1
|
Fatima N, Khalid S, Rasool N, Imran M, Parveen B, Kanwal A, Irimie M, Ciurea CI. Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review. Pharmaceuticals (Basel) 2024; 17:1108. [PMID: 39338273 PMCID: PMC11434895 DOI: 10.3390/ph17091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Some antibiotics that are frequently employed are β-lactams. In light of the hydrolytic process of β-lactamase, found in Gram-negative bacteria, inhibitors of β-lactamase (BLIs) have been produced. Examples of first-generation β-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the β-lactamase classes. Various methods have been utilized to develop second-generation β-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature β-lactamase inhibitors. This review describes numerous promising second-generation β-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-β-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MβL (metallo-β-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of β-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.
Collapse
Affiliation(s)
- Noor Fatima
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bushra Parveen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Marius Irimie
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Codrut Ioan Ciurea
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
2
|
Guo C, Zhang G, Wu C, Lei Y, Wang Y, Yang J. Emerging trends in small molecule inhibitors targeting aldosterone synthase: A new paradigm in cardiovascular disease treatment. Eur J Med Chem 2024; 274:116521. [PMID: 38820853 DOI: 10.1016/j.ejmech.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Aldosterone synthase (CYP11B2) is the rate-limiting enzyme in aldosterone production. In recent years, CYP11B2 has become an appealing target for treating conditions associated with excess aldosterone, such as hypertension, heart failure, and cardiometabolic diseases. Several small-molecule inhibitors of CYP11B2 have demonstrated efficacy in both preclinical studies and clinical trials. Among them, the tetrahydroisoquinoline derivative Baxdrostat has entered clinical trial phases and demonstrated efficacy in treating patients with hypertension. However, the high homology (>93 %) between CYP11B2 and steroid-11β-hydroxylase (CYP11B1), which catalyzes cortisol production, implies that insufficient drug specificity can lead to severe side effects. Developing selective inhibitors for CYP11B2 remains a considerable challenge that requires ongoing attention. This review summarizes recent research progress on small-molecule inhibitors targeting CYP11B2, focusing on structure-activity relationships (SAR) and structural optimization. It discusses strategies for enhancing the specificity and inhibitory activity of inhibitors, while also exploring potential applications and future prospects for CYP11B2 inhibitors, providing a theoretical foundation for developing the new generation of CYP11B2-targeted medications.
Collapse
Affiliation(s)
- Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangbing Zhang
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, General Practice Research Institute, West China Hospital, Sichuan University, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Tinivella A, Banchi M, Gambacorta G, Borghi F, Orlandi P, Baxendale IR, Di Paolo A, Bocci G, Pinzi L, Rastelli G. Discovery of a Potent Dual Inhibitor of Aromatase and Aldosterone Synthase. ACS Pharmacol Transl Sci 2023; 6:1870-1883. [PMID: 38093846 PMCID: PMC10714424 DOI: 10.1021/acsptsci.3c00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2024]
Abstract
Estrogen deficiency derived from inhibition of estrogen biosynthesis is a typical condition of postmenopausal women and breast cancer (BCs) patients undergoing antihormone therapy. The ensuing increase in aldosterone levels is considered to be the major cause for cardiovascular diseases (CVDs) affecting these patients. Since estrogen biosynthesis is regulated by aromatase (CYP19A1), and aldosterone biosynthesis is modulated by aldosterone synthase (CYP11B2), a dual inhibitor would allow the treatment of BC while reducing the cardiovascular risks typical of these patients. Moreover, this strategy would help overcome some of the disadvantages often observed in single-target or combination therapies. Following an in-depth analysis of a library of synthesized benzylimidazole derivatives, compound X21 was found to be a potent and selective dual inhibitor of aromatase and aldosterone synthase, with IC50 values of 2.3 and 29 nM, respectively. Remarkably, the compound showed high selectivity with respect to 11β-hydroxylase (CYP11B1), as well as CYP3A4 and CYP1A2. When tested in cells, X21 showed potent antiproliferative activity against BC cell lines, particularly against the ER+ MCF-7 cells (IC50 of 0.26 ± 0.03 μM at 72 h), and a remarkable pro-apoptotic effect. In addition, the compound significantly inhibited mTOR phosphorylation at its IC50 concentration, thereby negatively modulating the PI3K/Akt/mTOR axis, which represents an escape for the dependency from ER signaling in BC cells. The compound was further investigated for cytotoxicity on normal cells and potential cardiotoxicity against hERG and Nav1.5 ion channels, demonstrating a safe biological profile. Overall, these assays demonstrated that the compound is potent and safe, thus constituting an excellent candidate for further evaluation.
