1
|
Strategies in the Design of Small-Molecule Fluorescent Probes for Peptidases. Med Res Rev 2014; 34:1217-41. [DOI: 10.1002/med.21316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Marcilla M, Villasevil EM, de Castro JAL. Tripeptidyl peptidase II is dispensable for the generation of both proteasome-dependent and proteasome-independent ligands of HLA-B27 and other class I molecules. Eur J Immunol 2008; 38:631-9. [PMID: 18286573 DOI: 10.1002/eji.200737444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A significant fraction of the HLA-B27-bound peptide repertoire is resistant to proteasome inhibitors. The possible implication of tripeptidyl peptidase II (TPPII) in generating this subset was analyzed by quantifying the surface re-expression of HLA-B*2705 after acid stripping in the presence of two TPPII inhibitors, butabindide and Ala-Ala-Phe-chloromethylketone. Neither decreased HLA-B27 re-expression under conditions in which TPPII activity was largely inhibited. This was in contrast to a significant effect of the proteasome inhibitor epoxomicin. The failure of TPPII inhibition to decrease surface re-expression was not limited to HLA-B27, since it was also observed in several HLA-B27-negative cell lines, including Mel JuSo. Actually, HLA class I re-expression in Mel JuSo cells increased as a function of butabindide concentration, which is consistent with an involvement of TPPII in destroying HLA class I ligands. Inhibition of TPPII with small interfering RNA also failed to decrease the surface expression of HLA class I molecules on 143B cells. Our results indicate that TPPII is dispensable for the generation of proteasome-dependent HLA class I ligands and, without excluding its role in producing some individual epitopes, this enzyme is not involved to any quantitatively significant extent, in generating the proteasome-independent HLA-B27-bound peptide repertoire.
Collapse
Affiliation(s)
- Miguel Marcilla
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|
3
|
Ganellin CR, Bishop PB, Bambal RB, Chan SMT, Leblond B, Moore ANJ, Zhao L, Bourgeat P, Rose C, Vargas F, Schwartz JC. Inhibitors of Tripeptidyl Peptidase II. 3. Derivation of Butabindide by Successive Structure Optimizations Leading to a Potential General Approach to Designing Exopeptidase Inhibitors. J Med Chem 2005; 48:7333-42. [PMID: 16279793 DOI: 10.1021/jm0500830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cholecystokinin-8 (CCK-8)-inactivating peptidase is a serine peptidase that has been shown to be a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10). It cleaves the neurotransmitter CCK-8 sulfate at the Met-Gly bond to give Asp-Tyr(SO3H)-Met-OH + Gly-Trp-Met-Asp-Phe-NH2. Starting from Val-Pro-NHBu, a dipeptide of submicromolar affinity that had previously been generated to serve as a lead, successive optimization at P3, P1, and then P2 gave Abu-Pro-NHBu (18, Ki = 80 nM). Further transformation (by making a benzologue) gave the indoline analogue, butabindide (33) as a reversible inhibitor having nanomolar affinity (Ki = 7 nM). Retrospective analysis suggested the possibility of a general approach to designing exopeptidase inhibitors starting from the structure of the first hydrolysis product. Application of this approach to CCK-8 led to Abu-Phe-NHBu (37), but this only had Ki = 9.4 microM. Molecular modeling, to determine the minimum energy conformations and explain the 1000-fold better affinity of butabindide, indicated that 37 cannot access the likely active conformation of butabindide.
Collapse
Affiliation(s)
- C Robin Ganellin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
De Winter H, Breslin H, Miskowski T, Kavash R, Somers M. Inhibitor-based validation of a homology model of the active-site of tripeptidyl peptidase II. J Mol Graph Model 2005; 23:409-18. [PMID: 15781183 DOI: 10.1016/j.jmgm.2004.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/30/2004] [Accepted: 11/30/2004] [Indexed: 11/17/2022]
Abstract
A homology model of the active site region of tripeptidyl peptidase II (TPP II) was constructed based on the crystal structures of four subtilisin-like templates. The resulting model was subsequently validated by judging expectations of the model versus observed activities for a broad set of prepared TPP II inhibitors. The structure-activity relationships observed for the prepared TPP II inhibitors correlated nicely with the structural details of the TPP II active site model, supporting the validity of this model and its usefulness for structure-based drug design and pharmacophore searching experiments.
Collapse
Affiliation(s)
- Hans De Winter
- Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | |
Collapse
|
5
|
Reits E, Neijssen J, Herberts C, Benckhuijsen W, Janssen L, Drijfhout JW, Neefjes J. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 2004; 20:495-506. [PMID: 15084277 DOI: 10.1016/s1074-7613(04)00074-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 03/11/2004] [Accepted: 03/14/2004] [Indexed: 10/26/2022]
Abstract
Intracellular proteins are degraded by the proteasome, and resulting peptides surviving cytoplasmic peptidase activity can be presented by MHC class I molecules. Here, we show that intracellular aminopeptidases degrade peptides within seconds, almost irrespectively of amino acid sequence. N- but not C-terminal extension increases the half-life of peptides until they are 15 amino acids long. Beyond 15 amino acids, peptides are exclusively trimmed by the peptidase TPPII, which displays both exo- and endopeptidase activity. Surprisingly, most proteasomal degradation products are handled by TPPII before presentation by MHC class I molecules. We define three distinct proteolytic activities during antigen processing in vivo. Proteasome-generated peptides relevant for antigen presentation are mostly 15 amino acids or longer. These require TPPII activity for further trimming before becoming substrates for other peptidases and MHC class I. The heterogeneous pool of aminopeptidases will process TPPII products into MHC class I peptides and beyond.
