evaluation with recombinant proteins of calpains, Ku70, and Ku80. In addition, the cleaved Ku80 still formed a Ku heterodimer and promoted DNA DSB repair activity. Taken together, these findings indicate that translocated m-calpain enhances the NHEJ pathway through the cleavage of Ku80. Based on the present study, m-calpain in DNA repair pathways might be a novel anticancer drug target, or its mechanism might be a possible route for resistance acquisition of DNA damage-inducing chemotherapeutics.
Collapse
|
6
|
Funk P, Motyka K, Soural M, Malon M, Koshino H, Kusz J, Hlavac J. Study of 2-aminoquinolin-4(1H)-one under Mannich and retro-Mannich reaction. PLoS One 2017; 12:e0175364. [PMID: 28557987 PMCID: PMC5448738 DOI: 10.1371/journal.pone.0175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/06/2017] [Indexed: 11/27/2022] Open
Abstract
2-Aminoquinolin-4(1H)-one was reacted with various primary/secondary amines and paraformaldehyde under Mannich reaction conditions. In the case of secondary amines, the reaction in N,N-dimethylformamide yielded expected Mannich products accompanied with 3,3'-methylenebis(2-aminoquinolin-4(1H)-one). Except these main products, the pyrimido[4,5-b]quinolin-5-one derivative was also identified as co-product. The reaction with primary amines led to the formation of pyrimido[4,5-b]quinolin-5-ones. The Mannich reaction products were thermally unstable and afforded a mixture of bis-(2-aminoquinolin-4(1H)-one) and tris-(2-aminoquinolin-4(1H)-one) derivative, probably via reactive methylene species. This retro-Mannich reaction was tested in reaction with indole and thiophenole as nucleophilles, and appropriate conjugates were formed. The mechanism of above discussed reactions in which 2-aminoquinolinone displays the nucleophilicity on C3 carbon as well as N2 nitrogen is discussed.
Collapse
Affiliation(s)
- Petr Funk
- Department of Organic Chemistry, Institute of Molecular and Translational Medicine, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Kamil Motyka
- Department of Organic Chemistry, Institute of Molecular and Translational Medicine, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Miroslav Soural
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Joachim Kusz
- Institute of Physics, University of Silesia, Poland
| | - Jan Hlavac
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
7
|
Jantas D, Piotrowski M, Lason W. An Involvement of PI3-K/Akt Activation and Inhibition of AIF Translocation in Neuroprotective Effects of Undecylenic Acid (UDA) Against Pro-Apoptotic Factors-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells. J Cell Biochem 2016; 116:2882-95. [PMID: 26012840 DOI: 10.1002/jcb.25236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 01/29/2023]
Abstract
Undecylenic acid (UDA), a naturally occurring 11-carbon unsaturated fatty acid, has been used for several years as an economical antifungal agent and a nutritional supplement. Recently, the potential usefulness of UDA as a neuroprotective drug has been suggested based on the ability of this agent to inhibit μ-calpain activity. In order to verify neuroprotective potential of UDA, we tested protective efficacy of this compound against cell damage evoked by pro-apoptotic factors (staurosporine and doxorubicin) and oxidative stress (hydrogen peroxide) in human neuroblastoma SH-SY5Y cells. We showed that UDA partially protected SH-SY5Y cells against the staurosporine- and doxorubicin-evoked cell death; however, this effect was not connected with its influence on caspase-3 activity. UDA decreased the St-induced changes in mitochondrial and cytosolic AIF level, whereas in Dox-model it affected only the cytosolic AIF content. Moreover, UDA (1-40 μM) decreased the hydrogen peroxide-induced cell damage which was connected with attenuation of hydrogen peroxide-mediated necrotic (PI staining, ADP/ATP ratio) and apoptotic (mitochondrial membrane potential, caspase-3 activation, AIF translocation) changes. Finally, we demonstrated that an inhibitor of PI3-K/Akt (LY294002) but not MAPK/ERK1/2 (U0126) pathway blocked the protection mediated by UDA in all tested models of SH-SY5Y cell injury. These in vitro data point to UDA as potentially effective neuroprotectant the utility of which should be further validated in animal studies.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marek Piotrowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Wladyslaw Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
8
|
Jeon KH, Lee E, Jun KY, Eom JE, Kwak SY, Na Y, Kwon Y. Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against μ-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation. Eur J Med Chem 2016; 121:433-444. [PMID: 27318120 DOI: 10.1016/j.ejmech.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
A series of chalcone derivatives were synthesized and evaluated for their μ-calpain and cathepsin B inhibitory activities. Among the tested chalcone derivatives, two compounds, 7 and 11, showed potent inhibitory activities against μ-calpain and cathepsin B and were selected for further evaluation. Compounds 7 and 11 showed enzyme inhibitory activities at the cellular level and displayed neuroprotective effects against oxidative stress-induced apoptosis in SH-SY5Y cells, a human neuroblastoma cell line. Moreover, compounds 7 and 11 reduced p25 formation, tau phosphorylation and insoluble Aβ peptide formation. Enzyme kinetic experiments and docking studies revealed that compounds 7 and 11 competitively inhibited both μ-calpain and cathepsin B enzymes.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Eunyoung Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Ji-Eun Eom