Collapse
Affiliation(s)
- Annachiara Tinivella
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Marta Banchi
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Guido Gambacorta
- Department
of Chemistry, University of Durham, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K.
| | - Federica Borghi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Paola Orlandi
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Ian R. Baxendale
- Department
of Chemistry, University of Durham, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K.
| | - Antonello Di Paolo
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Guido Bocci
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Luca Pinzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Giulio Rastelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| |
Collapse
|
4
|
In silico selectivity modeling of pyridine and pyrimidine based CYP11B1 and CYP11B2 inhibitors: A case study. J Mol Graph Model 2022; 116:108238. [PMID: 35691091 DOI: 10.1016/j.jmgm.2022.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022]
Abstract
DESIGN of selective drug candidates for highly structural similar targets is a challenging task for researchers. The main objective of this study was to explore the selectivity modeling of pyridine and pyrimidine scaffold towards the highly homologous targets CYP11B1 and CYP11B2 enzymes by in silico (Molecular docking and QSAR) approaches. In this regard, a big dataset (n = 228) of CYP11B1 and CYP11B2 inhibitors were gathered and classified based on heterocyclic ring and the exhaustive analysis was carried out for pyridine and pyrimidinescaffolds. The LibDock algorithm was used to explore the binding pattern, screening, and identify the structural feature responsible for the selectivity of the ligands towards the studied targets. Finally, QSAR analysis was done to explore the correlation between various binding parameters and structural features responsible for the inhibitory activity and selectivity of the ligands in a quantitative way. The docking and QSAR analysis clearly revealed and distinguished the importance of structural features, functional groups attached for CYP11B2 and CYP11B1 selectivity for pyridine and pyrimidine analogs. Additionally, the docking analysis highlighted the differentiating amino acids residues for selectivity for ligands for each of the enzymes. The results obtained from this research work will be helpful in designing the selective CYP11B1/CYP11B2 inhibitors.
Collapse
|
5
|
Liu Y, Wu J, Zhou M, Chen W, Li D, Wang Z, Hornsperger B, Aebi JD, Märki HP, Kuhn B, Wang L, Kuglstatter A, Benz J, Müller S, Hochstrasser R, Ottaviani G, Xin J, Kirchner S, Mohr S, Verry P, Riboulet W, Shen HC, Mayweg AV, Amrein K, Tan X. Discovery of 3-Pyridyl Isoindolin-1-one Derivatives as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors. J Med Chem 2020; 63:6876-6897. [DOI: 10.1021/acs.jmedchem.0c00233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Khalili Arjomandi O, Kavoosi M, Adibi H. Synthesis and investigation of inhibitory activities of imidazole derivatives against the metallo-β-lactamase IMP-1. Bioorg Chem 2019; 92:103277. [PMID: 31539743 DOI: 10.1016/j.bioorg.2019.103277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Abstract
Mutations in bacteria can result in antibiotic resistance due to the overuse or abuse of β-lactam antibiotics. One strategy which bacteria can become resistance toward antibiotics is secreting of metallo β-lactamase enzymes that can open the lactam ring of the β-lactam antibiotic and inactivate them. This issue is a threat for human health and one strategy to overcome this situation is co-administration of β-lactam antibiotics with an inhibitor. So far, no clinically available inhibitors of metallo β-lactamases (MBLs) reported and the clinically inhibitors of serine β-lactamase are useless for MBLs. Accordingly, finding a potent inhibitor of the MBLs being very important. In this study, imidazole derivatives primarily were synthesized and their inhibitory activity were measured. Later in silico binding model was used to predict the configuration and conformation of the ligands into the active site of enzyme. Two molecules demonstrated with IC50 of 39 µM and 46 µM against MBL (IMP-1).