Collapse
Affiliation(s)
- Eric Reits
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Breslin HJ, Miskowski TA, Kukla MJ, Leister WH, De Winter HL, Gauthier DA, Somers MVF, Peeters DCG, Roevens PWM. Design, synthesis, and tripeptidyl peptidase II inhibitory activity of a novel series of (S)-2,3-dihydro-2-(4-alkyl-1H-imidazol-2-yl)-1H-indoles. J Med Chem 2002; 45:5303-10. [PMID: 12431057 DOI: 10.1021/jm0202831] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Butabindide, 1, was previously reported as a potent inhibitor (IC50 = 7 nM) of the serine protease enzyme tripeptidyl peptidase II (TPPII), an endogenous protease that degrades cholecystokinin-8 (CCK-8). We found that 1 has some inherent chemical instability, yielding diketopiperazine 2 fairly readily under mimicked physiological conditions. We therefore prepared imidazoles 3, which are void of 1's inherent instability, and have found that our novel analogues maintained comparable TPPII inhibitory activity (e.g.,for 3c, IC50 = 4 nM) as 1.
Collapse
Affiliation(s)
- Henry J Breslin
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477-0776, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The high incidence of obesity, its multifactorial nature, the complexity and lack of knowledge of the bodyweight control system, and the scarcity of adequate therapeutics have fuelled anti-obesity drug development during a considerable number of years. Irrespective of the efforts invested by researchers and companies, few products have reached a minimum level of effectiveness, and even fewer are available in medical practice. As a consequence of anti-obesity research, our knowledge of the bodyweight control system increased but, despite this, the pharmacological approaches to the treatment of obesity have not resulted yet in effective drugs. This review provides a panoramic of the multiple different approaches developed to obtain workable drugs. These approaches, however, rely in only four main lines of action: control of energy intake, mainly through modification of appetite;control of energy expenditure, essentially through the increase of thermogenesis;control of the availability of substrates to cells and tissues through hormonal and other metabolic factors controlling the fate of the available energy substrates; andcontrol of fat reserves through modulation of lipogenesis and lipolysis in white adipose tissue. A large proportion of current research is centred on neuropeptidic control of appetite, followed by the development of drugs controlling thermogenic mechanisms and analysis of the factors controlling adipocyte growth and fat storage. The adipocyte is also a fundamental source of metabolic signals, signals that can be intercepted, modulated and used to force the brain to adjust the mass of fat with the physiological means available. The large variety of different approaches used in the search for effective anti-obesity drugs show both the deep involvement of researchers on this field and the large amount of resources devoted to this problem by pharmaceutical companies. Future trends in anti-obesity drug research follow closely the approaches outlined; however, the increasing mass of information on the molecular basis of bodyweight control and obesity will in the end prevail in our search for effective and harmless anti-obesity drugs.
Collapse
Affiliation(s)
- José-Antonio Fernández-López
- Centre Especial de Recerca en Nutrició i Ciència dels Aliments, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Mukherjee P, Dani A, Bhatia S, Singh N, Rudensky AY, George A, Bal V, Mayor S, Rath S. Efficient presentation of both cytosolic and endogenous transmembrane protein antigens on MHC class II is dependent on cytoplasmic proteolysis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2632-41. [PMID: 11509605 DOI: 10.4049/jimmunol.167.5.2632] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Ealpha(52-68) yields an epitope that is similar to the one generated during constitutive presentation of I-Ealpha as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Ealpha is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.
Collapse
Affiliation(s)
- P Mukherjee
- National Institute of Immunology, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mierke DF, Giragossian C. Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev 2001; 21:450-71. [PMID: 11579442 DOI: 10.1002/med.1018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G-protein-coupled receptors (GPCRs) allow cells to respond to calcium, hormones, and neurotransmitters. Not surprisingly, they currently make up the largest family of validated drug targets. Rational drug design for molecular regulators targeting GPCRs has been limited to theoretical-based computational approaches. X-ray crystallography of intact GPCRs has provided the topological orientation of the seven transmembrane helices, but limited structural information of the extracellular and intracellular loops and protein termini. In this review we detail an NMR-based approach which provides the high-resolution structural features on the extracellular domains of GPCRs and the ligand/receptor complexes formed upon titration of the peptide hormone. The results provide important contact points and a high-resolution description of the ligand/receptor interactions, which may be useful for the rational design of therapeutic agents targeting GPCRs. Recent results from our investigation of the cholecystokinin peptide hormone system are used to highlight this approach.
Collapse
Affiliation(s)
- D F Mierke
- Department of Molecular Pharmacology, Division of Biology & Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
10
|
Bonnard E, Burlet-Schiltz O, Francés B, Mazarguil H, Monsarrat B, Zajac JM, Roussin A. Identification of neuropeptide FF-related peptides in rodent spinal cord. Peptides 2001; 22:1085-92. [PMID: 11445238 DOI: 10.1016/s0196-9781(01)00425-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptides which should be generated from the neuropeptide FF (NPFF) precursor were identified in mouse and rat spinal cord, by using reverse phase high pressure liquid chromatography with radioimmunoassay and electrospray mass spectrometry detection. In both species, two octapeptides, NPFF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) and NPSF (Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe-amide) were identified but a longer peptide NPA-NPFF (Asn-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) was present at the highest concentration in rat spinal cord. In mouse, the homologous peptide, SPA-NPFF (Ser-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) was not detected. Both peptides NPFF and NPSF reverse morphine-induced analgesia in the tail flick test. Our data reveal species differences in the maturation of NPFF precursor.
Collapse
Affiliation(s)
- E Bonnard
- Institut de Pharmacologie et de Biologie Structurale, C.N.R.S. UMR 5089, 205 route de Narbonne, Toulouse Cedex, 31077 France
| | | | | | | | | | | | | |
Collapse
|