1
|
Romanucci V, Pagano R, Kandhari K, Zarrelli A, Petrone M, Agarwal C, Agarwal R, Di Fabio G. 7- O-tyrosyl Silybin Derivatives as a Novel Set of Anti-Prostate Cancer Compounds. Antioxidants (Basel) 2024; 13:418. [PMID: 38671866 PMCID: PMC11047488 DOI: 10.3390/antiox13040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Silybin is a natural compound extensively studied for its hepatoprotective, neuroprotective and anticancer properties. Envisioning the enhancement of silybin potential by suitable modifications in its chemical structure, here, a series of new 7-O-alkyl silybins derivatives were synthesized by the Mitsunobu reaction starting from the silybins and tyrosol-based phenols, such as tyrosol (TYR, 3), 3-methoxytyrosol (MTYR, 4), and 3-hydroxytyrosol (HTYR, 5). This research sought to explore the antioxidant and anticancer properties of eighteen new derivatives and their mechanisms. In particular, the antioxidant properties of new derivatives outlined by the DPPH assay showed a very pronounced activity depending on the tyrosyl moiety (HTYR > MTYR >> TYR). A significant contribution of the HTYR moiety was observed for silybins and 2,3-dehydro-silybin-based derivatives. According to the very potent antioxidant activity, 2,3-dehydro-silybin derivatives 15ab, 15a, and 15b exerted the most potent anticancer activity in human prostate cancer PC-3 cells. Furthermore, flow cytometric analysis for cell cycle and apoptosis revealed that 15ab, 15a, and 15b induce strong G1 phase arrest and increase late apoptotic population in PC-3 cells. Additionally, Western blotting for apoptotic marker cleaved caspase-3 confirmed apoptosis induction by these silybin derivatives in PC-3 cells. These findings hold significant importance in the investigation of anticancer properties of silybin derivatives and strongly encourage swift investigation in pre-clinical models and clinical trials.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Rita Pagano
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.K.); (C.A.); (R.A.)
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Maria Petrone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.K.); (C.A.); (R.A.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.K.); (C.A.); (R.A.)
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Monte Sant’Angelo, Via Cintia 4, I-80126 Napoli, Italy; (V.R.); (R.P.); (A.Z.); (M.P.)
| |
Collapse
|
2
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Matsuoka T, Hattori A, Oishi S, Araki M, Ma B, Fujii T, Arichi N, Okuno Y, Kakeya H, Yamasaki S, Ohno H, Inuki S. Establishment of an MR1 Presentation Reporter Screening System and Identification of Phenylpropanoid Derivatives as MR1 Ligands. J Med Chem 2023; 66:12520-12535. [PMID: 37638616 DOI: 10.1021/acs.jmedchem.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are modulated by ligands presented on MHC class I-related proteins (MR1). These cells have attracted attention as potential drug targets because of their involvement in the initial response to infection and various disorders. Herein, we have established the MR1 presentation reporter assay system employing split-luciferase, which enables the efficient exploration of MR1 ligands. Using our screening system, we identified phenylpropanoid derivatives as MR1 ligands, including coniferyl aldehyde, which have an ability to inhibit the MR1-MAIT cell axis. Further, the structure-activity relationship study of coniferyl aldehyde analogs revealed the key structural features of ligands required for MR1 recognition. These results will contribute to identifying a broad range of endogenous and exogenous MR1 ligands and to developing novel MAIT cell modulators.
