1
|
Hirose M, Yokoo R, Watanabe D, Suzuki R, Tanigawa M, Usuki T. Synthesis of Multi‐Deuterated Desmosine. ChemistrySelect 2020. [DOI: 10.1002/slct.202000507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mika Hirose
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Reiko Yokoo
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Daisuke Watanabe
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Rina Suzuki
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Miho Tanigawa
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| |
Collapse
|
2
|
Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodríguez E, Fernández-Fernández C, Donapetry-García C, Domínguez-Montero A. Insulin resistance and glycine metabolism in humans. Amino Acids 2017; 50:11-27. [PMID: 29094215 DOI: 10.1007/s00726-017-2508-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Abstract
Plasma glycine level is low in patients with obesity or diabetes and the improvement of insulin resistance increases plasma glycine concentration. In prospective studies, hypoglycinemia at baseline predicts the risk of developing type 2 diabetes and higher serum glycine level is associated with decreased risk of incident type 2 diabetes. Consistently, plasma glycine concentration is lower in the lean offspring of parents with type 2 diabetes compared to healthy subjects. Among patients with type 2 diabetes, hypoglycinemia occurs before clinical manifestations of the disease, but the pathophysiological mechanisms underlying glycine deficit and its potential clinical repercussions are unclear. Glycine participates in several metabolic pathways, being required for relevant human physiological processes. Humans synthesize glycine from glyoxylate, glucose (via serine), betaine and likely from threonine and during the endogenous synthesis of L-carnitine. Glycine conjugates bile acids and other acyl moieties producing acyl-glycine derivatives. The glycine cleavage system catalyzes glycine degradation to carbon dioxide and ammonium while tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. Glycine is utilized to synthesize serine, sarcosine, purines, creatine, heme group, glutathione, and collagen. Glycine is a major quantitative component of collagen. In addition, the role of glycine maintaining collagen structure is critical, as glycine residues are required to stabilize the triple helix of the collagen molecule. This quality of glycine likely contributes to explain the occurrence of medial arterial calcification and the elevated cardiovascular risk associated with diabetes and chronic kidney disease, as emerging evidence links normal collagen content with the initiation and progression of vascular calcification in humans.
Collapse
Affiliation(s)
- M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain.
| | - G Souto-Adeva
- National Institutes of Health, National Institute of Arthritis and Metabolic Diseases, Bethesda, USA
| | - E Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Fernández-Fernández
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Donapetry-García
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - A Domínguez-Montero
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
3
|
Yavuz S, Çetin A, Akdemir A, Doyduk D, Dişli A, Çelik Turgut G, Şen A, Yıldırır Y. Synthesis and Functional Investigations of Computer Designed Novel Cladribine-Like Compounds for the Treatment of Multiple Sclerosis. Arch Pharm (Weinheim) 2017; 350. [PMID: 28960496 DOI: 10.1002/ardp.201700185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/08/2022]
Abstract
Cladribine (2-CdA) is used as an anti-cancer drug but is currently studied as a potential treatment for use in relapsing-remitting multiple sclerosis (MS). In this study, we computer designed, synthesized, and characterized two novel derivatives of 2-CdA, K1-5d and K2-4c, and investigated their underlying mechanism of beneficial effect using the CCRF-CEM and RAJI cell lines. For this purpose, we first determined their effect on MS and DNA damage and repair-related gene expression profiles using custom arrays along with 2-CdA treatment at non-toxic doses. Then, we determined whether cells underwent apoptosis after treatment with 2-CdA, K1-5d, and K2-4c in CCRF-CEM and RAJI cells, using the DNA fragmentation assay. It was found that both derivatives modulated the expression of the pathway-related genes that are important in inflammatory signaling, apoptosis, ATM/ATR, double-strand break repair, and the cell cycle. Furthermore, 2-CdA, K1-5d, and K2-4c significantly activated apoptosis in both cell lines. In summary, our data demonstrate that although both derivatives act as anti-inflammatory and apoptotic agents, inducing the accumulation of DNA strand breaks and activating the ultimate tumor suppressor p53 in T and B lymphocytes, the K1-5d derivative has shown more promising activities for further studies.