Collapse
Affiliation(s)
- Omid Khalili Arjomandi
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Qld 4072, Australia; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mahboubeh Kavoosi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Abstract
The mineralocorticoid aldosterone is an important regulator of blood pressure and electrolyte balance. However, excess aldosterone can be deleterious as a driver of inflammation, vascular remodeling and tissue fibrosis associated with cardiometabolic diseases. Mineralocorticoid receptor antagonists (MRA) and renin-angiotensin-aldosterone system (RAAS) antagonists are current clinical therapies used to antagonize deleterious effects of aldosterone in patients. MRAs compete with aldosterone for binding at its cognate receptor thereby limiting its effect while RAS antagonists reduce aldosterone levels indirectly by blocking the stimulatory effect of angiotensin. Both MRAs and RAS antagonists can result in incomplete inhibition of the harmful effects of excess aldosterone. Aldosterone synthase (AS) inhibitors (ASI) attenuate the production of aldosterone directly and have been proposed as an alternative to MRAs and RAS blockers. Cortisol synthase (CS) is an enzyme closely related to AS and responsible for generating the important glucocorticoid cortisol, required for maintaining critical metabolic and immune responses. The importance of selectivity against CS is shown by early examples of ASIs that were only modestly selective and as such, attenuated cortisol responses when evaluated in patients. Recently, next-generation, highly selective ASIs have been described and are presently being evaluated in the clinic as an alternative to angiotensin and MR antagonists for cardiometabolic disease. Herein we provide a brief review of the challenges associated with discovery of selective ASIs and the transition from the early compounds that paved the way toward the next-generation of highly selective ASIs currently under development.
Collapse
Affiliation(s)
- Steven M Weldon
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States.
| | - Nicholas F Brown
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
8
|
van Esbroeck ACM, Janssen APA, Cognetta AB, Ogasawara D, Shpak G, van der Kroeg M, Kantae V, Baggelaar MP, de Vrij FMS, Deng H, Allarà M, Fezza F, Lin Z, van der Wel T, Soethoudt M, Mock ED, den Dulk H, Baak IL, Florea BI, Hendriks G, De Petrocellis L, Overkleeft HS, Hankemeier T, De Zeeuw CI, Di Marzo V, Maccarrone M, Cravatt BF, Kushner SA, van der Stelt M. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 2018; 356:1084-1087. [PMID: 28596366 DOI: 10.1126/science.aaf7497] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/19/2016] [Accepted: 05/14/2017] [Indexed: 12/15/2022]
Abstract
A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here we use activity-based proteomic methods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Armand B Cognetta
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guy Shpak
- Department of Psychiatry, Erasmus University Medical Centre, 3000 CA, Rotterdam, Netherlands
| | - Mark van der Kroeg
- Department of Psychiatry, Erasmus University Medical Centre, 3000 CA, Rotterdam, Netherlands
| | - Vasudev Kantae
- Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Centre, 3000 CA, Rotterdam, Netherlands
| | - Hui Deng
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Italy
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Zhanmin Lin
- Department of Neuroscience, Erasmus Medical Centre, 3000 CA, Rotterdam, Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Marjolein Soethoudt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Hans den Dulk
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Ilse L Baak
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Bogdan I Florea
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Giel Hendriks
- Toxys B.V., Robert Boyleweg 4, 2333 CG, Leiden, Netherlands
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Italy
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Centre, 3000 CA, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Italy
| | - Mauro Maccarrone
- European Centre for Brain Research-Institute for Research and Healthcare (IRCCS) Santa Lucia Foundation, Via del Fosso del Fiorano 65, 00143 Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Centre, 3000 CA, Rotterdam, Netherlands.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.
| |
Collapse
|
9
|
Akram M, Waratchareeyakul W, Haupenthal J, Hartmann RW, Schuster D. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors. Front Chem 2017; 5:104. [PMID: 29312923 PMCID: PMC5742115 DOI: 10.3389/fchem.2017.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8–10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.