Collapse
Affiliation(s)
- Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Hattori
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Biao Ma
- RIKEN Center for Computational Science, Chuo-ku, Kobe 650-0047, Japan
| | - Toshiki Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- RIKEN Center for Computational Science, Chuo-ku, Kobe 650-0047, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Jiang P, Luo J, Jiang Y, Zhang L, Jiang L, Teng B, Niu H, Zhang D, Lei H. Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2. Mar Drugs 2022; 20:711. [PMID: 36421989 PMCID: PMC9697532 DOI: 10.3390/md20110711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2024] Open
Abstract
Five undescribed polyketide derivatives, pestaloketides A-E (1-5), along with eleven known analogues (6-16), were isolated from the sponge-derived fungus Pestalotiopsis sp. Their structures, including absolute configurations, were elucidated by analyses of NMR spectroscopic HRESIMS data and electronic circular dichroism (ECD) calculations. Compounds 5, 6, 9, and 14 exhibited weak cytotoxicities against four human cancer cell lines, with IC50 values ranging from 22.1 to 100 μM. Pestaloketide A (1) is an unusual polyketide, featuring a rare 5/10/5-fused ring system. Pestaloketides A (1) and B (2) exhibited moderately inhibited LPS-induced NO production activity, with IC50 values of 23.6 and 14.5 μM, respectively, without cytotoxicity observed. Preliminary bioactivity evaluations and molecular docking analysis indicated that pestaloketides A (1) and B (2) had the potential to be developed into anti-inflammatory activity drug leads.
Collapse
Affiliation(s)
- Peng Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yao Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Liyuan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Baorui Teng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Synthesis and antitumor activity of novel silibinin and 2,3-dehydrosilybin derivatives with carbamate groups. Med Chem Res 2022; 31:533-544. [PMID: 35194363 PMCID: PMC8853087 DOI: 10.1007/s00044-022-02854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
Abstract
A novel series of silibinin and 2,3-dehydrosilybin derivatives bearing carbamate groups were designed, synthesized and their in vitro anticancer activities were screened against human cancer cell lines including MCF-7, NCI-H1299, HepG2 and HT29 by CCK-8 assay. The results showed that most of the compounds significantly suppressed the proliferation of tested cancer cells. Among them, compounds 2h, 3h and 3f demonstrated markedly higher antiproliferative activity on MCF-7 cells with IC50 values of 2.08, 5.54 and 6.84 µM, respectively. Compounds 3e, 3g and 2g displayed better cytotoxic activity against NCI-H1299 cells with IC50 values of 8.07, 8.45 and 9.09 µM, respectively. Compounds 3g, 3c and 3h exhibited a promising inhibitory effect against HepG2 cells with IC50 values of 8.88, 9.47 and 9.99 µM, respectively. Compounds 3e, 2e and 3c revealed effective biological potency on HT29 cells with IC50 values of 6.27, 9.13 and 9.32 µM, respectively. In addition, the outcomes of the docking studies between compounds 2f, 2h, 3e, 3g and Hsp90 receptor (PDB ID: 4AWO) suggest the possible mechanism of inhibition against MCF-7 cell lines. Graphical abstract ![]()
Collapse
|
7
|
Wu S, Chen G, Zhang Q, Wang G, Chen QH. 3- O-Carbamoyl-5,7,20- O-trimethylsilybins: Synthesis and Preliminary Antiproliferative Evaluation. Molecules 2021; 26:6421. [PMID: 34770829 PMCID: PMC8588252 DOI: 10.3390/molecules26216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure-activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2-C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3',4',5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11-0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; (Q.Z.); (G.W.)
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; (Q.Z.); (G.W.)
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| |
Collapse
|
8
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
9
|
Zhou L, Shi X, Yin H, Huang Y, Wang R, Ma L. Design, Synthesis and Biological Evaluation of Nobiletin Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease. ChemistrySelect 2021. [DOI: 10.1002/slct.202004239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Licheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
10
|
Schultze C, Foß S, Schmidt B. 8‐Prenylflavanones through Microwave Promoted Tandem Claisen Rearrangement/6‐
endo
‐trig Cyclization and Cross Metathesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christiane Schultze
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| | - Stefan Foß
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| | - Bernd Schmidt
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| |
Collapse
|
11
|
Mizuno M, Mori K, Tsuchiya K, Takaki T, Misawa T, Demizu Y, Shibanuma M, Fukuhara K. Design, Synthesis, and Biological Activity of Conformationally Restricted Analogues of Silibinin. ACS OMEGA 2020; 5:23164-23174. [PMID: 32954167 PMCID: PMC7495755 DOI: 10.1021/acsomega.0c02936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 05/12/2023]
Abstract
Silibinin (Sib), one of the main components of milk thistle extract, has attracted considerable attention because of its various biological activities, which include antioxidant activity and potential effects in diabetes and Alzheimer's disease (AD). In a previous study, we synthesized catechin analogues by constraining the geometries of (+)-catechin and (-)-epicatechin. The constrained analogues exhibited enhanced bioactivities, with the only major difference between the two being their three-dimensional structures. The constrained geometry in (+)-catechin resulted in a high degree of planarity (PCat), while (-)-epicatechin failed to maintain planarity (PEC). The three-dimensional structure of Sib may be related to its ability to inhibit aggregation of amyloid beta (Aβ). We therefore introduced PCat and PEC into Sib to demonstrate how the constrained molecular geometry and differences in three-dimensional structures may enhance such activities. Introduction of PCat into Sib (SibC) resulted in effective inhibition of Aβ aggregation, α-glucosidase activity, and cell growth, suggesting that not only reduced flexibility but also the high degree of planarity may enhance the biological activity. SibC is expected to be a promising lead compound for the treatment of several diseases.
