1
|
Depenbrock F, Limpke T, Stammler A, Oldengott J, Bögge H, Glaser T. Increasing the electron donation in a dinucleating ligand family: molecular and electronic structures in a series of Co IICo II complexes. Dalton Trans 2024; 53:9554-9567. [PMID: 38771300 DOI: 10.1039/d4dt00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We have developed a family of dinucleating ligands with varying terminal donors to generate dinuclear peroxo and high-valent complexes and to correlate their stabilities and reactivities with their molecular and electronic structures as a function of the terminal donors. It appears that the electron-donating ability of the terminal donors is an important handle for controlling these stabilities and reactivities. Here, we present the synthesis of a new dinucleating ligand with potentially strong donating terminal imidazole donors. As CoII ions are sensitive to variations in donor strength in terms of coordination number, magnetism, UV-Vis-NIR spectra, redox potentials, we probe the electron donation ability of this new ligand in CoIICoII complexes in comparison to the parent CoIICoII complexes with terminal pyridine donors and we synthesize the analogous CoIICoII complexes with terminal 6-methylpyridines and methoxy-substituted pyridines. The molecular structures show indeed strong variations in coordination numbers and bond lengths. These differences in the molecular structures are reflected in the magnetic properties and in the d-d transitions demonstrating that the molecular structures remain intact upon dissolution. The redox potentials are analyzed with respect to the electron donation ability and are the only handle to observe an effect of the methoxy-substituted pyridines. All data taken together show the following order of electron donating ability for the terminal donors: 6-methylpyridines ≪ pyridines < methoxy-substituted pyridines ≪ imidazoles.
Collapse
Affiliation(s)
- Felix Depenbrock
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
2
|
Finke S, Stammler A, Oldengott J, Walleck S, Glaser T. Direct and remote control of electronic structures and redox potentials in μ-oxo diferric complexes. Dalton Trans 2023; 52:17548-17561. [PMID: 37962521 DOI: 10.1039/d3dt02734a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Non-heme diiron enzymes activate O2 for the oxidation of substrates in the form of peroxo FeIII2 or high-valent FeIV2 intermediates. We have developed a dinucleating bis(tetradentate) ligand system that stabilizes peroxo and hydroperoxo FeIII2 complexes with terminal 6-methylpyridine donors, while the peroxo FeIII2 intermediate is reactive with terminal pyridine donors presumably via conversion to a fluent high-valent FeIV2 intermediate. We present here a derivative with electron-donating methoxy substituents at the pyridine donors and its diferric complexes with an {FeIIIX(μ-O)FeIIIX} (X- = Cl-, OAc-, and OH-) or an {FeIII(μ-O)(μ-OAc)FeIII} core. The complex-induced oxidation of EtOH with H2O2 provides μ-OAc-, and in acetone, the complex with mixed OH-/OAc- exogenous donors is obtained. Both reactivities indicate a reactive fluent peroxo FeIII2 intermediate. The coupling constant J and the LMCT transitions are insensitive to the nature of the directly bound ligands X- and reflect mainly the electronic structure of the central {FeIII(μ-O)FeIII} core, while Mössbauer spectroscopy and d-d transitions probe the local FeIII sites. The remote methoxy substituents decrease the potential for the oxidation to FeIV by ∼100 mV, while directly bound OH- in {FeIII(OH)(μ-O)FeIII(OH)} with a short 1.91 Å FeIII-OOH bond decreases the potential by 590 mV compared to {FeIII(OAc)(μ-O)FeIII(OAc)} with a 2.01 Å FeIII-OOAc bond. Interestingly, this FeIII-OH bond is even shorter (1.87 Å) in the mixed OH-/OAc- complex but the potential is the mean value of the potentials of the OH-/OH- and OAc-/OAc- complexes, thus reflecting the electron density of the central {FeIII(μ-O)FeIII} core and not of the local FeIII-OH unit.
Collapse
Affiliation(s)
- Sebastian Finke
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
3
|
Sha X, Fang Y, Nie T, Qin S, Yang Y, Huang D, Ji F. Nickel-Catalyzed Reductive Dicarbofunctionalizations of Alkenes for the Synthesis of Difluorocarbonyl Oxindoles and Isoquinoline-1,3-diones. J Org Chem 2023; 88:4995-5006. [PMID: 36745403 DOI: 10.1021/acs.joc.2c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel and efficient strategy for the construction of difluorocarbonyl-oxindole and difluorocarbonyl-isoquinoline-1,3-dione derivatives involving nickel-catalyzed intramolecular Heck-type cyclizations followed by intermolecular cross-couplings has been developed. This approach features high functional group tolerance, broad substrate scope, and operational simplicity under mild conditions, thus providing a new method for the rapid difluorocarbonyl-functionalization of alkenes to construct the structurally diversified five- and six-membered heterocycles.
Collapse
Affiliation(s)
- Xuan Sha
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yini Fang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tian Nie
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shiyu Qin
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Ji
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Shi ZZ, Yu T, Ma H, Chi LX, You S, Deng C. Recent advances in radical cascade cyclization of 1,n-enynes with trifluoromethylating agents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Lai W, Zhao S, Lai Q, Zhou W, Wu M, Jiang X, Wang X, Peng Y, Wei X, Ouyang L, Gou L, Chen H, Wang Y, Yang J. Design, Synthesis, and Bioevaluation of a Novel Hybrid Molecular Pyrrolobenzodiazepine-Anthracenecarboxyimide as a Payload for Antibody-Drug Conjugate. J Med Chem 2022; 65:11679-11702. [PMID: 35982539 DOI: 10.1021/acs.jmedchem.2c00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of hybrid molecules combining pyrrolobenzodiazepine (PBD) and anthracenecarboxyimide pharmacophores were designed, synthesized, and tested for in vitro cytotoxicity against various cancer cell lines. The most potent compound from this series, 37b3, exhibited a subnanomolar level of cytotoxicity with an IC50 of 0.17-0.94 nM. 37b3 induced DNA damage and led to tumor cell cycle arrest and apoptosis. We employed 37b3 as a payload to conjugate with trastuzumab to obtain the antibody-drug conjugate (ADC) T-PBA. T-PBA maintained its mode of target and internalization ability of trastuzumab. We demonstrated that T-PBA could be degraded through the lysosomal pathway to release the payload 37b3 after internalization. T-PBA showed a powerful killing effect on Her2-positive cancer cells in vitro. Furthermore, T-PBA significantly inhibited tumor growth in gastric and ovarian cancer xenograft mouse models without overt toxicity. Collectively, these studies suggest that T-PBA represents a promising new ADC that deserves further investigation.