Collapse
Affiliation(s)
- Muhammad Akram
- Institute of Pharmacy - Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Watcharee Waratchareeyakul
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, Thailand
| | - Joerg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Daniela Schuster
- Institute of Pharmacy - Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Song Z, Jin Y, Ge Y, Wang C, Zhang J, Tang Z, Peng J, Liu K, Li Y, Ma X. Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors. Bioorg Med Chem 2016; 24:5505-5512. [DOI: 10.1016/j.bmc.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
|
11
|
Weldon SM, Cerny MA, Gueneva-Boucheva K, Cogan D, Guo X, Moss N, Parmentier JH, Richman JR, Reinhart GA, Brown NF. Selectivity of BI 689648, a Novel, Highly Selective Aldosterone Synthase Inhibitor: Comparison with FAD286 and LCI699 in Nonhuman Primates. ACTA ACUST UNITED AC 2016; 359:142-50. [DOI: 10.1124/jpet.116.236463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
|
12
|
Affiliation(s)
- Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
13
|
Affiliation(s)
- Shuai Chen
- Medicinal Chemsitry Department, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Russell F. Graceffa
- Medicinal Chemsitry Department, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Alessandro A. Boezio
- Medicinal Chemsitry Department, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Papillon JPN, Lou C, Singh AK, Adams CM, Ksander GM, Beil ME, Chen W, Leung-Chu J, Fu F, Gan L, Hu CW, Jeng AY, LaSala D, Liang G, Rigel DF, Russell KS, Vest JA, Watson C. Discovery of N-[5-(6-Chloro-3-cyano-1-methyl-1H-indol-2-yl)-pyridin-3-ylmethyl]-ethanesulfonamide, a Cortisol-Sparing CYP11B2 Inhibitor that Lowers Aldosterone in Human Subjects. J Med Chem 2015; 58:9382-94. [PMID: 26540564 DOI: 10.1021/acs.jmedchem.5b01545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human clinical studies conducted with LCI699 established aldosterone synthase (CYP11B2) inhibition as a promising novel mechanism to lower arterial blood pressure. However, LCI699's low CYP11B1/CYP11B2 selectivity resulted in blunting of adrenocorticotropic hormone-stimulated cortisol secretion. This property of LCI699 prompted its development in Cushing's disease, but limited more extensive clinical studies in hypertensive populations, and provided an impetus for the search for cortisol-sparing CYP11B2 inhibitors. This paper summarizes the discovery, pharmacokinetics, and pharmacodynamic data in preclinical species and human subjects of the selective CYP11B2 inhibitor 8.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael E Beil
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Wei Chen
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Jennifer Leung-Chu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Fumin Fu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | - Chii-Whei Hu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Arco Y Jeng
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Daniel LaSala
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | - Dean F Rigel
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | | | | |
Collapse
|
15
|
Hu Q, Kunde J, Hanke N, Hartmann RW. Identification of 4-(4-nitro-2-phenethoxyphenyl)pyridine as a promising new lead for discovering inhibitors of both human and rat 11β-Hydroxylase. Eur J Med Chem 2015; 96:139-50. [PMID: 25874338 DOI: 10.1016/j.ejmech.2015.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 11/26/2022]
Abstract
The inhibition of 11β-hydroxylase is a promising strategy for the treatment of Cushing's syndrome, in particular for the recurrent and subclinical cases. To achieve proof of concept in rats, efforts were paid to identify novel lead compounds inhibiting both human and rat CYP11B1. Modifications on a potent promiscuous inhibitor of hCYP11B1, hCYP11B2 and hCYP19 (compound IV) that exhibited moderate rCYP11B1 inhibition led to compound 8 as a new promising lead compound. Significant improvements compared to starting point IV were achieved regarding inhibitory potency against both human and rat CYP11B1 (IC50 values of 2 and 163 nM, respectively) as well as selectivity over hCYP19 (IC50 = 1900 nM). Accordingly, compound 8 was around 7- and 28-fold more potent than metyrapone regarding the inhibition of human and rat CYP11B1 and exhibited a comparable selectivity over hCYP11B2 (SF of 3.5 vs 4.9). With further optimizations on this new lead compound 8, drug candidates with satisfying profiles are expected to be discovered.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Jessica Kunde