Collapse
Affiliation(s)
- Mirei Mizuno
- Division
of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazunori Mori
- Division
of Cancer Cell Biology, School of Pharmacy, Showa University, 1-5-8
Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Keisuke Tsuchiya
- Division
of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26
Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Takashi Takaki
- Division
of Electron Microscopy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Misawa
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26
Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26
Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Motoko Shibanuma
- Division
of Cancer Cell Biology, School of Pharmacy, Showa University, 1-5-8
Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kiyoshi Fukuhara
- Division
of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
12
|
Jiang Z, Sekhon A, Oka Y, Chen G, Alrubati N, Kaur J, Orozco A, Zhang Q, Wang G, Chen QH. 23- O-Substituted-2,3-Dehydrosilybins Selectively Suppress Androgen Receptor-Positive LNCaP Prostate Cancer Cell Proliferation. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20922326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As part of our ongoing project to search for natural product-based antiandrogens, nine derivatives of 2,3-dehydrosilybin have been synthesized for the evaluation of its antiproliferative activity in an androgen receptor-positive prostate cancer cell model. Specifically, 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin was synthesized through two approaches, and eight 23- O-substituted-3,5,7,20- O-tetramethyl-2,3-dehydrosilybins were achieved from 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin. The antiproliferative potency of 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin and its eight derivatives were assessed in an androgen receptor (AR)-positive LNCaP prostate cancer cell line, as well as in two AR-negative (PC-3 and DU145) prostate cancer cell models as a comparison. Our WST cell proliferation assay data indicate 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin and most of its 23- O-substituents can selectively inhibit AR-positive LNCaP prostate cancer cell proliferation. Our data suggest that 3,5,7,20- O-tetramethyl-2,3-dehydrosilibins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ziran Jiang
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Arman Sekhon
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Yogeshwari Oka
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Nagat Alrubati
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Jasleen Kaur
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Alexia Orozco
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, CA, USA
| |
Collapse
|
13
|
Batchu VR, Macha L, Dorigundla AR, Gurrapu R, Vanka US. Total Synthesis of the Natural Products Ulmoside A and (2R,3R)-Taxifolin-6-C-β-d-glucopyranoside. Synlett 2020. [DOI: 10.1055/s-0040-1707971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An efficient first total synthesis of highly polar ulmoside A and (2R,3R)-taxifolin-6-C-β-d-glucopyranoside, useful for the prevention of metabolic disorders, has been described. Key elements of the synthesis include a Sc(OTf)3-catalyzed regio- and stereoselective C-glycosidation on taxifolin in 35% yield with d-glucose and chiral semipreparative reverse-phase high-performance liquid chromatography (HPLC) for the separation of both taxifolins and the diastereomeric mixture of taxifolin-6-C-β-d-glucopyranosides. Correlation of the analytical data of synthetic ulmoside A and its diastereomer with a natural ulmoside A sample confirmed the assigned absolute stereochemistry of the natural products.