Collapse
Affiliation(s)
- Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Shengyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wei Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xian Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
6
|
Grundke C, Silva RC, Kitzmann WR, Heinze K, de Oliveira KT, Opatz T. Photochemical α-Aminonitrile Synthesis Using Zn-Phthalocyanines as Near-Infrared Photocatalysts. J Org Chem 2022; 87:5630-5642. [PMID: 35421314 DOI: 10.1021/acs.joc.1c03101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While photochemical transformations with sunlight almost exclusively utilize the UV-vis part of the solar spectrum, the majority of the photons emitted by the sun have frequencies in the near-infrared region. Phthalocyanines show high structural similarity to the naturally occurring light-harvesting porphyrins, chlorins, and mainly bacteriochlorins and are also known for being efficient and affordable near-infrared light absorbers as well as triplet sensitizers for the production of singlet oxygen. Although having been neglected for a long time in synthetic organic chemistry due to their low solubility and high tendency toward aggregation, their unique photophysical properties and chemical robustness make phthalocyanines attractive photocatalysts for the application in near-infrared-light-driven synthesis strategies. Herein, we report a cheap, simple, and efficient photocatalytic protocol, which is easily scalable under continuous-flow conditions. Various phthalocyanines were studied as near-infrared photosensitizers in oxidative cyanations of tertiary amines to generate α-aminonitriles, a synthetically versatile compound class.
Collapse
Affiliation(s)
- Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Rodrigo C Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
7
|
Synthesis of CF2H-containing isoquinoline-1,3-diones through metal-free, visible-light and air-promoted radical difluoromethylation/cyclization of N-benzamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wang S, Dai P, Yan Z, Wang Y, Shao J, Wu Y, Deng C, Zhang W. Metal‐free, Visible‐Light‐Induced Radical Trifluoromethylation/Cyclization of N‐benzamides with CF
3
SO
2
Na to Synthesize CF
3
‐Containing Isoquinoline‐1,3‐diones. ChemistrySelect 2019. [DOI: 10.1002/slct.201902545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaowei Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Zhichao Yan
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Youjia Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Jiaxuan Shao
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Yanhui Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
9
|
Janockova J, Korabecny J, Plsikova J, Babkova K, Konkolova E, Kucerova D, Vargova J, Koval J, Jendzelovsky R, Fedorocko P, Kasparkova J, Brabec V, Rosocha J, Soukup O, Hamulakova S, Kuca K, Kozurkova M. In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. J Enzyme Inhib Med Chem 2019; 34:877-897. [PMID: 30938202 PMCID: PMC6450562 DOI: 10.1080/14756366.2019.1593159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.g. compound 22 inhibited type I topoisomerase at 1 µM concentration). The treatment of HL-60 cells with the studied compounds showed inhibition of cell growth especially with hybrids containing thiourea (14-17) and urea moieties (21 and 22). Moreover, treatment of human dermal fibroblasts with the studied compounds did not indicate significant cytotoxicity. The observed results suggest beneficial selectivity of the heterodimers as potential drugs to target cancer cells.
Collapse
Affiliation(s)
- Jana Janockova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Jana Plsikova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Katerina Babkova
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Eva Konkolova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Dana Kucerova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Vargova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jan Koval
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Rastislav Jendzelovsky
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Peter Fedorocko
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Kasparkova
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Viktor Brabec
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Jan Rosocha
- d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Ondrej Soukup
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Slavka Hamulakova
- g Department of Organic Chemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Kamil Kuca
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Maria Kozurkova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
10
|
Chen YJ, He YH, Guan Z. Metal-free visible-light-promoted thiocyanation/cyclization cascade for the synthesis of thiocyanato-containing isoquinolinediones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Glaser T. A dinucleating ligand system with varying terminal donor functions but without bridging donor functions: Design, synthesis, and applications for diiron complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li ZZ, Yu J, Wang LN, Chen SL, Sheng RL, Tang S. Cascade radical cyclization/cross-coupling of halobenzamides by synergistic Cu/Fe catalysis: An access to 7-tert-alkylated isoquinolinediones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
“One-pot” sequential preparation of isoquinoline-1,3(2H,4H)-dione derivatives by reacting N-alkyl(aryl)-N-methacryloyl benzamides with benzyl alcohols and sodium benzenesulfinates. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Strautmann JBH, Dammers S, Limpke T, Parthier J, Zimmermann TP, Walleck S, Heinze-Brückner G, Stammler A, Bögge H, Glaser T. Design and synthesis of a dinucleating ligand system with varying terminal donor functions that provides no bridging donor and its application to the synthesis of a series of FeIII–μ-O–FeIII complexes. Dalton Trans 2016; 45:3340-61. [DOI: 10.1039/c5dt03711e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed the dinucleating ligands H4julia, susan, and H4hildeMe2 and present their μ-oxo diferric complexes.
Collapse
Affiliation(s)
| | - Susanne Dammers
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Janine Parthier
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | | | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Gabriele Heinze-Brückner
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| |
Collapse
|
15
|
Tang S, Deng YL, Li J, Wang WX, Ding GL, Wang MW, Xiao ZP, Wang YC, Sheng RL. Synthesis of Perfluorinated Isoquinolinediones through Visible-Light-Induced Cyclization of Alkenes. J Org Chem 2015; 80:12599-605. [DOI: 10.1021/acs.joc.5b01803] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shi Tang
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - You-Lin Deng
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Li
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Wen-Xin Wang
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Guo-Liang Ding
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ming-Wei Wang
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Zhu-Ping Xiao
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ying-Chun Wang
- College
of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Rui-Long Sheng
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Nath JK, Baruah JB. Cyclic aromatic imides as a potential class of molecules for supramolecular interactions. CrystEngComm 2015. [DOI: 10.1039/c5ce01485a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prospects of stacking interactions of imides beneficial to generation of new soft materials are projected by analysing examples of primary building blocks that provide a basis for understanding at the molecular level.