Collapse
Affiliation(s)
- Serkan Yavuz
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| | - Aysu Çetin
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakıf University, İstanbul, Turkey
| | - Doğukan Doyduk
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| | - Ali Dişli
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| | - Gurbet Çelik Turgut
- Faculty of Arts and Sciences, Department of Biology, Pamukkale University, Kınıklı, Denizli, Turkey
| | - Alaattin Şen
- Faculty of Arts and Sciences, Department of Biology, Pamukkale University, Kınıklı, Denizli, Turkey
| | - Yılmaz Yıldırır
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Burgos ES, Walters RO, Huffman DM, Shechter D. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting. Chem Sci 2017; 8:6601-6612. [PMID: 29449933 PMCID: PMC5676521 DOI: 10.1039/c7sc02830j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/25/2017] [Indexed: 01/02/2023] Open
Abstract
Methyltransferases use S-adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo, we report a highly-sensitive one-step deaminase-linked continuous assay where the S-adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S-inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N-methyltransferase (DIM-5) and a sarcosine/dimethylglycine N-methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S-8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h-1, thus making it possible to quantify low nanomolar concentrations of glycine N-methyltransferase within crude biological samples. With Z'-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA . ; ; ; Tel: +1-718-430-4120 ; Tel: +1-718-430-4128
| | - Ryan O Walters
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Medicine , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Institute for Aging Research , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA
| | - Derek M Huffman
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Medicine , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Institute for Aging Research , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA
| | - David Shechter
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA . ; ; ; Tel: +1-718-430-4120 ; Tel: +1-718-430-4128
| |
Collapse
|
5
|
Block E, Booker SJ, Flores-Penalba S, George GN, Gundala S, Landgraf BJ, Liu J, Lodge SN, Pushie MJ, Rozovsky S, Vattekkatte A, Yaghi R, Zeng H. Trifluoroselenomethionine: A New Unnatural Amino Acid. Chembiochem 2016; 17:1738-51. [PMID: 27383291 PMCID: PMC5373900 DOI: 10.1002/cbic.201600266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Indexed: 11/10/2022]
Abstract
Trifluoroselenomethionine (TFSeM), a new unnatural amino acid, was synthesized in seven steps from N-(tert-butoxycarbonyl)-l-aspartic acid tert-butyl ester. TFSeM shows enhanced methioninase-induced cytotoxicity, relative to selenomethionine (SeM), toward HCT-116 cells derived from human colon cancer. Mechanistic explanations for this enhanced activity are computationally and experimentally examined. Comparison of TFSeM and SeM by selenium EXAFS and DFT calculations showed them to be spectroscopically and structurally very similar. Nonetheless, when two different variants of the protein GB1 were expressed in an Escherichia coli methionine auxotroph cell line in the presence of TFSeM and methionine (Met) in a 9:1 molar ratio, it was found that, surprisingly, 85 % of the proteins contained SeM residues, even though no SeM had been added, thus implying loss of the trifluoromethyl group from TFSeM. The transformation of TFSeM into SeM is enzymatically catalyzed by E. coli extracts, but TFSeM is not a substrate of E. coli methionine adenosyltransferase.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA.
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, 302 Chemistry Building, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sonia Flores-Penalba
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Sivaji Gundala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
| | - Bradley J Landgraf
- Department of Chemistry, The Pennsylvania State University, 302 Chemistry Building, University Park, PA, 16802, USA
| | - Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Stephene N Lodge
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
| | - M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
- College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA.