Collapse
Affiliation(s)
- Venkateswara Rao Batchu
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology,
- Academy of Scientific and Innovative Research
| | - Lingamurthy Macha
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology,
| | - Aravind Reddy Dorigundla
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology,
- Academy of Scientific and Innovative Research
| | - Raju Gurrapu
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology,
| | | |
Collapse
|
14
|
Structure-activity relationship studies of (E)-3,4-dihydroxystyryl alkyl sulfones as novel neuroprotective agents based on improved antioxidant, anti-inflammatory activities and BBB permeability. Eur J Med Chem 2019; 171:420-433. [DOI: 10.1016/j.ejmech.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 01/30/2023]
|
15
|
Pilkington LI, Wagoner J, Kline T, Polyak SJ, Barker D. 1,4-Benzodioxane Lignans: An Efficient, Asymmetric Synthesis of Flavonolignans and Study of Neolignan Cytotoxicity and Antiviral Profiles. JOURNAL OF NATURAL PRODUCTS 2018; 81:2630-2637. [PMID: 30485098 DOI: 10.1021/acs.jnatprod.8b00416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
1,4-Benzodioxane lignans are a class of bioactive compounds that have received much attention through the years. Herein research pertaining to both 1,4-benzodioxane flavonolignans and 1,4-benzodioxane neolignans is presented. A novel synthesis of both traditional 1,4-benzodioxane flavonolignans and 3-deoxyflavonolignans is described. The antiviral and cytotoxic activities of 1,4-benzodioxane neolignans were then investigated; eusiderins A, B, G, and M, deallyl eusiderin A, and nitidanin, which contain the 1,4-benzodioxane motif but lack the chromanone motif found in the known antiviral flavonolignans, were tested. Notably, it was found that all eusiderin 1,4-benzodioxane neolignans exhibited greater antiviral activity than the potent and well-known silybin flavonolignans. While most modifications of the C-1' side chain did not significantly alter the cytotoxicity or antiviral activity, eusiderin M and nitidanin, which contain an allylic alcohol side chain, had lower cytotoxicity. All the eusiderins had similar antiviral activities, with eusiderin B having the best selectivity index. These results show that the chromanone moiety of the flavonolignans is not essential for bioactivity.
Collapse
Affiliation(s)
- Lisa I Pilkington
- School of Chemical Sciences , University of Auckland , 23 Symonds Street , Auckland 1142 , New Zealand
| | | | | | | | - David Barker
- School of Chemical Sciences , University of Auckland , 23 Symonds Street , Auckland 1142 , New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology , New Zealand
| |
Collapse
|
16
|
Vue B, Zhang S, Vignau A, Chen G, Zhang X, Diaz W, Zhang Q, Zheng S, Wang G, Chen QH. O-Aminoalkyl- O-Trimethyl-2,3-Dehydrosilybins: Synthesis and In Vitro Effects Towards Prostate Cancer Cells. Molecules 2018; 23:molecules23123142. [PMID: 30501133 PMCID: PMC6320956 DOI: 10.3390/molecules23123142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
As part of our ongoing silybin project, this study aims to introduce a basic nitrogen-containing group to 7-OH of 3,5,20-O-trimethyl-2,3-dehydrosilybin or 3-OH of 5,7,20-O-trimethyl-2,3-dehydrosilybin via an appropriate linker for in vitro evaluation as potential anti-prostate cancer agents. The synthetic approaches to 7-O-substituted-3,5,20-O-trimethyl-2,3-dehydrosilybins through a five-step procedure and to 3-O-substituted-5,7,20-O-trimethyl-2,3- dehydrosilybins via a four-step transformation have been developed. Thirty-two nitrogen-containing derivatives of silybin have been achieved through these synthetic methods for the evaluation of their antiproliferative activities towards both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145) using the WST-1 cell proliferation assay. These derivatives exhibited greater in vitro antiproliferative potency than silibinin. Among them, 11, 29, 31, 37, and 40 were identified as five optimal derivatives with IC50 values in the range of 1.40⁻3.06 µM, representing a 17- to 52-fold improvement in potency compared to silibinin. All these five optimal derivatives can arrest the PC-3 cell cycle in the G₀/G₁ phase and promote PC-3 cell apoptosis. Derivatives 11, 37, and 40 are more effective than 29 and 31 in activating PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Andre Vignau
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - William Diaz
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
17
|