Collapse
Affiliation(s)
- Jayanta K. Nath
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| |
Collapse
|
17
|
|
18
|
Banerjee S, Veale EB, Phelan CM, Murphy SA, Tocci GM, Gillespie LJ, Frimannsson DO, Kelly JM, Gunnlaugsson T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem Soc Rev 2013; 42:1601-18. [DOI: 10.1039/c2cs35467e] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
A two-step synthesis of medicinally-important 1,8-naphthalimide peptidyls by solid phase organic synthesis. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Selenium-containing naphthalimides as anticancer agents: Design, synthesis and bioactivity. Bioorg Med Chem 2012; 20:2558-63. [DOI: 10.1016/j.bmc.2012.02.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/11/2022]
|
21
|
Purohit MN, Panjamurthy K, Elango S, Hebbar K, Mayur YC, Raghavan SC. In-vitro cytotoxicity and cell cycle analysis of two novel bis-1,2, 4-triazole derivatives: 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl)-1,2,4-triazol-3-yl]-butane (MNP-16). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:873-85. [PMID: 22060552 DOI: 10.1080/15257770.2011.608395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC(50) of 3-5 μM) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G(1) phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA strand breaks upon exposure to these compounds, thereby suggesting the possible mechanism of cytotoxicity induced by MNP-16. Hence, we have identified a novel molecule (MNP-16) which could be of great clinical relevance in cancer therapeutics.
Collapse
Affiliation(s)
- Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS University, Mysore 570015, India
| | | | | | | | | | | |
Collapse
|
22
|
Ferri N, Radice T, Antonino M, Beccalli EM, Tinelli S, Zunino F, Corsini A, Pratesi G, Ragg EM, Gelmi ML, Contini A. Synthesis, structural, and biological evaluation of bis-heteroarylmaleimides and bis-heterofused imides. Bioorg Med Chem 2011; 19:5291-9. [PMID: 21880496 DOI: 10.1016/j.bmc.2011.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/28/2011] [Accepted: 08/09/2011] [Indexed: 11/18/2022]
Abstract
Bis-2,3-heteroarylmaleimides and polyheterocondensed imides joined through nitrogen atoms of the N,N'-bis(ethyl)-1,3-propanediamine linker were prepared from substituted maleic anhydrides and symmetrical diamines in good to satisfactory yields and short reaction times using microwave heating. The novel molecules were shown to inhibit proliferation of human tumor cells (NCI-H460 lung carcinoma) and rat aortic smooth muscle cells (SMCs) with variable potencies. Compound 11a, the most potent one of the series, showed IC(50) values comparable to those observed for the leading molecule elinafide in both cell lines, but with a higher selectivity toward human tumor cells. Compound 11a affected G1/S phase transition of the cell cycle, showed in vitro DNA intercalating activity and in vivo antitumor activity. A thorough structural analysis of the 11a-DNA complex was also made by mean of NMR and computational techniques.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang L, Li W, Tian Z, Zhao J, Wang C. Mononaphthalimide spermidine conjugate induces cell proliferation inhibition and apoptosis in HeLa cells. Toxicol In Vitro 2011; 25:882-9. [PMID: 21349322 DOI: 10.1016/j.tiv.2011.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/31/2010] [Accepted: 02/16/2011] [Indexed: 01/19/2023]
Abstract
Developing polyamine-drug conjugates that are capable of specific entry to tumor cells is attractive in improving chemotherapeutic efficacy. Currently, the exact cytotoxic mechanism of these conjugates is not well known. Here, our research revealed the effect of a mononaphthalimide-spermidine (MNISpd) conjugate on the growth and survival of HeLa cells and possible mechanisms. In characterizing the mechanism of MNISpd cytotoxicity, inhibition of proliferation is observed in the 0.5-6 μM range and there is evidence of apoptosis at equal or greater than 6 μM, but with less toxicity on HELF cell. The lower concentrations of MNISpd induced a cell cycle arrest correlated with enhanced p21 expression and decreased cdc2 but not Cdk2 expression. MNISpd-induced apoptosis was correlated with caspase-3 activation, decreased XIAP expression and a loss of mitochondrial membrane potential. Apoptosis but not cell cycle arrest was susceptible to N-acetyl-L-cysteine (NAC) treatment. It is proposed that MNISpd-induced apoptosis in HeLa cells is related to oxidative stress and that at lower exposure concentrations effects on cell proliferation predominate while at higher concentrations apoptosis develops.
Collapse
Affiliation(s)
- Lianhe Yang
- Key Laboratory of Special Function Material, Henan University, Kaifeng 475004, China
| | | | | | | | | |
Collapse
|
24
|
Purohit M, Prasad VR, C. Mayur Y. Synthesis and Cytotoxicity of Bis-1,3,4-oxadiazoles and Bis-pyrazoles Derived from 1,4-Bis[5-thio-4-substituted-1,2,4-triazol-3-Yl]-butane and Their DNA Binding Studies. Arch Pharm (Weinheim) 2011; 344:248-54. [DOI: 10.1002/ardp.201000177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/26/2010] [Accepted: 08/13/2010] [Indexed: 11/07/2022]
|
25
|
Synthesis, in vitro cytotoxicity, and anti-microbial studies of 1,4-bis(4-substituted-5-mercapto-1,2,4-triazol-3-yl)butanes. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Szumilak M, Szulawska-Mroczek A, Koprowska K, Stasiak M, Lewgowd W, Stanczak A, Czyz M. Synthesis and in vitro biological evaluation of new polyamine conjugates as potential anticancer drugs. Eur J Med Chem 2010; 45:5744-51. [PMID: 20974504 DOI: 10.1016/j.ejmech.2010.09.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
The synthesis of new polyamine derivatives containing dimeric quinoline (3a-c), cinnoline (4a-c) and phthalimide (7a-c and 8a-c) moieties is described. Three different polyamines: (1,4-bis(3-aminopropyl)piperazine (a), 4,9-dioxa-1,12-dodecanediamine (b), 3,3'-diamino-N-methyldipropylamine (c) were used as linkers. The new compounds were obtained according to known procedures. Their biological activity was assessed in vitro in a highly aggressive melanoma cell line A375. Polyamine diimides containing phthalimide moieties demonstrated no inhibitory activities against melanoma cells. Quinoline diamides were more efficient than cinnoline ones. Mainly cytostatic activity exerted as altered cell cycle profiles was observed at the concentrations causing about 50% reduction of adherent cell proliferation. Based on their structure as well as their biological activity, we assume that some of the newly synthesized compounds may act as DNA bisintercalators. This study might be useful for further designing and developing anticancer drugs with potent activities.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
27
|
Increasing antitumor activity in vivo by enhancing acridine dimer solubility with salt preparations. Med Chem Res 2010. [DOI: 10.1007/s00044-009-9213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Bisnaphthalimidopropyl spermidine induces apoptosis within colon carcinoma cells. Chem Biol Interact 2009; 177:1-6. [DOI: 10.1016/j.cbi.2008.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/20/2008] [Accepted: 09/30/2008] [Indexed: 11/22/2022]
|
29
|
|
30
|
Synthesis and bioevaluation of 5-fluorouracil derivatives. Molecules 2007; 12:2450-7. [PMID: 18065949 DOI: 10.3390/12112450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022] Open
Abstract
A series of six novel 5-fluorouracil derivatives 1-6 were synthesized and their structures confirmed by (1)H- and (13)C-NMR, MS and elemental analysis. The preliminary in vitro antitumor activities against B16, K562 and CHO cells and the in vivo inhibitions of liver cancer H(22) demonstrated that some of these compounds effectively inhibit the growth of tumor cells, but the in vivo trials in mice revealed that the compounds also exhibited serious liver and lung tissue toxicity. The hydrolysis experiments indicated that this type of compound did not readily liberate 5-fluorouracil, as expected.