| | - Abith Vattekkatte
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knoll Strasse 8, 07745, Jena, Germany
| | - Rama Yaghi
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
- Atlanta Metropolitan State College, 1630 Metropolitan Parkway SW, Atlanta, GA, 30310, USA
| | - Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA
| |
Collapse
|
6
|
Mládková J, Hladílková J, Diamond CE, Tryon K, Yamada K, Garrow TA, Jungwirth P, Koutmos M, Jiráček J. Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S
-methyltransferase. Proteins 2014; 82:2552-64. [DOI: 10.1002/prot.24619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/24/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Jana Mládková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2, 166 10 Prague 6 Czech Republic
| | - Jana Hladílková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2, 166 10 Prague 6 Czech Republic
| | - Carrie E. Diamond
- Department of Food Science and Human Nutrition; University of Illinois; Urbana Illinois 61801
| | - Katherine Tryon
- Department of Food Science and Human Nutrition; University of Illinois; Urbana Illinois 61801
| | - Kazuhiro Yamada
- Department of Biochemistry and Molecular Biology; Uniformed Services University of the Health Sciences; Bethesda Maryland 20814
| | - Timothy A. Garrow
- Department of Food Science and Human Nutrition; University of Illinois; Urbana Illinois 61801
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2, 166 10 Prague 6 Czech Republic
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology; Uniformed Services University of the Health Sciences; Bethesda Maryland 20814
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2, 166 10 Prague 6 Czech Republic
| |
Collapse
|
7
|
Pícha J, Vaněk V, Buděšínský M, Mládková J, Garrow TA, Jiráček J. The development of a new class of inhibitors for betaine-homocysteine S-methyltransferase. Eur J Med Chem 2013; 65:256-75. [DOI: 10.1016/j.ejmech.2013.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/12/2023]
|
8
|
Mládková J, Vaněk V, Buděšínský M, Elbert T, Demianová Z, Garrow TA, Jiráček J. Double-headed sulfur-linked amino acids as first inhibitors for betaine-homocysteine S-methyltransferase 2. J Med Chem 2012; 55:6822-31. [PMID: 22775318 DOI: 10.1021/jm300571h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Betaine-homocysteine S-methyltransferase 2 (BHMT-2) catalyzes the transfer of a methyl group from S-methylmethionine to l-homocysteine, yielding two molecules of l-methionine. It is one of three homocysteine methyltransferases in mammals, but its overall contribution to homocysteine remethylation and sulfur amino acid homeostasis is not known. Moreover, recombinant BHMT-2 is highly unstable, which has slowed research on its structural and catalytic properties. In this study, we have prepared the first series of BHMT-2 inhibitors to be described, and we have tested them with human recombinant BHMT-2 that has been stabilized by copurification with human recombinant BHMT. Among the compounds synthesized, (2S,8RS,11RS)-5-thia-2,11-diamino-8-methyldodecanedioic acid (11) was the most potent (K(i)(app) ∼77 nM) and selective inhibitor of BHMT-2. Compound 11 only weakly inhibited human BHMT (IC(50) about 77 μM). This compound (11) may be useful in future in vivo studies to probe the physiological significance of BHMT-2 in sulfur amino acid metabolism.
Collapse
Affiliation(s)
- Jana Mládková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Kořínek M, Sístek V, Mládková J, Mikeš P, Jiráček J, Selicharová I. Quantification of homocysteine-related metabolites and the role of betaine-homocysteine S-methyltransferase in HepG2 cells. Biomed Chromatogr 2012; 27:111-21. [PMID: 22653757 DOI: 10.1002/bmc.2755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/02/2012] [Accepted: 04/23/2012] [Indexed: 11/11/2022]
Abstract
We optimized and validated a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of six metabolites of homocysteine metabolism: homocysteine, methionine, cysteine, S-adenosylmethionine, S-adenosylhomocysteine and betaine. The detection limits for these metabolites were in the nanomolar range, and the intra- and inter-day precisions were lower than 20% of the relative standard deviations. The method was specifically designed for the determination of the intracellular concentrations of the metabolites in cultured cells. To study the role of betaine-homocysteine S-methyltransferase (BHMT), HepG2 cells and HepG2 cells that were stably transfected with BHMT ((BHMT) HepG2) were treated with homocysteine or with a specific inhibitor of BHMT, and metabolite levels were subsequently measured. Severely compromised methyl group metabolism in the HepG2 cells, which is typical of cancer-derived cells, prevented clear evaluation of the changes caused by the external manipulations of homocysteine metabolism. However, the ease of handling these cells and the almost unlimited source of experimental material supplied by cells in permanent culture allowed us to develop a reliable methodology. The precautions concerning intracellular metabolite determinations using LC-MS/MS in cultured cells that are expressed in this work will have global validity for future metabolomics studies.
Collapse
Affiliation(s)
- Marek Kořínek
- Apigenex s.r.o., Poděbradská 186/56, Prague 9, Czech Republic
| | | | | | | | | | | |
Collapse
|