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- Elexopharm GmbH, Campus A1, 66123 Saarbrücken, Germany
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
16
|
Hu Q, Yin L, Ali A, Cooke AJ, Bennett J, Ratcliffe P, Lo MMC, Metzger E, Hoyt S, Hartmann RW. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability. J Med Chem 2015; 58:2530-7. [PMID: 25711516 DOI: 10.1021/acs.jmedchem.5b00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CYP11B2 inhibition is a promising treatment for diseases caused by excessive aldosterone. To improve the metabolic stability in human liver miscrosomes of previously reported CYP11B2 inhibitors, modifications were performed via a combination of ligand- and structure-based drug design approaches, leading to pyridyl 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolones. Compound 26 not only exhibited a much longer half-life (t1/2 ≫ 120 min), but also sustained inhibitory potency (IC50 = 4.2 nM) and selectivity over CYP11B1 (SF = 422), CYP17, CYP19, and a panel of hepatic CYP enzymes.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2-3, D-66123, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Grombein CM, Hu Q, Heim R, Rau S, Zimmer C, Hartmann RW. 1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols: A new class of potent and selective aldosterone synthase inhibitors. Eur J Med Chem 2015; 89:597-605. [DOI: 10.1016/j.ejmech.2014.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/27/2022]
|
18
|
Grombein CM, Hu Q, Rau S, Zimmer C, Hartmann RW. Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase. Eur J Med Chem 2015; 90:788-96. [DOI: 10.1016/j.ejmech.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/17/2022]
|
19
|
Zhu W, Hu Q, Hanke N, van Koppen CJ, Hartmann RW. Potent 11β-Hydroxylase Inhibitors with Inverse Metabolic Stability in Human Plasma and Hepatic S9 Fractions To Promote Wound Healing. J Med Chem 2014; 57:7811-7. [DOI: 10.1021/jm501004t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weixing Zhu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- ElexoPharm GmbH, Im
Stadtwald, D-66123 Saarbrücken, Germany
| | | | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
20
|
Yin L, Hu Q, Emmerich J, Lo MMC, Metzger E, Ali A, Hartmann RW. Novel Pyridyl- or Isoquinolinyl-Substituted Indolines and Indoles as Potent and Selective Aldosterone Synthase Inhibitors. J Med Chem 2014; 57:5179-89. [DOI: 10.1021/jm500140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lina Yin
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Juliette Emmerich
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Michael Man-Chu Lo
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward Metzger
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Amjad Ali
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
21
|
Hu Q, Yin L, Hartmann RW. Aldosterone Synthase Inhibitors as Promising Treatments for Mineralocorticoid Dependent Cardiovascular and Renal Diseases. J Med Chem 2014; 57:5011-22. [DOI: 10.1021/jm401430e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Galeta J, Tenora L, Man S, Potáček M. Dihydropyrrolo[1,2-b]pyrazoles: withasomnine and related compounds. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Pinto-Bazurco Mendieta MAE, Hu Q, Engel M, Hartmann RW. Highly potent and selective nonsteroidal dual inhibitors of CYP17/CYP11B2 for the treatment of prostate cancer to reduce risks of cardiovascular diseases. J Med Chem 2013; 56:6101-7. [PMID: 23859149 DOI: 10.1021/jm400484p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dual CYP17/CYP11B2 inhibitors are proposed as a novel strategy for the treatment of prostate cancer to reduce risks of cardiovascular diseases. Via a combination of ligand- and structure-based approaches, a series of dual inhibitors were designed leading to the 2-(3-pyridyl)naphthalenes 10 and 11 with strong inhibition of both enzymes (IC50 values around 20 nM) and excellent selectivities over CYP11B1, CYP19, and CYP3A4. These compounds are considered as promising candidates for further in vivo evaluation.