Collapse
|
31
|
Muth M, Hoerr V, Glaser M, Ponte-Sucre A, Moll H, Stich A, Holzgrabe U. Antitrypanosomal activity of quaternary naphthalimide derivatives. Bioorg Med Chem Lett 2007; 17:1590-3. [PMID: 17239596 DOI: 10.1016/j.bmcl.2006.12.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/21/2006] [Accepted: 12/26/2006] [Indexed: 10/23/2022]
Abstract
Sleeping sickness caused by Trypanosoma brucei gambiense and rhodesiense is fatal if left untreated. Due to the toxicity of drugs currently used and the emerging resistance against these drugs new lead compounds are urgently needed. Within the frame of a broad screening program for drugs with antitrypanosomal activity, some highly potent tertiary and quaternary mono- and bisnaphthalimides being active in the lower micromolar and nanomolar range of concentration have been identified. These compounds are easily available via a two- or three-step microwave-driven synthesis with high yield.
Collapse
Affiliation(s)
- Mathias Muth
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang SS, Lee YJ, Hsu SC, Chang HO, Yin WK, Chang LS, Chou SY. Linker-modified triamine-linked acridine dimers: synthesis and cytotoxicity properties in vitro and in vivo. Bioorg Med Chem 2006; 15:735-48. [PMID: 17107806 DOI: 10.1016/j.bmc.2006.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 10/24/2022]
Abstract
The preparation and cytotoxicity properties of a series of N(epsilon)-substituted triamine-linked acridine dimers are described. Most acridine dimer derivatives reveal highly potent in vitro cytotoxicity properties and DNA binding activity. Several acridine dimers were selected to study their action in vivo. These acridine dimers have demonstrated a narrow safe margin, as has adriamycin, but higher maximum tolerate dose (MTD) in comparison with that of adriamycin in ICR mice. The acridine dimers also demonstrated various anit-COLO 205 solid tumor activities in vivo. Compound 1 has shown the most potent solid tumor inhibition.
Collapse
Affiliation(s)
- Shan-Shue Wang
- Department of Biochemical Engineering, Kao Yuan University, 1821 Chung-Shan Rd, Lu-Chu Hsiang, Kaohsiung, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
33
|
Novel DNA bis-intercalators of isoquinolino[4,5-bc]acridines: design, synthesis and evaluation of cytotoxic activity. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.09.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Yang P, Yang Q, Qian X, Cui J. Novel synthetic isoquinolino[5,4-ab]phenazines: Inhibition toward topoisomerase I, antitumor and DNA photo-cleaving activities. Bioorg Med Chem 2005; 13:5909-14. [PMID: 16115776 DOI: 10.1016/j.bmc.2005.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/10/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The novel DNA interactive isoquinolino[5,4-ab]phenazine derivatives were designed and synthesized. Their inhibitory abilities toward topoisomerase I, antitumor activities and DNA photo-cleaving abilities were examined. The substituents at peri sites of two phenazine N atoms played very important roles for all these biological activities. At a concentration of 100 microM, all these phenazine derivatives (but A2 and A6) exhibited an inhibitory activity toward topoisomerase I. A6 had efficient antitumor activities against both human lung cancer cell (A549) and murine leukemia cell (P388). A1, A5, and A6 exhibited antitumor activities selectively against P388. A2 was the most efficient DNA photocleaver, which had converted supercoiled DNA from form I to form II at <1 microM. Under anaerobic conditions, the electron transfer mechanism mainly contributed to DNA photo-induced cleavage, while under aerobic conditions, superoxide anion was also involved in this process.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | | | | | | |
Collapse
|
35
|
Abstract
Topoisomerases I and II, intranuclear enzymes that play vital roles in DNA replication and transcription, are attractive targets for cancer chemotherapy. Topoisomerase-active drugs either inhibit the ability of the enzymes to initially cleave DNA (catalytic inhibitors) or stabilise the fragile and normally transient 'cleavable complexes' they form by preventing strand religation (poisons). Many clinically useful drugs exert their cytotoxic effects through poisoning of either topo I or topo II. Because the level and time-course of expression of these enzymes vary in different cell types, and the development of resistance to one type of inhibitor is often accompanied by a concomitant rise in the level of the other enzyme, there is an increasing interest in drugs that can act as dual topo I/II poisons. The major classes of such dual poisons are benzophenanthridine alkaloids, indolocarbazoles and lipophilic bis(naphthalimides), but include anthraquinones, pyridoindoles, indenoquinolones and acridines. No overall structure-activity relationships are discernible for this property, but small structural changes within a particular series appear to markedly alter the relative activities of analogues towards the two enzymes. This observation supports the 'drug stacking' model of interaction, where inhibitors with a 'deep intercalation mode' are responsible for topo I-mediated cleavage and those with an 'outside binding mode' are responsible for topo II-mediated cleavage.