Sadeghian H, Seyedi SM, Jafari Z. Design and synthesis of new esters of terpenoid alcohols as 15-lipoxygenase inhibitors. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:738-744. [PMID: 30140414 PMCID: PMC6098951 DOI: 10.22038/ijbms.2018.27910.6794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective(s): 15-Lipoxygenases are one of the iron-containing proteins capable of performing peroxidation of unsaturated fatty acids in animals and plants. The critical role of enzymes in the formation of inflammations, sensitivities, and some cancers has been demonstrated in mammals. The importance of enzymes has led to the development of mechanistic studies, product analysis, and synthesis of inhibitors. Materials and Methods: The inhibitory activity of all synthetic compounds against SLO (soybean 15-lipoxygenase: L1; EC 1,13,11,12) was determined using the peroxide formation method. In this method, the basis of evaluation of lipoxygenase activity is measuring the concentration of fatty acid peroxide. All measurements were compared with 4-methyl-2-(4-methylpiperazinyl)pyrimido[4,5-b]benzothiazine (4-MMPB) as one of the known lipoxygenase inhibitors. The radical scavenging ability of all synthetic compounds using stable free radicals (DPPH: 2,2-diphenyl-1-picrylhydrazyl) was measured for further investigation. Results: In this study, a series of esters from phenolic acids with terpenoid alcohols was synthesized and their inhibitory potency against soybean 15-lipoxygenase and their free radical scavenging properties were determined. Among the synthetic compounds, adamantyl protocatetuate 2j and bornyl protocatetuate 2o showed the most potent inhibitory activity with IC50 values of 0.95 and 0.78 μm, respectively. Conclusion: By changing the alcohol and acyl portions of stylosin, it was found that electronic properties play main role in lipoxygenase inhibition potency in contrast with steric features. Insertion of more reductive phenolic moiety such as catechuate and gallate lead to more lipoxygenase inhibition potency of the esters as observed in their radical scavenging activity.
Collapse
Affiliation(s)
- Hamid Sadeghian
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Seyedi
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Jafari
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Schramm S, Huang G, Gunesch S, Lang F, Roa J, Högger P, Sabaté R, Maher P, Decker M. Regioselective synthesis of 7-O-esters of the flavonolignan silibinin and SARs lead to compounds with overadditive neuroprotective effects. Eur J Med Chem 2018; 146:93-107. [PMID: 29407994 DOI: 10.1016/j.ejmech.2018.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
A series of neuroprotective hybrid compounds was synthesized by conjugation of the flavonolignan silibinin with natural phenolic acids, such as ferulic, cinnamic and syringic acid. Selective 7-O-esterfication without protection groups was achieved by applying the respective acyl chlorides. Sixteen compounds were obtained and SARs were established by evaluating antioxidative properties in the physicochemical FRAP assay, as well as in a cell-based neuroprotection assay using murine hippocampal HT-22 cells. Despite weak activities in the FRAP assay, esters of the α,β-unsaturated acids showed pronounced overadditive effects at low concentrations greatly exceeding the effects of equimolar mixtures of silibinin and the respective acids in the neuroprotection assay. Cinnamic and ferulic acid esters (5a and 6a) also showed overadditive effects regarding inhibition of microglial activation, PC12 cell differentiation, in vitro ischemia as well as anti-aggregating abilities against Aβ42 peptide and τ protein. Remarkably, the esters of ferulic acid with silybin A and silybin B (11a and 11b) showed a moderate but significant difference in both neuroprotection and in their anti-aggregating capacities. The results demonstrate that non-toxic natural antioxidants can be regioselectively connected as esters with medium-term stability exhibiting very pronounced overadditive effects in a portfolio of biological assays.
Collapse
Affiliation(s)
- Simon Schramm
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Guozheng Huang
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Florian Lang
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Judit Roa
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Petra Högger
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
20
|
Imai K, Nakanishi I, Ohkubo K, Ohba Y, Arai T, Mizuno M, Fukuzumi S, Matsumoto KI, Fukuhara K. Synthesis of methylated quercetin analogues for enhancement of radical-scavenging activity. RSC Adv 2017. [DOI: 10.1039/c7ra02329d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methylation of the catechol moiety of quercetin resulted in the enhancement of its radical-scavenging activity.