Collapse
Affiliation(s)
- Mariano A E Pinto-Bazurco Mendieta
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
24
|
Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, Park HW. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol 2013; 27:315-24. [PMID: 23322723 PMCID: PMC5417327 DOI: 10.1210/me.2012-1287] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of electrolyte balance and blood pressure. Excess aldosterone levels can arise from dysregulation of the renin-angiotensin-aldosterone system and are implicated in the pathogenesis of hypertension and heart failure. Aldosterone synthase (cytochrome P450 11B2, CYP11B2) is the sole enzyme responsible for the production of aldosterone in humans. Blocking of aldosterone synthesis by mediating aldosterone synthase activity is thus a recently emerging pharmacological therapy for hypertension, yet a lack of structural information has limited this approach. Here, we present the crystal structures of human aldosterone synthase in complex with a substrate deoxycorticosterone and an inhibitor fadrozole. The structures reveal a hydrophobic cavity with specific features associated with corticosteroid recognition. The substrate binding mode, along with biochemical data, explains the high 11β-hydroxylase activity of aldosterone synthase toward both gluco- and mineralocorticoid formation. The low processivity of aldosterone synthase with a high extent of intermediates release might be one of the mechanisms of controlled aldosterone production from deoxycorticosterone. Although the active site pocket is lined by identical residues between CYP11B isoforms, most of the divergent residues that confer additional 18-oxidase activity of aldosterone synthase are located in the I-helix (vicinity of the O(2) activation path) and loops around the H-helix (affecting an egress channel closure required for retaining intermediates in the active site). This intrinsic flexibility is also reflected in isoform-selective inhibitor binding. Fadrozole binds to aldosterone synthase in the R-configuration, using part of the active site cavity pointing toward the egress channel. The structural organization of aldosterone synthase provides critical insights into the molecular mechanism of catalysis and enables rational design of more specific antihypertensive agents.
Collapse
Affiliation(s)
- Natallia Strushkevich
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | | | | | | | | | | | | |
Collapse
|
25
|
He BJ, Anderson ME. Aldosterone and cardiovascular disease: the heart of the matter. Trends Endocrinol Metab 2013; 24:21-30. [PMID: 23040074 PMCID: PMC3532553 DOI: 10.1016/j.tem.2012.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/01/2012] [Accepted: 09/06/2012] [Indexed: 02/07/2023]
Abstract
Aldosterone contributes to the endocrine basis of heart failure, and studies on cardiac aldosterone signaling have reinforced its value as a therapeutic target. Recent focus has shifted to new roles of aldosterone that appear to depend on coexisting pathologic stimuli, cell type, and disease etiology. This review evaluates recent advances in mechanisms underlying aldosterone-induced cardiac disease and highlights the interplay between aldosterone and Ca(2+)/calmodulin dependent protein kinase II, whose hyperactivity during heart failure contributes to disease progression. Increasing evidence implicates aldosterone in diastolic dysfunction, and there is a need to develop more targeted therapeutics such as aldosterone synthase inhibitors and molecularly specific antioxidants. Despite accumulating knowledge, many questions still persist and will likely dictate areas of future research.