Collapse
Affiliation(s)
- W A Denny
- Cancer Research Laboratory, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand.
| |
Collapse
|
36
|
Antonini I, Polucci P, Magnano A, Sparapani S, Martelli S. Rational Design, Synthesis, and Biological Evaluation of Bis(pyrimido[5,6,1-de]acridines) and Bis(pyrazolo[3,4,5-kl]acridine-5-carboxamides) as New Anticancer Agents. J Med Chem 2004; 47:5244-50. [PMID: 15456268 DOI: 10.1021/jm049706k] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The good results obtained with pyrimido[5,6,1-de]acridines 7 and with pyrazolo[3,4,5-kl]acridinecarboxamides 8 prompted us to the synthesis of two new series of bis acridine derivatives: the bis(pyrimidoacridines) 5 and the bis(pyrazoloacridinecarboxamides) 6. Compounds 5 can be regarded also as cyclized derivatives of bis(acridine-4-carboxamides) 3 and compounds 6 as cyclized derivatives of bis(acridine-4-carboxamides) 4. The noncovalent DNA-binding properties of these compounds have been examined using fluorometric techniques. The results indicate that (i) the target compounds are excellent DNA ligands; (ii) the bis derivatives 5 and 6 are more DNA-affinic than corresponding monomers 7 and 8; (iii) the new bis 5 and 6 result always less efficient in binding than related bis(acridine-4-carboxamides) 3 and 4; and (iv) in both series 5 and 6 a clear, remarkable in some cases, preference for binding to AT rich duplexes can be noted. In vitro cytotoxic potency of these derivatives toward the human colon adenocarcinoma cell line (HT29) is described and compared to that of reference drugs. Structure-activity relationships are discussed. We could identify six very potent cytotoxic compounds for further in vitro studies: a cytotoxic screening against six human cancer cell lines and the National Cancer Institute (NCI) screening on 60 human tumor cell lines. Finally, compound 6a was selected for evaluation in a NCI in vivo hollow fiber assay.
Collapse
Affiliation(s)
- Ippolito Antonini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy.
| | | | | | | | | |
Collapse
|
37
|
Abraham B, McMasters S, Mullan MA, Kelly LA. Reactivities of Carboxyalkyl-Substituted 1,4,5,8-Naphthalene Diimides in Aqueous Solution. J Am Chem Soc 2004; 126:4293-300. [PMID: 15053619 DOI: 10.1021/ja0389265] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of water-soluble 1,4,5,8-naphthalene diimide derivatives has been prepared and their redox and photophysical properties characterized. From laser flash photolysis studies, the triplet excited state of N,N'-bis[2-(N-pyridinium)ethyl]-1,4,5,8-naphthalene diimide (NDI-pyr) was found to undergo oxidative quenching with the electron donors DABCO, tyrosine, and tryptophan as expected from thermodynamics. Interestingly, the reactivities of naphthalene diimides (NDI) possessing alpha- and beta-carboxylic acid substituents (R = -CH2COO-, -C(CH3)2COO-, and -CH2CH2COO-) were strikingly different. In these compounds, the transient produced upon 355 nm excitation did not react with the electron donors. Instead, this transient reacted rapidly (k > 10(8)-10(9) M-1 s-1) with known electron acceptors, benzyl viologen and ferricyanide. The transient spectrum of the carboxyalkyl-substituted naphthalimides observed immediately after the laser pulse was nearly identical to the one-electron-reduced form of 1,4,5,8-naphthalene diimide (produced independently using the bis-pyridinium-substituted naphthaldiimide). From our studies, we conclude that the transient produced upon nanosecond laser flash photolysis of NDI-(CH2)nCOO- is the species produced upon intramolecular electron transfer from the carboxylate moiety to the singlet excited state of NDI. In separate experiments, we verified that the singlet excited state of NDI-pyr does, indeed, react intermolecularly with acetate, alanine, and glycine. The process is further substantiated using thermodynamic driving force calculations. The results offer new prospects of the efficient photochemical production of reactive carbon-centered radicals.
Collapse
Affiliation(s)
- Bindu Abraham
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
38
|
Kaur J, Ghosh NN, Chandra R. Synthesis and Antispasmodic Activity Evaluation of Bis-(Papaverine) Analogues. Chem Pharm Bull (Tokyo) 2004; 52:316-21. [PMID: 14993754 DOI: 10.1248/cpb.52.316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new series of N-substituted bis-(tetrahydropapaverine) ring systems have been synthesised in expectation of better antispasmodic activity in comparison with papaverine. The synthesis of the targeted heterocycles is described along with a discussion of their structure activity relationship. The general synthetic methods of bis-(tetrahydropapaverine) analogues involve tetrahydropapaverine, various piperazines, diisocyanates and diisothiocyanates as starting materials. Pharmacological evaluation involves the in vitro antispasmodic activity on a freshly removed guinea pig ileum using a force displacement transducer amplifier connected to a physiograph. Among the analogues synthesized in the present study, N,N'-bis-[2-carbamoyl-1-(3,4-dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolinyl]piperazine (22), was found to be the most potent muscle relaxant (IC(50): 0.31 microM).