Collapse
Affiliation(s)
- Kohei Imai
- School of Pharmacy
- Showa University
- Shinagawa-ku
- Japan
- Quantitative RedOx Sensing Team (QRST)
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST)
- Department of Basic Medical Sciences for Radiation Damages
- National Institute of Radiological Sciences (NIRS)
- National Institutes for Quantum and Radiological Science and Technology (QST)
- Inage-ku
| | - Kei Ohkubo
- Quantitative RedOx Sensing Team (QRST)
- Department of Basic Medical Sciences for Radiation Damages
- National Institute of Radiological Sciences (NIRS)
- National Institutes for Quantum and Radiological Science and Technology (QST)
- Inage-ku
| | - Yusuke Ohba
- School of Pharmacy
- Showa University
- Shinagawa-ku
- Japan
| | - Takuya Arai
- School of Pharmacy
- Showa University
- Shinagawa-ku
- Japan
| | - Mirei Mizuno
- School of Pharmacy
- Showa University
- Shinagawa-ku
- Japan
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
- Faculty of Science and Technology
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST)
- Department of Basic Medical Sciences for Radiation Damages
- National Institute of Radiological Sciences (NIRS)
- National Institutes for Quantum and Radiological Science and Technology (QST)
- Inage-ku
| | | |
Collapse
|
21
|
Mohamed T, Mann MK, Rao PPN. Application of quinazoline and pyrido[3,2-d]pyrimidine templates to design multi-targeting agents in Alzheimer's disease. RSC Adv 2017. [DOI: 10.1039/c7ra02889j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A quinazoline and pyrido[3,2-d]pyrimidine based compound library was designed, synthesized and evaluated as multi-targeting agents aimed at Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Tarek Mohamed
- School of Pharmacy
- Health Sciences Campus
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| | - Mandeep K. Mann
- School of Pharmacy
- Health Sciences Campus
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| | - Praveen P. N. Rao
- School of Pharmacy
- Health Sciences Campus
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| |
Collapse
|
22
|
Ganesh KR, Rao KR, Pratap T, Raghunadh A, Kumar SP, Basaveswara Rao M, Murthy C, Meruva SB. First stereo selective synthesis of 5-O-feruloyl-2-deoxy-d-ribono-γ-lactone. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Huang G, Schramm S, Heilmann J, Biedermann D, Křen V, Decker M. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins. Beilstein J Org Chem 2016; 12:662-9. [PMID: 27340458 PMCID: PMC4901995 DOI: 10.3762/bjoc.12.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/04/2022] Open
Abstract
Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields.
Collapse
Affiliation(s)
- Guozheng Huang
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany; College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P. R. China
| | - Simon Schramm
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jörg Heilmann
- Lehrstuhl für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - David Biedermann
- Centre of Biotransformation and Biocatalysis, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, CZ-14220, Czech Republic
| | - Vladimír Křen
- Centre of Biotransformation and Biocatalysis, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, CZ-14220, Czech Republic
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
24
|
|
25
|
Purushotham Reddy S, Chinnababu B, Venkateswarlu Y. First Stereoselective and Concise Synthesis of Rhoiptelol C. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Tan J, Karthivashan G, Arulselvan P, Fakurazi S, Hussein M. In vitro nanodelivery of silibinin as an anticancer drug under pH response. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50122-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Microwave-assisted oxidation of silibinin: a simple and preparative method for the synthesis of improved radical scavengers. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Dai JP, Wu LQ, Li R, Zhao XF, Wan QY, Chen XX, Li WZ, Wang GF, Li KS. Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo. Antimicrob Agents Chemother 2013; 57:4433-43. [PMID: 23836164 PMCID: PMC3754338 DOI: 10.1128/aac.00759-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/26/2013] [Indexed: 02/05/2023] Open
Abstract
It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Li-Qi Wu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiang-Feng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qian-Ying Wan
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Sy-Cordero AA, Graf TN, Runyon SP, Wani MC, Kroll DJ, Agarwal R, Brantley SJ, Paine MF, Polyak SJ, Oberlies NH. Enhanced bioactivity of silybin B methylation products. Bioorg Med Chem 2013; 21:742-7. [PMID: 23260576 PMCID: PMC3630461 DOI: 10.1016/j.bmc.2012.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022]
Abstract
Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity.