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soo Yeon Kwak
- College of Pharmacy, Cha University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, Cha University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
9
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
10
|
Synthesis of 4-quinolones via triflic anhydride-mediated intramolecular Houben-Hoesch reaction of β-arylamino acrylonitriles. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ferlemi AV, Makri OE, Mermigki PG, Lamari FN, Georgakopoulos CD. Quercetin glycosides and chlorogenic acid in highbush blueberry leaf decoction prevent cataractogenesis in vivo and in vitro: Investigation of the effect on calpains, antioxidant and metal chelating properties. Exp Eye Res 2016; 145:258-268. [PMID: 26808488 DOI: 10.1016/j.exer.2016.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 01/09/2023]
Abstract
The present study investigates whether highbush blueberry leaf polyphenols prevent cataractogenesis and the underlying mechanisms. Chlorogenic acid, quercetin, rutin, isoquercetin and hyperoside were quantified in Vaccinium corymbosum leaf decoction (BBL) using HPLC-DAD. Wistar rats were injected subcutaneously with 20 μmol selenite (Na2SeO3)/kg body weight on postnatal (PN) day 10 (Se, n = 8-10/group) only or also intraperitoneally with 100 mg dry BBL/kg body weight on PN days 11 and 12 (SeBBL group, n = 10). Control group received only normal saline (C). Cataract evaluation revealed that BBL significantly prevented lens opacification. It, also, protected lens from selenite oxidative attack and prevented calpain activation, as well as protein loss and aggregation. In vitro studies showed that quercetin attenuated porcine lens turbidity caused by [Formula: see text] or Ca(2+) and interacted efficiently with those ions according to UV-Vis titration experiments. Finally, rutin, isoquercetin and hyperoside moderately inhibited pure human μ-calpain. Conclusively, blueberry leaf extract, a rich source of bioactive polyphenols, prevents cataractogenesis by their strong antioxidant, chelating properties and through direct/indirect inhibition of lens calpains.
Collapse
Affiliation(s)
- Anastasia-Varvara Ferlemi
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Olga E Makri
- Department of Ophthalmology, Medical School, University of Patras, 26504 Patras, Greece
| | - Penelope G Mermigki
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece.
| | | |
Collapse
|
12
|
Mechanism of action of thalassospiramides, a new class of calpain inhibitors. Sci Rep 2015; 5:8783. [PMID: 25740631 PMCID: PMC4350077 DOI: 10.1038/srep08783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic “warheads” in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.
Collapse
|
13
|
Chemical specificity and conformational flexibility in proteinase-inhibitor interaction: scaffolds for promiscuous binding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:151-7. [PMID: 25151636 DOI: 10.1016/j.pbiomolbio.2014.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 11/24/2022]
Abstract
One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein-protein complexes are involved in many essential cellular processes. Interfaces of protein-protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence-structure-function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase-inhibitor protein complexes.
Collapse
|
14
|
Synthesis and investigation of dihydroxychalcones as calpain and cathepsin inhibitors. Bioorg Chem 2013; 51:24-30. [DOI: 10.1016/j.bioorg.2013.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022]
|
15
|
Calpain-1 inhibitors for selective treatment of rheumatoid arthritis: what is the future? Future Med Chem 2013; 5:2057-74. [DOI: 10.4155/fmc.13.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Effective small-molecule treatment of inflammatory diseases remains an unmet need in medicine. Current treatments are either limited in effectiveness or invasive. The latest biologics prevent influx of inflammatory cells to damaged tissue. Calpain-1 is a calcium-activated cysteine protease that plays an important role in neutrophil motility. It is, therefore, a potential target for intervention in inflammatory disease. Many inhibitors of calpains have been developed but most are unselective and so unsuitable for drug use. However, recent series of α-mercaptoacrylate inhibitors target regulatory domains of calpain-1 and are much more specific. These compounds are effective in impairing the cell spreading mechanism of neutrophils in vitro and raise the possibility of treating rheumatoid arthritis with a pill; however, challenges still remain. Improved bioavailability is needed and solution of their precise mode of action should prompt the development of specific calpain-1 screens for novel classes of inhibitors.