Collapse
Affiliation(s)
- Jaskiran Kaur
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
39
|
Carrasco C, Joubert A, Tardy C, Maestre N, Cacho M, Braña MF, Bailly C. DNA Sequence Recognition by Bispyrazinonaphthalimides Antitumor Agents. Biochemistry 2003; 42:11751-61. [PMID: 14529286 DOI: 10.1021/bi034637h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bifunctional DNA intercalating agents have long attracted considerable attention as anticancer agents. One of the lead compounds in this category is the dimeric antitumor drug elinafide, composed of two tricyclic naphthalimide chromophores separated by an aminoalkyl linker chain optimally designed to permit bisintercalation of the drug into DNA. In an effort to optimize the DNA recognition capacity, different series of elinafide analogues have been prepared by extending the surface of the planar drug chromophore which is important for DNA sequence recognition. We report here a detailed investigation of the DNA sequence preference of three tetracyclic monomeric or dimeric pyrazinonaphthalimide derivatives. Melting temperature measurements and surface plasmon resonance (SPR) studies indicate that the dimerization of the tetracyclic planar chromophore considerably augments the affinity of the drug for DNA, polynucleotides, or hairpin oligonucleotides and promotes selective interaction with G.C sites. The (CH(2))(2)NH(CH(2))(3)NH(CH(2))(2) connector stabilizes the drug-DNA complexes. The methylation of the two nitrogen atoms of this linker chain reduces the binding affinity and increases the dissociation rates of the drug-DNA complexes by a factor of 10. DNase I footprinting experiments were used to investigate the sequence selectivity of the drugs, demonstrating highly preferential binding to G.C-rich sequences. It also served to select a high-affinity site encompassing the sequence 5'-GACGGCCAG which was then introduced into a biotin-labeled hairpin oligonucleotide to accurately measure the binding parameters by SPR. The affinity constant of the unmethylated dimer for this sequence is 500 times higher than that of the monomer compound and approximately 10 times higher than that of the methylated dimer. The DNA groove accessibility was also probed with three related oligonucleotides carrying G --> c(7)G, G --> I, and C --> M substitutions. The level of drug binding to the two hairpin oligonucleotides containing 7-deazaguanine (c(7)G) or 5-methylcytosine (M) residues is unchanged or only slightly reduced compared to that of the unmodified target. In contrast, incorporation of inosine (I) residues considerably decreases the extent of drug binding or even abolishes the interaction as is the case with the monomer. The pyrazinonaphthalimide derivatives are thus much more sensitive to the deletion of the exocyclic guanine 2-amino group exposed in the minor groove of the duplex than to the modification of the major groove elements. The complementary SPR footprinting methodology combining site selection and quantitative DNA affinity analysis constitutes a reliable method for dissecting the DNA sequence selectivity profile of reversible DNA binding small molecules.
Collapse
Affiliation(s)
- Carolina Carrasco
- INSERM U-524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, 59045 Lille, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Antonini I, Polucci P, Magnano A, Gatto B, Palumbo M, Menta E, Pescalli N, Martelli S. Design, synthesis, and biological properties of new bis(acridine-4-carboxamides) as anticancer agents. J Med Chem 2003; 46:3109-15. [PMID: 12825949 DOI: 10.1021/jm030820x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To enhance the outstanding biological response shown by the corresponding monomers 4 and 5, two classes of bis-acridine-4-carboxamides, 9, with a linker between the 4,4' positions, and 13, with a linker between the 1,1' positions, have been prepared as DNA-binding and potential antitumor agents. The noncovalent DNA-binding properties of these compounds have been examined using gel-electrophoresis and fluorometric techniques. The results indicate that (i). target compounds intercalate DNA; (ii). the bis derivatives with the optimal linker are considerably more DNA-affinic than corresponding monomers; (iii). overall affinity is sensitive to the nature of the linker, of the chromophores, and of the substituents at 7,7'; (iv). often, the bis derivatives show a marked AT-preferential binding. In vitro cytotoxic potency of these derivatives toward the human colon adenocarcinoma cell line (HT29) is described and compared to that of reference drugs. Structure-activity relationships are discussed. Some highly DNA-affinic and potent cytotoxic compounds, 9b,f and 13b,c, have been selected for the National Cancer Institute (NCI) screening on 60 human tumor cell lines and identified as new leads in the antitumor strategies.
Collapse
Affiliation(s)
- Ippolito Antonini
- Department of Chemical Sciences, University of Camerino, Via S Agostino 1, 62032 Camerino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bailly C, Carrasco C, Joubert A, Bal C, Wattez N, Hildebrand MP, Lansiaux A, Colson P, Houssier C, Cacho M, Ramos A, Braña MF. Chromophore-modified bisnaphthalimides: DNA recognition, topoisomerase inhibition, and cytotoxic properties of two mono- and bisfuronaphthalimides. Biochemistry 2003; 42:4136-50. [PMID: 12680768 DOI: 10.1021/bi027415c] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bisnaphthalimides represent a promising group of DNA-targeted anticancer agents. In this series, the lead compounds elinafide and bisnafide have reached clinical trials, and the search for more potent analogues remains a priority. In the course of a medicinal chemistry program aimed at discovering novel antitumor drugs based on the naphthalimide skeleton, different dimeric molecules containing two tetracyclic neutral DNA intercalating chromophores were synthesized. The naphthalimide unit has been fused to a benzene ring (azonafide derivatives), an imidazole, a pyrazine, or, as reported here, a furan ring which increases the planar surface of the chromophore and enhances its stacking properties. We report a detailed investigation of the DNA binding capacity of the dimeric molecule MCI3335 composed of two furonaphthalimide units connected by a 12 A long amino alkyl linker [(CH(2))(2)-NH-(CH(2))(3)-NH-(CH(2))(2)] identical to that of elinafide. Qualitative and quantitative binding studies, in particular using surface plasmon resonance, establish that the dimer binds considerably more tightly to DNA (up to 1000 times) than the corresponding monomer and exhibits a higher sequence selectivity for GC-rich sequences. DNase I footprinting experiments attest that the dimer, and to a lesser extent the monomer, preferentially intercalate at GC sites. The strong binding interaction between the drugs and DNA perturbs the relaxation of supercoiled DNA by topoisomerases, but the test compounds do not promote DNA cleavage by topoisomerase I or II. Despite the lack of poisoning effect toward topoisomerase II, MCI3335 displays a very high cytotoxicity toward CEM human leukemia cells, with an IC(50) in the low nanomolar range, approximately 4 times inferior to that of the reference drug elinafide. Confocal microscopy observations indicate that the monomer shows a stronger tendency to accumulate in the cell nuclei than the dimer. The extremely high cytotoxic potential of MCI3335 is attributed to its enhanced capacity to bind to DNA and to inhibit DNA synthesis, as evidenced by flow cytometry experiments using the BrdU assay. The results provide novel mechanistic information that furthers the understanding of the structure-activity relationships in the bisnaphthalimide series and identify MCI3335 as a novel lead compound for further preclinical investigations.
Collapse
Affiliation(s)
- Christian Bailly
- INSERM U-524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France. bailly@ lille.inserm.fr
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marminon C, Facompré M, Bailly C, Hickman J, Pierré A, Pfeiffer B, Renard P, Prudhomme M. Dimers from dechlorinated rebeccamycin: synthesis, interaction with DNA, and antiproliferative activities. Eur J Med Chem 2002; 37:435-40. [PMID: 12008058 DOI: 10.1016/s0223-5234(02)01350-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the course of structure-activity relationships on rebeccamycin analogues, two dimers of dechlorinated rebeccamycin were synthesised with the aim to improve the interaction with DNA and in vitro antiproliferative activities. The synthesis of two dimeric compounds obtained by joining two molecules of dechlorinated rebeccamycin via the imide nitrogen is described. Melting temperature and DNase I footprinting studies were performed to investigate their interaction with DNA. Four tumour cell lines, murine L1210 leukaemia, human HT29 colon carcinoma, A549 non-small cell lung carcinoma and K-562 leukaemia, were used to evaluate the cytotoxicity of the drugs. Their effects on the cell cycle of L1210 cells were also investigated.