Collapse
Affiliation(s)
- Arlene A. Sy-Cordero
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Scott P. Runyon
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Mansukh C. Wani
- Natural Products Laboratory, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - David J. Kroll
- Department of Pharmaceutical Sciences, BRITE, North Carolina Central University, Durham, NC 27707, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Scott J. Brantley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary F. Paine
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen J. Polyak
- Departments of Laboratory Medicine and Global Health, University of Washington, Seattle, WA, 98104, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
30
|
|
31
|
Jabbari A, Davoodnejad M, Alimardani M, Assadieskandar A, Sadeghian A, Safdari H, Movaffagh J, Sadeghian H. Synthesis and SAR studies of 3-allyl-4-prenyloxyaniline amides as potent 15-lipoxygenase inhibitors. Bioorg Med Chem 2012; 20:5518-26. [PMID: 22917856 DOI: 10.1016/j.bmc.2012.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 01/18/2023]
Abstract
15-Lipoxygenases are one of the nonheme iron-containing proteins with ability of unsaturated lipid peroxidation in animals and plants. The critical role of the enzymes in formation of inflammations, sensitivities and some of cancers has been demonstrated in mammalians. Importance of the 15-lipoxygenases leads to development of mechanistic studies, products analysis and synthesis of their inhibitors. In this work new series of the 3-allyl-4-allyoxyaniline amides and 3-allyl-4-prenyloxyaniline amides were designed, synthesized and their inhibitory potency against soybean 15-lipoxygenase were determined. Among the synthetic amides, 3-allyl-4-(farnesyloxy)-adamantanilide showed the most potent inhibitory activity by IC(50) value of 0.69 μM. SAR studies showed that in spite of prenyl length increases, the effects of the amide size and its electronic properties on the inhibitory potency became predominant. The SAR studies was also showed that the orientation of allyl and prenyloxy moieties toward Fe core of the SLO active site pocket is the most suitable location for enzyme inhibition.
Collapse
Affiliation(s)
- Atena Jabbari
- Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | | | | | | | | | |
Collapse
|
32
|
From omics to drug metabolism and high content screen of natural product in zebrafish: a new model for discovery of neuroactive compound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:605303. [PMID: 22919414 PMCID: PMC3420231 DOI: 10.1155/2012/605303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/16/2012] [Indexed: 11/17/2022]
Abstract
The zebrafish (Danio rerio) has recently become a common model in the fields of genetics, environmental science, toxicology, and especially drug screening. Zebrafish has emerged as a biomedically relevant model for in vivo high content drug screening and the simultaneous determination of multiple efficacy parameters, including behaviour, selectivity, and toxicity in the content of the whole organism. A zebrafish behavioural assay has been demonstrated as a novel, rapid, and high-throughput approach to the discovery of neuroactive, psychoactive, and memory-modulating compounds. Recent studies found a functional similarity of drug metabolism systems in zebrafish and mammals, providing a clue with why some compounds are active in zebrafish in vivo but not in vitro, as well as providing grounds for the rationales supporting the use of a zebrafish screen to identify prodrugs. Here, we discuss the advantages of the zebrafish model for evaluating drug metabolism and the mode of pharmacological action with the emerging omics approaches. Why this model is suitable for identifying lead compounds from natural products for therapy of disorders with multifactorial etiopathogenesis and imbalance of angiogenesis, such as Parkinson's disease, epilepsy, cardiotoxicity, cerebral hemorrhage, dyslipidemia, and hyperlipidemia, is addressed.