Collapse
|
16
|
Chalcones, inhibitors for topoisomerase I and cathepsin B and L, as potential anti-cancer agents. Bioorg Med Chem Lett 2013; 23:3320-4. [DOI: 10.1016/j.bmcl.2013.03.106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/18/2022]
|
17
|
Lee E, Eom JE, Kim HL, Baek KH, Jun KY, Kim HJ, Lee M, Mook-Jung I, Kwon Y. Effect of conjugated linoleic acid, μ-calpain inhibitor, on pathogenesis of Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:709-18. [PMID: 23246577 DOI: 10.1016/j.bbalip.2012.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022]
Abstract
μ-Calpain is a calcium-dependent cysteine protease, which is activated by μM concentration of calcium in vitro. Disrupted intracellular calcium homeostasis leads to hyper-activation of μ-calpain. Hyper-activated μ-calpain enhances the accumulation of β-amyloid peptide by increasing the expression level of β-secretase (BACE1) and induces hyper-phosphorylation of tau along with the formation of neurofibrillary tangle by mediating p35 cleavage into p25, both of which are the major mechanisms of neurodegeneration in Alzheimer's disease (AD). Hence, inhibition of μ-calpain activity is very important in the treatment and prevention of AD. In this study, conjugated linoleic acid (CLA), an eighteen-carbon unsaturated fatty acid, was discovered as a μ-calpain-specific inhibitor. CLA showed neuroprotective effects against neurotoxins such as H2O2 and Aβ1-42 in SH-SY5Y cells, and inhibited Aβ oligomerization/fibrillation and Aβ-induced Zona Occludens-1 degradation. In addition, CLA decreased the levels of proapoptotic proteins, p35 conversion to p25 and tau phosphorylation. These findings implicate CLA as a new core structure for selective μ-calpain inhibitors with neuroprotective effects. CLA should be further evaluated for its potential use as an AD therapeutic agent.
Collapse
Affiliation(s)
- Eunyoung Lee
- College of Pharmacy, Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee E, Eom JE, Kim HL, Kang DH, Jun KY, Jung DS, Kwon Y. Neuroprotective effect of undecylenic acid extracted from Ricinus communis L. through inhibition of μ-calpain. Eur J Pharm Sci 2012; 46:17-25. [DOI: 10.1016/j.ejps.2012.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
|
19
|
A facile synthesis of emodin derivatives, emodin carbaldehyde, citreorosein, and their 10-deoxygenated derivatives and their inhibitory activities on μ-calpain. Arch Pharm Res 2012; 35:447-54. [DOI: 10.1007/s12272-012-0307-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/08/2011] [Accepted: 08/16/2011] [Indexed: 10/28/2022]
|
20
|
Lee EY, Jang IH, Shin MJ, Cho HJ, Kim JS, Eom JE, Kwon YJ, Na YH. Chalcones as Novel Non-peptidic μ-Calpain Inhibitors. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.9.3459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Moon IS, So JH, Jung YM, Lee WS, Kim EY, Choi JH, Kim CH, Choi JY. Fucoidan promotes mechanosensory hair cell regeneration following amino glycoside-induced cell death. Hear Res 2011; 282:236-42. [PMID: 21810458 DOI: 10.1016/j.heares.2011.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/07/2011] [Accepted: 07/15/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Lateral line system of the zebrafish is a useful model for study of hair cell toxicity and regeneration. We found that low molecular weight fucoidan (LMWF) stimulated the regeneration of mechanosensory hair cells after neomycin-induced cell death in zebrafish lateral line. The aims of this study were to quantify the regenerative effects of LMWF and determine their relationship to the Notch and FGF signaling pathways. METHODS Wild-type zebrafish and three different transgenic zebrafish lines (Pou4f3::GFP, scm1::GFP, and ET20::GFP) were used. At 4.5-6 days post-fertilization, lateral line hair cells of larvae were eliminated using neomycin (500 μM). Larvae were then treated with LMWF. Neuromasts were observed using confocal microscopy. Stereocilia morphology was observed using scanning electron microscopy, and the location and status of regeneration was assessed using 5-bromo-2-deoxyuridine (BrdU) incorporation. RESULTS Hair cells damaged by neomycin treatment regenerated faster in wild-type and Pou4f3::GFP larvae treated with LMWF (50 μg/ml) than in untreated controls. LMWF also enhanced the regeneration of supporting cells in scm1::GFP and ET20::GFP larvae. Increased numbers of BrdU-labeled cells were found after LMWF treatment in neuromast regions corresponding to internal and peripheral supporting cells. The effect of LMWF was mimicked by the Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT), but the effects of LMWF and DAPT were not additive. CONCLUSION LMWF enhances the regeneration of hair cells damaged by neomycin. The mechanism may involve the Notch signaling pathway. LMWF shows promise as a therapeutic agent for hearing and balance disorders.
Collapse
Affiliation(s)
- In Seok Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 2011; 21:601-36. [DOI: 10.1517/13543776.2011.568480] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|