Collapse
Affiliation(s)
- Christelle Marminon
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504 du CNRS, F-63177 Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Braña MF, Casarrubios L, Domínguez G, Fernández C, Pérez JM, Quiroga AG, Navarro-Ranninger C, de Pascual-Teresa B. Synthesis, cytotoxic activities and proposed mode of binding of a series of bis([(9-oxo-9,10-dihydroacridine-4-carbonyl)amino]alkyl) alkylamines. Eur J Med Chem 2002; 37:301-13. [PMID: 11960665 DOI: 10.1016/s0223-5234(02)01348-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A series of bis([(9-oxo-9,10-dihydroacridine-4-carbonyl)amino]alkyl) alkylamines have been prepared and their antiproliferative properties have been tested against HT-29 cell lines. Compounds 6b and 6d showed an interesting cytotoxic profile and were subjected to further cytotoxic evaluation, DNA binding properties and molecular modelling studies. The evaluation of the cytotoxic activity of compounds 6b and 6d against pairs of cisplatin-sensitive and -resistant ovarian tumour cells shows that both compounds may be endowed with interesting antitumour properties because they are able to circumvent cisplatin resistance in A2780cisR, CH1cisR and Pam 212-ras tumour cells. On the other hand, DNA binding data indicate that compounds 6b and 6d are able to intercalate stronger than acridine within the double helix. Both compounds displace ethidium bromide with an efficiency ten times higher than acridine from several linear double-stranded DNAs and induce 43 degrees unwinding in supercoiled pBR322 DNA while acridine unwinds pBR322 DNA by only 24 degrees. Altogether these data indicate that the significant conformational changes induced by compounds 6b and 6d in the double helix are due to a bis-intercalative DNA binding mode. We propose that binding to DNA through bisintercalation might be at least in part responsible for the remarkable cytotoxic properties of these acridine derivatives. The complex of 6b with d(GCGCGC)(2) in the four possible orientations that the ligand can adopt when binding to the DNA hexamer have been modelled and subjected to molecular dynamics simulations with the aim of evaluating the binding preferences of this bisintercalating agent into the DNA molecule. The predictions suggest that 6b binds to d(GCGCGC)(2) with a parallel orientation of the chromophores relative to each other and with a preference for binding through the minor groove of the hexamer. The possible relevance of these findings to the process of bisintercalation and the antitumour profile of these compounds is discussed in this paper.
Collapse
Affiliation(s)
- Miguel F Braña
- Departamento de Química Orgánica y Farmacéutica, Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo CEU, Boadilla del Monte, E-28668 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Spicer JA, Gamage SA, Finlay GJ, Denny WA. Synthesis and evaluation of unsymmetrical bis(arylcarboxamides) designed as topoisomerase-targeted anticancer drugs. Bioorg Med Chem 2002; 10:19-29. [PMID: 11738603 DOI: 10.1016/s0968-0896(01)00249-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Symmetrical dimers of lipophilic intercalating chromophores linked by cation-containing chains have recently been shown to have broad-spectrum in vivo anticancer activity. We report the preparation and evaluation of a series of both symmetric and unsymmetric dimers of a variety of intercalating chromophores of varied DNA binding strength, including naphthalimides, acridines, phenazines, oxanthrenes and 2-phenylquinolines. The unsymmetrical dimers were prepared by sequential coupling of the chromophores to linkers with selectively protected primary terminal amines to ensure high yields and unequivocal product. Protection of the internal (secondary) amines as BOC derivatives was used to ensure complete structural specificity, and was also an aid to the purification of these very polar compounds. The growth inhibitory abilities (as IC(50) values) of the compounds in a range of cell lines showed that the nature of the linker chain was important, and independent of the nature of the chromophore, with compounds containing the dicationic linker [-(CH2)2NH(CH2)2NH(CH2)2-] being on average 30-fold more potent than the corresponding compounds containing the monocationic linker [-(CH2)3NMe(CH2)3-]. However, the chromophores also play a role in determining biological activity, with the cytotoxicities of symmetric and unsymmetric dicationic dimers correlating with the overall DNA binding abilities of the chromophores.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand.
| | | | | | | |
Collapse
|
45
|
Gamage SA, Spicer JA, Finlay GJ, Stewart AJ, Charlton P, Baguley BC, Denny WA. Dicationic bis(9-methylphenazine-1-carboxamides): relationships between biological activity and linker chain structure for a series of potent topoisomerase targeted anticancer drugs. J Med Chem 2001; 44:1407-15. [PMID: 11311063 DOI: 10.1021/jm0003283] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bis(9-methylphenazine-1-carboxamides) joined by a variety of dicationic (CH(2))(n)()NR(CH(2))(m)NR(CH(2))(n) linkers of varying length (carboxamide N-N distances from 11.0 to 18.4 A) and rigidity were prepared by reaction of 9-methylphenazine-1-carboxylic acid imidazolide with the appropriate polyamines. The compounds were evaluated for growth inhibitory properties in P388 leukemia, Lewis lung carcinoma, and wild-type (JL(C)) and mutant (JL(A) and JL(D)) forms of human Jurkat leukemia with low levels of topoisomerase II (topo II). The compounds all had IC(50) ratios of <1 in the resistant Jurkat lines, consistent with topo II inhibition not being the primary mechanism of action. Analogues joined by an (CH(2))(2)NR(CH(2))(2)NR(CH(2))(2) linker were extremely potent cytotoxins, with selectivity toward the human cell lines, but absolute potencies declined sharply from R = H through R = Me to R = Pr and Bu. In contrast, (CH(2))(2)NR(CH(2))(3)NR(CH(2))(2) compounds showed reverse effects, with the R = Me analogue being more potent than the R = H one as well as being the most potent in the series [IC(50) in JL(C) cells 0.08 nM; superior to that for the clinical bis(naphthalimide) LU 79553]. Overall, the IC(50)s of analogues with linker chains (CH(2))(n)NH(CH(2))(m)NH(CH(2))(n) were inversely proportional to linker length. Constraining the rigidity of the linker chain by incorporating a piperazine ring did not decrease potency significantly. A representative compound bound tightly to DNA with high selectivity for GC sites, compatible with recent work suggesting that compounds of this type place their side chains in the major groove, making specific contacts with guanine bases. Representative compounds were susceptible to transport mediated resistance, being much less effective in cells that overexpressed P-glycoprotein. Overall the results suggest these compounds have a similar mode of action, mediated primarily by poisoning of topo I (possibly with some involvement of topo II). The bis(9-methylphenazine-1-carboxamides) show very high in vitro growth inhibitory potencies compared to their monomeric analogues. Two compounds showed in vivo activity in murine colon 38 syngeneic and HT29 human colon tumor xenograft models using intraperitoneal dosing.