Collapse
Affiliation(s)
- B Julie He
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
26
|
Yin L, Hu Q, Hartmann RW. 3-Pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2. PLoS One 2012; 7:e48048. [PMID: 23133610 PMCID: PMC3486838 DOI: 10.1371/journal.pone.0048048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/20/2012] [Indexed: 01/08/2023] Open
Abstract
Aldosterone synthase (CYP11B2) is a promising therapeutic target for the treatment of cardiovascular diseases related to abnormally high aldosterone levels. On the basis of our previously identified lead compounds I–III, a series of 3-pyridinyl substituted aliphatic cycles were designed, synthesized and tested as CYP11B2 inhibitors. Aromaticity abolishment of the core was successfully applied to overcome the undesired CYP1A2 inhibition. This study resulted in a series of potent and selective CYP11B2 inhibitors, with compound 12 (IC50 = 21 nM, SF = 50) as the most promising one, which shows no inhibition toward CYP1A2 at 2 µM. The design conception demonstrated in this study can be helpful in the optimization of CYP inhibitor drugs regarding CYP1A2 selectivity.
Collapse
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- * E-mail: (QH); (RWH)
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- * E-mail: (QH); (RWH)
| |
Collapse
|
27
|
Hu Q, Yin L, Hartmann RW. Selective Dual Inhibitors of CYP19 and CYP11B2: Targeting Cardiovascular Diseases Hiding in the Shadow of Breast Cancer. J Med Chem 2012; 55:7080-9. [DOI: 10.1021/jm3004637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
| | - Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
- ElexoPharm GmbH,
Campus A1,
D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Campus C2-3, P.O. Box 151150, D-66123 Saarbrücken,
Germany
| |
Collapse
|
28
|
Yin L, Lucas S, Maurer F, Kazmaier U, Hu Q, Hartmann RW. Novel Imidazol-1-ylmethyl Substituted 1,2,5,6-Tetrahydropyrrolo[3,2,1-ij]quinolin-4-ones as Potent and Selective CYP11B1 Inhibitors for the Treatment of Cushing’s Syndrome. J Med Chem 2012; 55:6629-33. [DOI: 10.1021/jm3003872] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lina Yin
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus
A1, D-66123 Saarbrücken, Germany
| | - Simon Lucas
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Frauke Maurer
- Institute für Organische
Chemie, Universität des Saarlandes, Geb. C4-2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Institute für Organische
Chemie, Universität des Saarlandes, Geb. C4-2, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
29
|
|
30
|
Review of companies and drug classes in the 2007–2011 antihypertensive patent literature. Pharm Pat Anal 2012; 1:45-64. [DOI: 10.4155/ppa.12.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypertension, defined as elevated systolic blood pressure and/or diastolic blood pressure generally greater than 140/90 mmHg, is a significant risk factor for cardiovascular outcomes such as arterial aneurysm, myocardial infarction and stroke, and for nonvascular conditions such as Alzheimer’s disease. The prevalence of the disease is rapidly increasing both in the USA and in the rest of the world. Hypertension can be managed to a degree through behavioral changes (e.g., reduction in salt intake and loss of excess body weight). When lifestyle changes fail, pharmacological therapy provides benefits, with combination drug therapy often required for many patients to reach their blood pressure-reduction goals. Approximately one-third of hypertensive patients who seek treatment fail to reach their goals, either because they are resistant to drug therapy or stop treatment due to side-effect issues. A medical need exists for new antihypertensive agents with improved risk–benefit profiles. However, within the past decade, the economics of bringing a new antihypertensive agent to market have become challenging due to the plethora of generic drugs available, the advent of polypharmacology, and the difficulty of identifying agents that are better than the standard of care. Only a few new mechanistic classes of antihypertensive agents have been recently approved, suggesting a lack of innovation within the industry. In this review, we describe the results of a survey of drug companies and drug classes in the 2007–2009 antihypertensive patent literature and comment on the current state of innovation in antihypertensive drug discovery.