Collapse
|
33
|
Chen X, Zenger K, Lupp A, Kling B, Heilmann J, Fleck C, Kraus B, Decker M. Tacrine-Silibinin Codrug Shows Neuro- and Hepatoprotective Effects in Vitro and Pro-Cognitive and Hepatoprotective Effects in Vivo. J Med Chem 2012; 55:5231-42. [DOI: 10.1021/jm300246n] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Chen
- Institut für Pharmazie, Universität Regensburg, Universitätsstraße
31, D-93053 Regensburg, Germany
| | - Katharina Zenger
- Institut für Pharmazie, Universität Regensburg, Universitätsstraße
31, D-93053 Regensburg, Germany
| | - Amelie Lupp
- Institut für Pharmakologie
und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07740 Jena, Germany
| | - Beata Kling
- Institut für Pharmazie, Universität Regensburg, Universitätsstraße
31, D-93053 Regensburg, Germany
| | - Jörg Heilmann
- Institut für Pharmazie, Universität Regensburg, Universitätsstraße
31, D-93053 Regensburg, Germany
| | - Christian Fleck
- Institut für Pharmakologie
und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07740 Jena, Germany
| | - Birgit Kraus
- Institut für Pharmazie, Universität Regensburg, Universitätsstraße
31, D-93053 Regensburg, Germany
| | - Michael Decker
- Institut für Pharmazie, Universität Regensburg, Universitätsstraße
31, D-93053 Regensburg, Germany
| |
Collapse
|
34
|
Genovese S, Curini M, Gresele P, Corazzi T, Epifano F. Inhibition of COX-1 activity and COX-2 expression by 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans propenoic acid and its semi-synthetic derivatives. Bioorg Med Chem Lett 2011; 21:5995-8. [DOI: 10.1016/j.bmcl.2011.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023]
|
35
|
Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium(IV)/silibinin complex. J Biol Inorg Chem 2011; 16:653-68. [DOI: 10.1007/s00775-011-0769-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
36
|
Abstract
This review focuses on recent developments in the use of natural products as therapeutics for Alzheimer's disease. The compounds span a diverse array of structural classes and are organized according to their mechanism of action, with the focus primarily on the major hypotheses. Overall, the review discusses more than 180 compounds and summarizes 400 references.
Collapse
Affiliation(s)
- Philip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
37
|
Zhao H, Brandt GE, Galam L, Matts RL, Blagg BSJ. Identification and initial SAR of silybin: an Hsp90 inhibitor. Bioorg Med Chem Lett 2010; 21:2659-64. [PMID: 21273068 DOI: 10.1016/j.bmcl.2010.12.088] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
Through Hsp90-dependent firefly luciferase refolding and Hsp90-dependent heme-regulated eIF2α kinase (HRI) activation assays, silybin was identified as a novel Hsp90 inhibitor. Subsequently, a library of silybin analogues was designed, synthesized and evaluated. Initial SAR studies identified the essential, non-essential and detrimental functionalities on silybin that contribute to Hsp90 inhibition.
Collapse
Affiliation(s)
- Huiping Zhao
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, KS 66045-7563, USA
| | | | | | | | | |
Collapse
|
38
|
Flaherty DP, Kiyota T, Dong Y, Ikezu T, Vennerstrom JL. Phenolic bis-styrylbenzenes as β-amyloid binding ligands and free radical scavengers. J Med Chem 2010; 53:7992-9. [PMID: 21038854 DOI: 10.1021/jm1006929] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Starting from bisphenolic bis-styrylbenzene DF-9 (4), β-amyloid (Aβ) binding affinity and specificity for phenolic bis-styrylbenzenes, monostyrylbenzenes, and alkyne controls were determined by fluorescence titration with β-amyloid peptide Aβ(1-40) and a fluorescence assay using APP/PS1 transgenic mouse brain sections. Bis-styrylbenzene SAR is derived largely from work on symmetrical compounds. This study is the first to describe Aβ binding data for bis-styrylbenzenes unsymmetrical in the outer rings. With one exception, binding affinity and specificity were decreased by adding and/or changing the substitution pattern of phenol functional groups, changing the orientation about the central phenyl ring, replacing the alkene with alkyne bonds, or eliminating the central phenyl ring. The only compound with an Aβ binding affinity and specificity comparable to 4 was its 3-hydroxy regioisomer 8. Like 4, 8 crossed the blood-brain barrier and bound to Aβ plaques in vivo. By use of a DPPH assay, phenol functional groups with para orientations seem to be a necessary, but insufficient, criterion for good free radical scavenging properties in these compounds.
Collapse
Affiliation(s)
- Daniel P Flaherty
- University of Nebraska Medical Center, College of Pharmacy, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | |
Collapse
|