Collapse
Affiliation(s)
- S A Gamage
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the search for potential new anticancer drugs, an efficient synthesis of bis-tetrahydroaminoacridine (bis-tacrine) and its congeners was accomplished by bis-amination of 9-chlorotetrahydroacridine and its congeners under heated conditions. The critical chlorides were efficiently prepared from o-aminoaromatic acids and cycloketones in-situ in the presence of phosphorus oxychloride. In-vitro cytotoxic evaluation of the compounds was carried out against a panel of 60 human cancer cell lines. Among them, butyl-linked bis-tacrine (5b) exhibited the strongest cytotoxic profile with GI50 (concentration causing 50% growth inhibition) values of approximately 0.04-0.08 microM against breast, colon, melanoma and non-small lung cancer cells. Congeners bearing a longer alkyl chain were on average 30- to 100-fold less cytotoxic against these cancer cells. Shorter connecting alkyl chains of bis-tacrine or its congeners dramatically decreased the cytotoxic effects. Compound 5b has been selected for further biological evaluation of its anticancer profile.
Collapse
Affiliation(s)
- M K Hu
- School of Pharmacy, National Defence Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
47
|
Deady LW, Desneves J, Kaye AJ, Finlay GJ, Baguley BC, Denny WA. Synthesis and antitumor activity of some indeno[1,2-b]quinoline-based bis carboxamides. Bioorg Med Chem 2000; 8:977-84. [PMID: 10882009 DOI: 10.1016/s0968-0896(00)00039-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of bis(11-oxo-11H-indeno[1,2-b]quinoline-6-carboxamides) linked through the 6-carboxamides were prepared by coupling the requisite acid imidazolides with various diamines. Compounds with mono-cationic linker chains were more potent cytotoxins than the corresponding monomer in a panel of rodent and human cell lines, while those with the dicationic linker chains (CH2)2NR(CH2)2NR(CH2)2 and (CH2)2NR(CH2)3NR(CH2)2 showed extraordinarily high potencies (for example, IC50s of 0.18-1.4 nM against human Jurkat leukemia; up to 1000-fold more potent than the parent monomer). As seen previously in the monomeric series, small, lipophilic 4-substituents significantly increased potency in cell culture. The dimeric compounds were all slightly to significantly more potent in the mutant JL(A) and JL(D) cell lines that under-express topo II, suggesting that this enzyme is not their primary target. An 11-imino-linked dimer was much less active, and an asymmetric indeno[1,2-b]quinoline-6-carboxamide/naphthalimide dimer was less active than the comparable symmetric bis(indeno[1,2-b]quinoline-6-carboxamide). Selected analogues were active against sub-cutaneously implanted colon 38 tumors in mice, giving growth delays comparable to that of the clinical topo I inhibitor irinotecan at up to 10-fold lower doses. These compounds form an interesting new class of putative topo I inhibitors.
Collapse
Affiliation(s)
- L W Deady
- Department of Chemistry, La Trobe University, Bundoora, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Spicer JA, Gamage SA, Rewcastle GW, Finlay GJ, Bridewell DJ, Baguley BC, Denny WA. Bis(phenazine-1-carboxamides): structure-activity relationships for a new class of dual topoisomerase I/II-directed anticancer drugs. J Med Chem 2000; 43:1350-8. [PMID: 10753472 DOI: 10.1021/jm990423f] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ring-substituted bis(phenazine-1-carboxamides), linked by a -(CH(2))(3)NMe(CH(2))(3)- chain, were prepared from the corresponding substituted phenazine-1-carboxylic acids by reaction of the intermediate imidazolides with bis(3-aminopropyl)methylamine. The compounds were evaluated for growth inhibitory activity in a panel of tumor cell lines, including P388 leukemia, Lewis lung carcinoma, and wild-type (JL(C)) and mutant (JL(A) and JL(D)) forms of human Jurkat leukemia. The latter mutant lines are resistant to topoisomerase (topo) II targeted agents because of lower levels of the enzyme. Analogues with small, lipophilic substituents (e.g., Me, Cl) at the 9-position were the most potent inhibitors, superior to the corresponding dimeric bis(acridine-4-carboxamides) (bis-DACA analogues). Several of the compounds were preferentially (up to 2-fold) more cytotoxic toward the mutant Jurkat lines than the wild-type. To test whether this selectivity was related to topoisomerase action, the most potent of the compounds (9-methyl) was evaluated in a cell-free system. It poisoned topo I at drug concentrations of 0.25 and 0.5 microM and inhibited the catalytic activity of both topo I and topo II at concentrations of 1 and 5 microM, respectively. Results from the NCI human tumor cell line panel showed the compounds had preferential activity toward colon tumor lines (on average 9.5-fold more active in the HT29 line than in the cell line panel as a whole). Several analogues produced significant growth delays in the relatively refractory subcutaneous colon 38 tumor model in vivo. In particular, the 9-methyl compound was substantially more potent in this tumor model than the clinical dual topo I/II poison DACA (total dose 90 versus 400 mg/kg) with comparable activity. The bis(phenazine-1-carboxamides) are a new and interesting class of dual topo I/II-directed anticancer drugs.
Collapse
Affiliation(s)
- J A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand
| | | | | | | | | | | | | |
Collapse
|
49
|
Kozyrev AN, Zheng G, Lazarou E, Dougherty TJ, Smith KM, Pandey RK. Syntheses of emeraldin and purpurin-18 analogs as target-specific photosensitizers for photodynamic therapy. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)00621-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|