Collapse
|
31
|
Hille UE, Zimmer C, Haupenthal J, Hartmann RW. Optimization of the First Selective Steroid-11β-hydroxylase (CYP11B1) Inhibitors for the Treatment of Cortisol Dependent Diseases. ACS Med Chem Lett 2011; 2:559-64. [PMID: 24900349 DOI: 10.1021/ml100283h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/19/2011] [Indexed: 11/30/2022] Open
Abstract
CYP11B1 is the key enzyme in cortisol biosynthesis, and its inhibition with selective compounds is a promising strategy for the treatment of diseases associated with elevated cortisol levels, such as Cushing's syndrome or metabolic disease. Expanding on a previous study from our group resulting in the first potent and rather selective inhibitor described so far (1, IC50 = 152 nM), we herein describe further optimizations of the imidazolylmethyl pyridine core. Five compounds among the 42 substances synthesized showed IC50 values below 50 nM. Most interesting was the naphth-1-yl compound 23 (IC50 = 42 nM), showing a 49-fold selectivity toward the highly homologous CYP11B2 (1: 18-fold) as well as selectivity toward the androgen and estrogen forming enzymes CYP17 and CYP19, respectively.
Collapse
Affiliation(s)
- Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Christina Zimmer
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
32
|
Prasad D, Kumar A, Shukla PK, Nath M. Design, synthesis and antimicrobial evaluation of novel 2-aryl-thiazolidin-4-one derivatives. Org Med Chem Lett 2011; 1:4. [PMID: 22373323 PMCID: PMC3279145 DOI: 10.1186/2191-2858-1-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022] Open
Abstract
Novel 2-arylthiazolidin-4-one derivatives (8a-q and 11) have been synthesized in good-to-excellent yields (70-96%) by one-pot three-component condensation-cyclization reaction of aromatic or aliphatic primary amines, aromatic aldehydes, and thioglycolic acid in polypropylene glycol at 110°C temperature. The in vitro antimicrobial activity of the synthesized 2-arylthiazolidin-4-ones was investigated against a panel of six pathogenic fungal strains, a Gram-positive and three Gram-negative bacteria. Results revealed that the compounds (8a-d) bearing 3-(4-(1H-imidazolylmethyl)phenyl)-substituent displayed significant antibacterial efficacy specifically against Klebsiella pneumoniae (minimum inhibitory concentration 12.5 μg/mL). In addition, some of the synthesized compounds have also shown antimicotic activity against Sporothrix schenckii, Trichophyton mentagrophytes, and Aspergillus fumigatus at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Davinder Prasad
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | | | | | | |
Collapse
|
33
|
Hille UE, Zimmer C, Vock CA, Hartmann RW. First Selective CYP11B1 Inhibitors for the Treatment of Cortisol-Dependent Diseases. ACS Med Chem Lett 2011; 2:2-6. [PMID: 24900247 DOI: 10.1021/ml100071j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/09/2010] [Indexed: 11/28/2022] Open
Abstract
Outgoing from an etomidate-based design concept, we succeeded in the development of a series of highly active and selective inhibitors of CYP11B1, the key enzyme of cortisol biosynthesis, as potential drugs for the treatment of Cushing's syndrome and related diseases. Thus, compound 33 (IC50 = 152 nM) is the first CYP11B1 inhibitor showing a rather good selectivity toward the most important steroidogenic CYP enzymes aldosterone synthase (CYP11B2), the androgen-forming CYP17, and aromatase (estrogen synthase, CYP19).
Collapse
Affiliation(s)
- Ulrike E. Hille
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Christina Zimmer
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Carsten A. Vock
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010; 53:7902-17. [PMID: 20804202 PMCID: PMC2988972 DOI: 10.1021/jm100762r] [Citation(s) in RCA: 1179] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fraser F Fleming
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, USA.
| | | | | | | | | |
Collapse
|